This file is indexed.

/usr/lib/python3/dist-packages/gnocchiclient/benchmark.py is in python3-gnocchiclient 7.0.1-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# -*- coding: utf-8 -*-

# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import argparse
import datetime
import functools
import itertools
import logging
import math
import random
import time
import types

from cliff import show
import futurist
import iso8601
from monotonic import monotonic as now  # noqa
import six.moves

from gnocchiclient import utils
from gnocchiclient.v1 import metric_cli


LOG = logging.getLogger(__name__)


def _pickle_method(m):
    if m.im_self is None:
        return getattr, (m.im_class, m.im_func.func_name)
    else:
        return getattr, (m.im_self, m.im_func.func_name)


six.moves.copyreg.pickle(types.MethodType, _pickle_method)


def _positive_non_zero_int(argument_value):
    if argument_value is None:
        return None
    try:
        value = int(argument_value)
    except ValueError:
        msg = "%s must be an integer" % argument_value
        raise argparse.ArgumentTypeError(msg)
    if value <= 0:
        msg = "%s must be greater than 0" % argument_value
        raise argparse.ArgumentTypeError(msg)
    return value


class StopWatch(object):
    def __init__(self):
        self.started_at = now()

    def elapsed(self):
        return max(0.0, now() - self.started_at)


def measure_job(fn, *args, **kwargs):
    # because we cannot pickle BenchmarkPool class
    sw = StopWatch()
    return fn(*args, **kwargs), sw.elapsed()


class BenchmarkPool(futurist.ProcessPoolExecutor):
    def submit_job(self, times, fn, *args, **kwargs):
        self.sw = StopWatch()
        self.times = times
        return [self.submit(measure_job, fn, *args, **kwargs)
                for i in six.moves.range(times)]

    def map_job(self, fn, iterable, **kwargs):
        r = []
        self.times = 0
        self.sw = StopWatch()
        for item in iterable:
            r.append(self.submit(measure_job, fn, item, **kwargs))
            self.times += 1
        return r

    def _log_progress(self, verb):
        runtime = self.sw.elapsed()
        done = self.statistics.executed
        rate = done / runtime if runtime != 0 else 0
        LOG.info(
            "%d/%d, "
            "total: %.2f seconds, "
            "rate: %.2f %s/second"
            % (done, self.times, runtime, rate, verb))

    def wait_job(self, verb, futures):
        while self.statistics.executed != self.times:
            self._log_progress(verb)
            time.sleep(0.2)
        runtime = self.sw.elapsed()
        self._log_progress(verb)
        self.shutdown(wait=True)
        results = []
        latencies = []
        for f in futures:
            try:
                result, latency = f.result()
                results.append(result)
                latencies.append(latency)
            except Exception as e:
                LOG.error("Error with %s metric: %s" % (verb, e))
        latencies = sorted(latencies)
        return results, runtime, {
            'client workers': self._max_workers,
            verb + ' runtime': "%.2f seconds" % runtime,
            verb + ' runtime (cumulated)': "%.2f seconds" % sum(latencies),
            verb + ' executed': self.statistics.executed,
            verb + ' speed': (
                "%.2f %s/s" % ((self.statistics.executed * self._max_workers
                                / sum(latencies))
                               if runtime != 0 else 0, verb)
            ),
            verb + ' failures': self.statistics.failures,
            verb + ' failures rate': (
                "%.2f %%" % (
                    100
                    * self.statistics.failures
                    / float(self.statistics.executed)
                )
            ),
            verb + ' latency min': min(latencies),
            verb + ' latency max': max(latencies),
            verb + ' latency mean': sum(latencies) / len(latencies),
            verb + ' latency median': self._percentile(latencies, 0.5),
            verb + ' latency 95%\'ile': self._percentile(latencies, 0.95),
            verb + ' latency 99%\'ile': self._percentile(latencies, 0.99),
            verb + ' latency 99.9%\'ile': self._percentile(latencies, 0.999),

        }

    @staticmethod
    def _percentile(sorted_list, percent):
        # NOTE(sileht): we don't to want depends on numpy
        if not sorted_list:
            return None
        k = (len(sorted_list) - 1) * percent
        f = math.floor(k)
        c = math.ceil(k)
        if f == c:
            return sorted_list[int(k)]
        d0 = sorted_list[int(f)] * (c - k)
        d1 = sorted_list[int(c)] * (k - f)
        return d0 + d1


class CliBenchmarkBase(show.ShowOne):
    def get_parser(self, prog_name):
        parser = super(CliBenchmarkBase, self).get_parser(prog_name)
        parser.add_argument("--workers", "-w",
                            default=None,
                            type=_positive_non_zero_int,
                            help="Number of workers to use")
        return parser


class CliBenchmarkMetricShow(CliBenchmarkBase,
                             metric_cli.CliMetricWithResourceID):
    """Do benchmark testing of metric show"""

    def get_parser(self, prog_name):
        parser = super(CliBenchmarkMetricShow, self).get_parser(prog_name)
        parser.add_argument("metric", nargs='+',
                            help="ID or name of the metrics")
        parser.add_argument("--count", "-n",
                            required=True,
                            type=_positive_non_zero_int,
                            help="Number of metrics to get")
        return parser

    def take_action(self, parsed_args):
        pool = BenchmarkPool(parsed_args.workers)
        LOG.info("Getting metrics")
        futures = pool.map_job(self.app.client.metric.get,
                               parsed_args.metric * parsed_args.count,
                               resource_id=parsed_args.resource_id)
        result, runtime, stats = pool.wait_job("show", futures)
        return self.dict2columns(stats)


class CliBenchmarkMetricCreate(CliBenchmarkBase,
                               metric_cli.CliMetricCreateBase):
    """Do benchmark testing of metric creation"""

    def get_parser(self, prog_name):
        parser = super(CliBenchmarkMetricCreate, self).get_parser(prog_name)
        parser.add_argument("--count", "-n",
                            required=True,
                            type=_positive_non_zero_int,
                            help="Number of metrics to create")
        parser.add_argument("--keep", "-k",
                            action='store_true',
                            help="Keep created metrics")
        return parser

    def take_action(self, parsed_args):
        pool = BenchmarkPool(parsed_args.workers)

