This file is indexed.

/usr/lib/python3/dist-packages/ffc/fiatinterface.py is in python3-ffc 2017.2.0.post0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# -*- coding: utf-8 -*-

# Copyright (C) 2009-2017 Kristian B. Oelgaard and Anders Logg
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Garth N. Wells, 2009.
# Modified by Marie Rognes, 2009-2013.
# Modified by Martin Sandve Alnæs, 2013
# Modified by Lizao Li, 2015, 2016

# Python modules
import numpy
from numpy import array

# UFL and FIAT modules
import ufl
import FIAT
from FIAT.enriched import EnrichedElement
from FIAT.hdiv_trace import HDivTrace
from FIAT.mixed import MixedElement
from FIAT.P0 import P0
from FIAT.restricted import RestrictedElement
from FIAT.quadrature_element import QuadratureElement
from FIAT.tensor_product import FlattenedDimensions

# FFC modules
from ffc.log import debug, error

# Dictionary mapping from cellname to dimension
from ufl.cell import cellname2dim

# Element families supported by FFC
supported_families = ("Brezzi-Douglas-Marini",
                      "Brezzi-Douglas-Fortin-Marini",
                      "Crouzeix-Raviart",
                      "Discontinuous Lagrange",
                      "Discontinuous Raviart-Thomas",
                      "HDiv Trace",
                      "Lagrange",
                      "Lobatto",
                      "Nedelec 1st kind H(curl)",
                      "Nedelec 2nd kind H(curl)",
                      "Radau",
                      "Raviart-Thomas",
                      "Real",
                      "Bubble",
                      "Quadrature",
                      "Regge",
                      "Hellan-Herrmann-Johnson",
                      "Q",
                      "DQ",
                      "TensorProductElement")

# Cache for computed elements
_cache = {}


class SpaceOfReals(object):
    """Constant over the entire domain, rather than just cellwise."""


def reference_cell(cellname):
    "Return FIAT reference cell"
    return FIAT.ufc_cell(cellname)


def reference_cell_vertices(cellname):
    "Return dict of coordinates of reference cell vertices for this 'cellname'."
    cell = reference_cell(cellname)
    return cell.get_vertices()


def create_element(ufl_element):

    # Create element signature for caching (just use UFL element)
    element_signature = ufl_element

    # Check cache
    if element_signature in _cache:
        debug("Reusing element from cache")
        return _cache[element_signature]

    # Create regular FIAT finite element
    if isinstance(ufl_element, ufl.FiniteElement):
        element = _create_fiat_element(ufl_element)

    # Create mixed element (implemented by FFC)
    elif isinstance(ufl_element, ufl.MixedElement):
        elements = _extract_elements(ufl_element)
        element = MixedElement(elements)

    # Create element union
    elif isinstance(ufl_element, ufl.EnrichedElement):
        elements = [create_element(e) for e in ufl_element._elements]
        element = EnrichedElement(*elements)

    # Create restricted element
    elif isinstance(ufl_element, ufl.RestrictedElement):
        element = _create_restricted_element(ufl_element)

    else:
        error("Cannot handle this element type: %s" % str(ufl_element))

    # Store in cache
    _cache[element_signature] = element

    return element


def _create_fiat_element(ufl_element):
    "Create FIAT element corresponding to given finite element."

    # Get element data
    family = ufl_element.family()
    cell = ufl_element.cell()
    cellname = cell.cellname()
    degree = ufl_element.degree()

    # Check that FFC supports this element
    if family not in supported_families:
        error("This element family (%s) is not supported by FFC." % family)

    # Create FIAT cell
    fiat_cell = reference_cell(cellname)

    # Handle the space of the constant
    if family == "Real":
        element = _create_fiat_element(ufl.FiniteElement("DG", cell, 0))
        element.__class__ = type('SpaceOfReals', (type(element), SpaceOfReals), {})
        return element

    # Refuse to work with DQ elements until it is rigorously tested they work
    if family == "DQ" and degree >= 1:
        error("Sorry, DQ elements need a bit more love.")

