This file is indexed.

/usr/lib/python3/dist-packages/bumps/simplex.py is in python3-bumps 0.7.6-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#__docformat__ = "restructuredtext en"
# ******NOTICE***************
# from optimize.py module by Travis E. Oliphant
#
# You may copy and use this module as you see fit with no
# guarantee implied provided you keep this notice in all copies.
# *****END NOTICE************
#
# Modified by Paul Kienzle to support bounded minimization
"""
Downhill simplex optimizer.
"""

from __future__ import print_function

__all__ = ['simplex']
__docformat__ = "restructuredtext en"
__version__ = "0.7"

import numpy as np



def wrap_function(function, bounds):
    ncalls = [0]
    if bounds is not None:
        lo, hi = [np.asarray(v) for v in bounds]

        def function_wrapper(x):
            ncalls[0] += 1
            if np.any((x < lo) | (x > hi)):
                return np.inf
            else:
                # function(x)
                return function(x)
    else:
        def function_wrapper(x):
            ncalls[0] += 1
            return function(x)
    return ncalls, function_wrapper


class Result:

    """
    Results from the fit.

    x : ndarray
        Best parameter set
    fx : float
        Best value
    iters : int
        Number of iterations
    calls : int
        Number of function calls
    status : boolean
        True if the fit completed successful, false if terminated early
        because of too many iterations.
    """

    def __init__(self, x, fx, iters, calls, status):
        self.x, self.fx, self.iters, self.calls = x, fx, iters, calls
        self.status = status

    def __str__(self):
        msg = "Converged" if self.status else "Aborted"
        return ("%s with %g at %s after %d calls"
                % (msg, self.fx, self.x, self.calls))


def dont_abort():
    return False


def simplex(f, x0=None, bounds=None, radius=0.05,
            xtol=1e-4, ftol=1e-4, maxiter=None,
            update_handler=None, abort_test=dont_abort):
    """
    Minimize a function using Nelder-Mead downhill simplex algorithm.

    This optimizer is also known as Amoeba (from Numerical Recipes) and
    the Nealder-Mead simplex algorithm.  This is not the simplex algorithm
    for solving constrained linear systems.

    Downhill simplex is a robust derivative free algorithm for finding
    minima.  It proceeds by choosing a set of points (the simplex) forming
    an n-dimensional triangle, and transforming that triangle so that the
    worst vertex is improved, either by stretching, shrinking or reflecting
    it about the center of the triangle.  This algorithm is not known for
    its speed, but for its simplicity and robustness, and is a good algorithm
    to start your problem with.

    *Parameters*:

        f : callable f(x,*args)
            The objective function to be minimized.
        x0 : ndarray
            Initial guess.
        bounds : (ndarray,ndarray) or None
            Bounds on the parameter values for the function.
        radius: float
            Size of the initial simplex.  For bounded parameters (those
            which have finite lower and upper bounds), radius is clipped
            to a value in (0,0.5] representing the portion of the
            range to use as the size of the initial simplex.

    *Returns*: Result (`park.simplex.Result`)

        x : ndarray
            Parameter that minimizes function.
        fx : float
            Value of function at minimum: ``fopt = func(xopt)``.
        iters : int
            Number of iterations performed.
        calls : int
            Number of function calls made.
        success : boolean
            True if fit completed successfully.

    *Other Parameters*:

        xtol : float
            Relative error in xopt acceptable for convergence.
        ftol : number
            Relative error in func(xopt) acceptable for convergence.
        maxiter : int=200*N
            Maximum number of iterations to perform.  Defaults
        update_handler : callable
            Called after each iteration, as callback(k,n,xk,fxk),
            where k is the current iteration, n is the maximum
            iteration, xk is the simplex and fxk is the value of
            the simplex vertices.  xk[0],fxk[0] is the current best.
        abort_test : callable
            Called after each iteration, as callback(), to see if
            an external process has requested stop.

    *Notes*

        Uses a Nelder-Mead simplex algorithm to find the minimum of
        function of one or more variables.

    """
    fcalls, func = wrap_function(f, bounds)
    x0 = np.asfarray(x0).flatten()
    # print "x0",x0
    N = len(x0)
    rank = len(x0.shape)
    if not -1 < rank < 2:
        raise ValueError("Initial guess must be a scalar or rank-1 sequence.")

    if maxiter is None:
        maxiter = N * 200

    rho = 1
    chi = 2
    psi = 0.5
    sigma = 0.5

    if rank == 0:
        sim = np.zeros((N + 1,), dtype=x0.dtype)
    else:
        sim = np.zeros((N + 1, N), dtype=x0.dtype)
    fsim = np.zeros((N + 1,), float)
    sim[0] = x0
    fsim[0] = func(x0)

    # Metropolitan simplex: simplex has vertices at x0 and at
    # x0 + j*radius for each unit vector j.  Radius is a percentage
    # change from the initial value, or just the radius if the initial
    # value is 0.  For bounded problems, the radius is a percentage of
    # the bounded range in dimension j.
    val = x0 * (1 + radius)
    val[val == 0] = radius
    if bounds is not None:
        radius = np.clip(radius, 0, 0.5)
        lo, hi = [np.asarray(v) for v in bounds]

        # Keep the initial simplex inside the bounds
        x0 = np.select([x0 < lo, x0 > hi], [lo, hi], x0)
        bounded = ~np.isinf(lo) & ~np.isinf(hi)
        val[bounded] = x0[bounded] + (hi[bounded] - lo[bounded]) * radius
        val = np.select([val < lo, val > hi], [lo, hi], val)