        LOG.info("Creating metrics")
        futures = pool.submit_job(
            parsed_args.count,
            self.app.client.metric._create_new,
            archive_policy_name=parsed_args.archive_policy_name,
            resource_id=parsed_args.resource_id)
        created_metrics, runtime, stats = pool.wait_job("create", futures)

        if not parsed_args.keep:
            LOG.info("Deleting metrics")
            pool = BenchmarkPool(parsed_args.workers)
            futures = pool.map_job(self.app.client.metric.delete,
                                   [m['id'] for m in created_metrics])
            _, runtime, dstats = pool.wait_job("delete", futures)
            stats.update(dstats)

        return self.dict2columns(stats)


class CliBenchmarkMeasuresAdd(CliBenchmarkBase,
                              metric_cli.CliMeasuresAddBase):
    """Do benchmark testing of adding measurements"""

    def get_parser(self, prog_name):
        parser = super(CliBenchmarkMeasuresAdd, self).get_parser(prog_name)
        parser.add_argument("--count", "-n",
                            required=True,
                            type=_positive_non_zero_int,
                            help="Number of total measures to send")
        parser.add_argument("--batch", "-b",
                            default=1,
                            type=_positive_non_zero_int,
                            help="Number of measures to send in each batch")
        parser.add_argument("--timestamp-start", "-s",
                            default=(
                                datetime.datetime.now(tz=iso8601.iso8601.UTC)
                                - datetime.timedelta(days=365)),
                            type=utils.parse_date,
                            help="First timestamp to use")
        parser.add_argument("--timestamp-end", "-e",
                            default=(
                                datetime.datetime.now(tz=iso8601.iso8601.UTC)),
                            type=utils.parse_date,
                            help="Last timestamp to use")
        parser.add_argument("--wait",
                            default=False,
                            action='store_true',
                            help="Wait for all measures to be processed")
        return parser

    def take_action(self, parsed_args):
        pool = BenchmarkPool(parsed_args.workers)
        LOG.info("Sending measures")

        if parsed_args.timestamp_end <= parsed_args.timestamp_start:
            raise ValueError("End timestamp must be after start timestamp")

        # If batch size is bigger than the number of measures to send, we
        # reduce it to make sure we send something.
        if parsed_args.batch > parsed_args.count:
            parsed_args.batch = parsed_args.count

        start = int(parsed_args.timestamp_start.strftime("%s"))
        end = int(parsed_args.timestamp_end.strftime("%s"))
        count = parsed_args.batch

        if (end - start) < count:
            raise ValueError(
                "The specified time range is not large enough "
                "for the number of points")

        random_values = (random.randint(- 2 ** 32, 2 ** 32)
                         for _ in six.moves.range(count))
        measures = [{"timestamp": ts, "value": v}
                    for ts, v
                    in six.moves.zip(
                        six.moves.range(start,
                                        end,
                                        (end - start) // count),
                        random_values)]

        times = parsed_args.count // parsed_args.batch
        futures = pool.map_job(functools.partial(
            self.app.client.metric.add_measures,
            parsed_args.metric), itertools.repeat(measures, times),
            resource_id=parsed_args.resource_id)
        _, runtime, stats = pool.wait_job("push", futures)

        stats['measures per request'] = parsed_args.batch
        stats['measures push speed'] = (
            "%.2f push/s" % (
                parsed_args.batch * float(stats['push speed'][:-7])
            )
        )

        if parsed_args.wait:
            sw = StopWatch()
            while True:
                status = self.app.client.status.get()
                remaining = int(status['storage']['summary']['measures'])
                if remaining == 0:
                    stats['extra wait to process measures'] = (
                        "%s seconds" % sw.elapsed()
                    )
                    break
                else:
                    LOG.info(
                        "Remaining measures to be processed: %d"
                        % remaining)
                time.sleep(1)

        return self.dict2columns(stats)


class CliBenchmarkMeasuresShow(CliBenchmarkBase,
                               metric_cli.CliMeasuresShow):
    """Do benchmark testing of measurements show"""

    def get_parser(self, prog_name):
        parser = super(CliBenchmarkMeasuresShow, self).get_parser(prog_name)
        parser.add_argument("--count", "-n",
                            required=True,
                            type=_positive_non_zero_int,
                            help="Number of total measures to send")
        return parser

    def take_action(self, parsed_args):
        pool = BenchmarkPool(parsed_args.workers)
        LOG.info("Getting measures")
        futures = pool.submit_job(parsed_args.count,
                                  self.app.client.metric.get_measures,
                                  metric=parsed_args.metric,
                                  resource_id=parsed_args.resource_id,
                                  aggregation=parsed_args.aggregation,
                                  start=parsed_args.start,
                                  stop=parsed_args.stop)
        result, runtime, stats = pool.wait_job("show", futures)
        stats['measures per request'] = len(result[0])
        return self.dict2columns(stats)