    # Handle quadrilateral case by reconstructing the element with cell TensorProductCell (interval x interval)
    if cellname == "quadrilateral":
        quadrilateral_tpc = ufl.TensorProductCell(ufl.Cell("interval"), ufl.Cell("interval"))
        return FlattenedDimensions(_create_fiat_element(ufl_element.reconstruct(cell = quadrilateral_tpc)))

    # Handle hexahedron case by reconstructing the element with cell TensorProductCell (quadrilateral x interval)
    # This creates TensorProductElement(TensorProductElement(interval, interval), interval)
    # Therefore dof entities consists of nested tuples, example: ((0, 1), 1)
    elif cellname == "hexahedron":
        hexahedron_tpc = ufl.TensorProductCell(ufl.Cell("quadrilateral"), ufl.Cell("interval"))
        return FlattenedDimensions(_create_fiat_element(ufl_element.reconstruct(cell = hexahedron_tpc)))

    # FIXME: AL: Should this really be here?
    # Handle QuadratureElement
    if family == "Quadrature":
        # Compute number of points per axis from the degree of the element
        scheme = ufl_element.quadrature_scheme()
        assert degree is not None
        assert scheme is not None

        # Create quadrature (only interested in points)
        # TODO: KBO: What should we do about quadrature functions that live on ds, dS?
        # Get cell and facet names.
        points, weights = create_quadrature(cellname, degree, scheme)

        # Make element
        element = QuadratureElement(fiat_cell, points)

    else:
        # Check if finite element family is supported by FIAT
        if family not in FIAT.supported_elements:
            error("Sorry, finite element of type \"%s\" are not supported by FIAT.", family)

        ElementClass = FIAT.supported_elements[family]

        # Create tensor product FIAT finite element
        if isinstance(ufl_element, ufl.TensorProductElement):
            A = create_element(ufl_element.sub_elements()[0])
            B = create_element(ufl_element.sub_elements()[1])
            element = ElementClass(A, B)

        # Create normal FIAT finite element
        else:
            if degree is None:
                element = ElementClass(fiat_cell)
            else:
                element = ElementClass(fiat_cell, degree)

    # Consistency check between UFL and FIAT elements.
    if element.value_shape() != ufl_element.reference_value_shape():
        error("Something went wrong in the construction of FIAT element from UFL element." +
              "Shapes are %s and %s." % (element.value_shape(), ufl_element.reference_value_shape()))

    return element


def create_quadrature(shape, degree, scheme="default"):
    """
    Generate quadrature rule (points, weights) for given shape
    that will integrate an polynomial of order 'degree' exactly.
    """
    if isinstance(shape, int) and shape == 0:
        return (numpy.zeros((1, 0)), numpy.ones((1,)))

    if shape in cellname2dim and cellname2dim[shape] == 0:
        return (numpy.zeros((1, 0)), numpy.ones((1,)))

    if scheme == "vertex":
        # The vertex scheme, i.e., averaging the function value in the vertices
        # and multiplying with the simplex volume, is only of order 1 and
        # inferior to other generic schemes in terms of error reduction.
        # Equation systems generated with the vertex scheme have some
        # properties that other schemes lack, e.g., the mass matrix is
        # a simple diagonal matrix. This may be prescribed in certain cases.
        if degree > 1:
            from warnings import warn
            warn(("Explicitly selected vertex quadrature (degree 1), "
                 + "but requested degree is %d.") % degree)
        if shape == "tetrahedron":
            return (array([[0.0, 0.0, 0.0],
                           [1.0, 0.0, 0.0],
                           [0.0, 1.0, 0.0],
                           [0.0, 0.0, 1.0]]),
                    array([1.0 / 24.0, 1.0 / 24.0, 1.0 / 24.0, 1.0 / 24.0])
                    )
        elif shape == "triangle":
            return (array([[0.0, 0.0],
                           [1.0, 0.0],
                           [0.0, 1.0]]),
                    array([1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0])
                    )
        elif shape == "interval":
            # Trapezoidal rule.
            return (array([[0.0],
                           [1.0]]),
                    array([1.0 / 2.0, 1.0 / 2.0])
                    )

