This file is indexed.

/usr/lib/python3/dist-packages/cairocffi/matrix.py is in python3-cairocffi 0.8.0-0ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# coding: utf-8
"""
    cairocffi.matrix
    ~~~~~~~~~~~~~~~~

    Transformation matrices.

    :copyright: Copyright 2013 by Simon Sapin
    :license: BSD, see LICENSE for details.

"""

from . import ffi, cairo, _check_status


class Matrix(object):
    """A 2D transformation matrix.

    Matrices are used throughout cairo to convert between
    different coordinate spaces.
    A :class:`Matrix` holds an affine transformation,
    such as a scale, rotation, shear, or a combination of these.
    The transformation of a point (x,y) is given by::

        x_new = xx * x + xy * y + x0
        y_new = yx * x + yy * y + y0

    The current transformation matrix of a :class:`Context`,
    represented as a :class:`Matrix`,
    defines the transformation from user-space coordinates
    to device-space coordinates.
    See :meth:`Context.get_matrix` and :meth:`Context.set_matrix`.

    The default values produce an identity matrix.

    Matrices can be compared with ``m1 == m2`` and ``m2 != m2``
    as well as multiplied with ``m3 = m1 * m2``.

    """
    def __init__(self, xx=1, yx=0, xy=0, yy=1, x0=0, y0=0):
        self._pointer = ffi.new('cairo_matrix_t *')
        cairo.cairo_matrix_init(self._pointer, xx, yx, xy, yy, x0, y0)

    @classmethod
    def init_rotate(cls, radians):
        """Return a new :class:`Matrix` for a transformation
        that rotates by :obj:`radians`.

        :type radians: float
        :param radians:
            Angle of rotation, in radians.
            The direction of rotation is defined such that
            positive angles rotate in the direction
            from the positive X axis toward the positive Y axis.
            With the default axis orientation of cairo,
            positive angles rotate in a clockwise direction.

        """
        result = cls()
        cairo.cairo_matrix_init_rotate(result._pointer, radians)
        return result

    def as_tuple(self):
        """Return all of the matrix’s components.

        :returns: A ``(xx, yx, xy, yy, x0, y0)`` tuple of floats.

        """
        ptr = self._pointer
        return (ptr.xx, ptr.yx, ptr.xy, ptr.yy, ptr.x0, ptr.y0)

    def copy(self):
        """Return a new copy of this matrix."""
        return type(self)(*self.as_tuple())

    def __getitem__(self, index):
        return getattr(
            self._pointer, ('xx', 'yx', 'xy', 'yy', 'x0', 'y0')[index])

    def __iter__(self):
        return iter(self.as_tuple())

    def __eq__(self, other):
        return self.as_tuple() == other.as_tuple()

    def __ne__(self, other):
        return self.as_tuple() != other.as_tuple()

    def __repr__(self):
        class_ = type(self)
        return '%s(%g, %g, %g, %g, %g, %g)' % (
            (class_.__name__,) + self.as_tuple())

    def multiply(self, other):
        """Multiply with another matrix
        and return the result as a new :class:`Matrix` object.
        Same as ``self * other``.

        """
        res = Matrix()
        cairo.cairo_matrix_multiply(
            res._pointer, self._pointer, other._pointer)
        return res

    __mul__ = multiply

    def translate(self, tx, ty):
        """Applies a translation by :obj:`tx`, :obj:`ty`
        to the transformation in this matrix.

        The effect of the new transformation is to
        first translate the coordinates by :obj:`tx` and :obj:`ty`,
        then apply the original transformation to the coordinates.

        .. note::
            This changes the matrix in-place.

        :param tx: Amount to translate in the X direction.
        :param ty: Amount to translate in the Y direction.
        :type tx: float
        :type ty: float

        """
        cairo.cairo_matrix_translate(self._pointer, tx, ty)

    def scale(self, sx, sy=None):
        """Applies scaling by :obj:`sx`, :obj:`sy`
        to the transformation in this matrix.

        The effect of the new transformation is to
        first scale the coordinates by :obj:`sx` and :obj:`sy`,
        then apply the original transformation to the coordinates.

        If :obj:`sy` is omitted, it is the same as :obj:`sx`
        so that scaling preserves aspect ratios.

        .. note::
            This changes the matrix in-place.

        :param sx: Scale factor in the X direction.
        :param sy: Scale factor in the Y direction.
        :type sx: float
        :type sy: float

        """
        if sy is None:
            sy = sx
        cairo.cairo_matrix_scale(self._pointer, sx, sy)

    def rotate(self, radians):
        """Applies a rotation by :obj:`radians`
        to the transformation in this matrix.

        The effect of the new transformation is to
        first rotate the coordinates by :obj:`radians`,
        then apply the original transformation to the coordinates.

        .. note::
            This changes the matrix in-place.

        :type radians: float
        :param radians:
            Angle of rotation, in radians.
            The direction of rotation is defined such that positive angles
            rotate in the direction from the positive X axis
            toward the positive Y axis.
            With the default axis orientation of cairo,
            positive angles rotate in a clockwise direction.

        """
        cairo.cairo_matrix_rotate(self._pointer, radians)

    def invert(self):
        """Changes matrix to be the inverse of its original value.
        Not all transformation matrices have inverses;
        if the matrix collapses points together (it is degenerate),
        then it has no inverse and this function will fail.

        .. note::
            This changes the matrix in-place.

        :raises: :exc:`CairoError` on degenerate matrices.

        """
        _check_status(cairo.cairo_matrix_invert(self._pointer))

    def inverted(self):
        """Return the inverse of this matrix. See :meth:`invert`.

        :raises: :exc:`CairoError` on degenerate matrices.
        :returns: A new :class:`Matrix` object.

        """
        matrix = self.copy()
        matrix.invert()
        return matrix

    def transform_point(self, x, y):
        """Transforms the point ``(x, y)`` by this matrix.

        :param x: X position.
        :param y: Y position.
        :type x: float
        :type y: float
        :returns: A ``(new_x, new_y)`` tuple of floats.

        """
        xy = ffi.new('double[2]', [x, y])
        cairo.cairo_matrix_transform_point(self._pointer, xy + 0, xy + 1)
        return tuple(xy)

    def transform_distance(self, dx, dy):
        """Transforms the distance vector ``(dx, dy)`` by this matrix.
        This is similar to :meth:`transform_point`
        except that the translation components of the transformation
        are ignored.
        The calculation of the returned vector is as follows::

            dx2 = dx1 * xx + dy1 * xy
            dy2 = dx1 * yx + dy1 * yy

        Affine transformations are position invariant,
        so the same vector always transforms to the same vector.
        If ``(x1, y1)`` transforms to ``(x2, y2)``
        then ``(x1 + dx1, y1 + dy1)`` will transform
        to ``(x1 + dx2, y1 + dy2)`` for all values of ``x1`` and ``x2``.

        :param dx: X component of a distance vector.
        :param dy: Y component of a distance vector.
        :type dx: float
        :type dy: float
        :returns: A ``(new_dx, new_dy)`` tuple of floats.

        """
        xy = ffi.new('double[2]', [dx, dy])
        cairo.cairo_matrix_transform_distance(self._pointer, xy + 0, xy + 1)
        return tuple(xy)

    def _component_property(name):
        return property(
            lambda self: getattr(self._pointer, name),
            lambda self, value: setattr(self._pointer, name, value),
            doc='Read-write attribute access to a single float component.')

    xx = _component_property('xx')
    yx = _component_property('yx')
    xy = _component_property('xy')
    yy = _component_property('yy')
    x0 = _component_property('x0')
    y0 = _component_property('y0')
    del _component_property