        # If the initial point was at or beyond an upper bound, then bounds
        # projection will put x0 and x0+j*radius at the same point.  We
        # need to detect these collisions and reverse the radius step
        # direction when such collisions occur.  The only time the collision
        # can occur at the lower bound is when upper and lower bound are
        # identical.  In that case, we are already done.
        collision = val == x0
        if np.any(collision):
            reverse = x0 * (1 - radius)
            reverse[reverse == 0] = -radius
            reverse[bounded] = x0[bounded] - \
                (hi[bounded] - lo[bounded]) * radius
            val[collision] = reverse[collision]

        # Make tolerance relative for bounded parameters
        tol = np.ones(x0.shape) * xtol
        tol[bounded] = (hi[bounded] - lo[bounded]) * xtol
        xtol = tol

    # Compute values at the simplex vertices
    for k in range(0, N):
        y = x0 + 0
        y[k] = val[k]
        sim[k + 1] = y
        fsim[k + 1] = func(y)

    # print sim
    ind = np.argsort(fsim)
    fsim = np.take(fsim, ind, 0)
    # sort so sim[0,:] has the lowest function value
    sim = np.take(sim, ind, 0)
    # print sim

    iterations = 1
    while iterations < maxiter:
        if np.all(abs(sim[1:] - sim[0]) <= xtol) \
                and max(abs(fsim[0] - fsim[1:])) <= ftol:
            # print abs(sim[1:]-sim[0])
            break

        xbar = np.sum(sim[:-1], 0) / N
        xr = (1 + rho) * xbar - rho * sim[-1]
        # print "xbar" ,xbar,rho,sim[-1],N
        # break
        fxr = func(xr)
        doshrink = 0

        if fxr < fsim[0]:
            xe = (1 + rho * chi) * xbar - rho * chi * sim[-1]
            fxe = func(xe)

            if fxe < fxr:
                sim[-1] = xe
                fsim[-1] = fxe
            else:
                sim[-1] = xr
                fsim[-1] = fxr
        else:  # fsim[0] <= fxr
            if fxr < fsim[-2]:
                sim[-1] = xr
                fsim[-1] = fxr
            else:  # fxr >= fsim[-2]
                # Perform contraction
                if fxr < fsim[-1]:
                    xc = (1 + psi * rho) * xbar - psi * rho * sim[-1]
                    fxc = func(xc)

                    if fxc <= fxr:
                        sim[-1] = xc
                        fsim[-1] = fxc
                    else:
                        doshrink = 1
                else:
                    # Perform an inside contraction
                    xcc = (1 - psi) * xbar + psi * sim[-1]
                    fxcc = func(xcc)

                    if fxcc < fsim[-1]:
                        sim[-1] = xcc
                        fsim[-1] = fxcc
                    else:
                        doshrink = 1

                if doshrink:
                    for j in range(1, N + 1):
                        sim[j] = sim[0] + sigma * (sim[j] - sim[0])
                        fsim[j] = func(sim[j])

        ind = np.argsort(fsim)
        sim = np.take(sim, ind, 0)
        fsim = np.take(fsim, ind, 0)
        if update_handler is not None:
            update_handler(iterations, maxiter, sim, fsim)
        iterations += 1
        if abort_test():
            break  # STOPHERE

    status = 0 if iterations < maxiter else 1
    res = Result(sim[0], fsim[0], iterations, fcalls[0], status)
    res.next_start = sim[np.random.randint(N)]
    return res


def main():
    import time

    def rosen(x):  # The Rosenbrock function
        return np.sum(100.0 * (x[1:] - x[:-1] ** 2.0) ** 2.0 + (1 - x[:-1]) ** 2.0, axis=0)

    x0 = [0.8, 1.2, 0.7]
    print("Nelder-Mead Simplex")
    print("===================")
    start = time.time()
    x = simplex(rosen, x0)
    print(x)
    print("Time:", time.time() - start)

    x0 = [0] * 3
    print("Nelder-Mead Simplex")
    print("===================")
    print("starting at zero")
    start = time.time()
    x = simplex(rosen, x0)
    print(x)
    print("Time:", time.time() - start)

    x0 = [0.8, 1.2, 0.7]
    lo, hi = [0] * 3, [1] * 3
    print("Bounded Nelder-Mead Simplex")
    print("===========================")
    start = time.time()
    x = simplex(rosen, x0, bounds=(lo, hi))
    print(x)
    print("Time:", time.time() - start)

    x0 = [0.8, 1.2, 0.7]
    lo, hi = [0.999] * 3, [1.001] * 3
    print("Bounded Nelder-Mead Simplex")
    print("===========================")
    print("tight bounds")
    print("simplex is smaller than 1e-7 in every dimension, but you can't")
    print("see this without uncommenting the print statement simplex function")
    start = time.time()
    x = simplex(rosen, x0, bounds=(lo, hi), xtol=1e-4)
    print(x)
    print("Time:", time.time() - start)

    x0 = [0] * 3
    hi, lo = [-0.999] * 3, [-1.001] * 3
    print("Bounded Nelder-Mead Simplex")
    print("===========================")
    print("tight bounds, x0=0 outside bounds from above")
    start = time.time()
    x = simplex(lambda x: rosen(-x), x0, bounds=(lo, hi), xtol=1e-4)
    print(x)
    print("Time:", time.time() - start)

    x0 = [0.8, 1.2, 0.7]
    lo, hi = [-np.inf] * 3, [np.inf] * 3
    print("Bounded Nelder-Mead Simplex")
    print("===========================")
    print("infinite bounds")
    start = time.time()
    x = simplex(rosen, x0, bounds=(lo, hi), xtol=1e-4)
    print(x)
    print("Time:", time.time() - start)

if __name__ == "__main__":
    main()