    quad_rule = FIAT.create_quadrature(reference_cell(shape), degree, scheme)
    points = numpy.asarray(quad_rule.get_points())
    weights = numpy.asarray(quad_rule.get_weights())
    return points, weights


def map_facet_points(points, facet, cellname):
    """
    Map points from the e (UFC) reference simplex of dimension d - 1
    to a given facet on the (UFC) reference simplex of dimension d.
    This may be used to transform points tabulated for example on the
    2D reference triangle to points on a given facet of the reference
    tetrahedron.
    """

    # Extract the geometric dimension of the points we want to map
    dim = len(points[0]) + 1

    # Special case, don't need to map coordinates on vertices
    if dim == 1:
        return [[(0.0,), (1.0,)][facet]]

    # Get the FIAT reference cell
    fiat_cell = reference_cell(cellname)

    # Extract vertex coordinates from cell and map of facet index to
    # indicent vertex indices
    coordinate_dofs = fiat_cell.get_vertices()
    facet_vertices = fiat_cell.get_topology()[dim - 1]

    # coordinate_dofs = \
    #    {1: ((0.,), (1.,)),
    #     2: ((0., 0.), (1., 0.), (0., 1.)),
    #     3: ((0., 0., 0.), (1., 0., 0.),(0., 1., 0.), (0., 0., 1))}

    # Facet vertices
    # facet_vertices = \
    #    {2: ((1, 2), (0, 2), (0, 1)),
    #     3: ((1, 2, 3), (0, 2, 3), (0, 1, 3), (0, 1, 2))}

    # Compute coordinates and map the points
    coordinates = [coordinate_dofs[v] for v in facet_vertices[facet]]
    new_points = []
    for point in points:
        w = (1.0 - sum(point),) + tuple(point)
        x = tuple(sum([w[i] * array(coordinates[i]) for i in range(len(w))]))
        new_points += [x]

    return new_points


def _extract_elements(ufl_element, restriction_domain=None):
    "Recursively extract un-nested list of (component) elements."

    elements = []
    if isinstance(ufl_element, ufl.MixedElement):
        for sub_element in ufl_element.sub_elements():
            elements += _extract_elements(sub_element, restriction_domain)
        return elements

    # Handle restricted elements since they might be mixed elements too.
    if isinstance(ufl_element, ufl.RestrictedElement):
        base_element = ufl_element.sub_element()
        restriction_domain = ufl_element.restriction_domain()
        return _extract_elements(base_element, restriction_domain)

    if restriction_domain:
        ufl_element = ufl.RestrictedElement(ufl_element, restriction_domain)

    elements += [create_element(ufl_element)]

    return elements


def _create_restricted_element(ufl_element):
    "Create an FFC representation for an UFL RestrictedElement."

    if not isinstance(ufl_element, ufl.RestrictedElement):
        error("create_restricted_element expects an ufl.RestrictedElement")

    base_element = ufl_element.sub_element()
    restriction_domain = ufl_element.restriction_domain()

    # If simple element -> create RestrictedElement from fiat_element
    if isinstance(base_element, ufl.FiniteElement):
        element = _create_fiat_element(base_element)
        return RestrictedElement(element, restriction_domain=restriction_domain)

    # If restricted mixed element -> convert to mixed restricted element
    if isinstance(base_element, ufl.MixedElement):
        elements = _extract_elements(base_element, restriction_domain)
        return MixedElement(elements)

    error("Cannot create restricted element from %s" % str(ufl_element))