/usr/lib/python3/dist-packages/gwcs/utils.py is in python3-gwcs 0.7-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 | # Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Utility function for WCS
"""
from __future__ import absolute_import, division, unicode_literals, print_function
import re
import functools
import numpy as np
from astropy.modeling import models as astmodels
from astropy.modeling.models import Mapping
from astropy.modeling import core, projections
from astropy.io import fits
from astropy import coordinates as coords
from astropy import units as u
# these ctype values do not include yzLN and yzLT pairs
sky_pairs = {"equatorial": ["RA--", "DEC-"],
"ecliptic": ["ELON", "ELAT"],
"galactic": ["GLON", "GLAT"],
"helioecliptic": ["HLON", "HLAT"],
"supergalactic": ["SLON", "SLAT"],
# "spec": specsystems
}
radesys = ['ICRS', 'FK5', 'FK4', 'FK4-NO-E', 'GAPPT', 'GALACTIC']
class UnsupportedTransformError(Exception):
def __init__(self, message):
super(UnsupportedTransformError, self).__init__(message)
class UnsupportedProjectionError(Exception):
def __init__(self, code):
message = "Unsupported projection: {0}".format(code)
super(UnsupportedProjectionError, self).__init__(message)
class ModelDimensionalityError(Exception):
def __init__(self, message):
super(ModelDimensionalityError, self).__init__(message)
class RegionError(Exception):
def __init__(self, message):
super(RegionError, self).__init__(message)
class CoordinateFrameError(Exception):
def __init__(self, message):
super(CoordinateFrameError, self).__init__(message)
def _toindex(value):
"""
Convert value to an int or an int array.
Input coordinates converted to integers
corresponding to the center of the pixel.
The convention is that the center of the pixel is
(0, 0), while the lower left corner is (-0.5, -0.5).
The outputs are used to index the mask.
Examples
--------
>>> _toindex(np.array([-0.5, 0.49999]))
array([0, 0])
>>> _toindex(np.array([0.5, 1.49999]))
array([1, 1])
>>> _toindex(np.array([1.5, 2.49999]))
array([2, 2])
"""
indx = np.asarray(np.floor(value + 0.5), dtype=np.int)
return indx
def _domain_to_bounds(domain):
def _get_bounds(axis_domain):
step = axis_domain.get('step', 1)
x = axis_domain['lower'] if axis_domain.get('includes_lower', True) \
else axis_domain['lower'] + step
y = axis_domain['upper'] - 1 if not axis_domain.get('includes_upper', False) \
else axis_domain['upper']
return (x, y)
bounds = [_get_bounds(d) for d in domain]
return bounds
def _get_slice(axis_domain):
step = axis_domain.get('step', 1)
x = axis_domain['lower'] if axis_domain.get('includes_lower', True) \
else axis_domain['lower'] + step
y = axis_domain['upper'] if not axis_domain.get('includes_upper', False) \
else axis_domain['upper'] + step
return slice(x, y, step)
def _get_values(units, *args):
"""
Return the values of SkyCoord or Quantity objects.
Parameters
----------
units : str or `~astropy.units.Unit`
Units of the wcs object.
The input values are converted to ``units`` before the values are returned.
"""
val = []
values = []
print('args', args)
for arg in args:
print('arg', arg)
if isinstance(arg, coords.SkyCoord):
try:
print('arg1', arg)
lon = arg.data.lon
lat = arg.data.lat
except AttributeError:
lon = arg.spherical.lon
lat = arg.spherical.lat
val.extend([lon, lat])
elif isinstance(arg, u.Quantity):
val.append(arg)
else:
raise TypeError("Unsupported coordinate type {}".format(arg))
for va, un in zip(val, units):
values.append(va.to(un).value)
return values
def _compute_lon_pole(skycoord, projection):
"""
Compute the longitude of the celestial pole of a standard frame in the
native frame.
This angle then can be used as one of the Euler angles (the other two being skyccord)
to rotate the native frame into the standard frame ``skycoord.frame``.
Parameters
----------
skycoord : `astropy.coordinates.SkyCoord`, or
sequence of floats or `~astropy.units.Quantity` of length 2
The fiducial point of the native coordinate system.
If tuple, its length is 2
projection : `astropy.modeling.projections.Projection`
A Projection instance.
Returns
-------
lon_pole : float or `~astropy/units.Quantity`
Native longitude of the celestial pole [deg].
TODO: Implement all projections
Currently this only supports Zenithal and Cylindrical.
"""
if isinstance(skycoord, coords.SkyCoord):
lat = skycoord.spherical.lat
unit = u.deg
else:
lon, lat = skycoord
if isinstance(lat, u.Quantity):
unit = u.deg
else:
unit = None
if isinstance(projection, projections.Zenithal):
lon_pole = 180
elif isinstance(projection, projections.Cylindrical):
if lat >= 0:
lon_pole = 0
else:
lon_pole = 180
else:
raise UnsupportedProjectionError("Projection {0} is not supported.".format(projection))
if unit is not None:
lon_pole = lon_pole * unit
return lon_pole
def get_projcode(wcs_info):
# CTYPE here is only the imaging CTYPE keywords
sky_axes, _ = get_axes(wcs_info)
projcode = wcs_info['CTYPE'][sky_axes[0]][5:8].upper()
if projcode not in projections.projcodes:
raise UnsupportedProjectionError('Projection code %s, not recognized' % projcode)
return projcode
def read_wcs_from_header(header):
"""
Extract basic FITS WCS keywords from a FITS Header.
Parameters
----------
header : astropy.io.fits.Header
FITS Header with WCS information.
Returns
-------
wcs_info : dict
A dictionary with WCS keywords.
"""
wcs_info = {}
try:
wcs_info['WCSAXES'] = header['WCSAXES']
except KeyError:
p = re.compile('ctype[\d]*', re.IGNORECASE)
ctypes = header['CTYPE*']
keys = ctypes.keys()
for key in keys[::-1]:
if p.split(key)[-1] != "":
keys.remove(key)
wcs_info['WCSAXES'] = len(keys)
wcsaxes = wcs_info['WCSAXES']
# if not present call get_csystem
wcs_info['RADESYS'] = header.get('RADESYS', 'ICRS')
wcs_info['VAFACTOR'] = header.get('VAFACTOR', 1)
wcs_info['NAXIS'] = header.get('NAXIS', 0)
# date keyword?
# wcs_info['DATEOBS'] = header.get('DATE-OBS', 'DATEOBS')
wcs_info['EQUINOX'] = header.get("EQUINOX", None)
wcs_info['EPOCH'] = header.get("EPOCH", None)
wcs_info['DATEOBS'] = header.get("MJD-OBS", header.get("DATE-OBS", None))
ctype = []
cunit = []
crpix = []
crval = []
cdelt = []
for i in range(1, wcsaxes + 1):
ctype.append(header['CTYPE{0}'.format(i)])
cunit.append(header.get('CUNIT{0}'.format(i), None))
crpix.append(header.get('CRPIX{0}'.format(i), 0.0))
crval.append(header.get('CRVAL{0}'.format(i), 0.0))
cdelt.append(header.get('CDELT{0}'.format(i), 1.0))
if 'CD1_1' in header:
wcs_info['has_cd'] = True
else:
wcs_info['has_cd'] = False
pc = np.zeros((wcsaxes, wcsaxes))
for i in range(1, wcsaxes + 1):
for j in range(1, wcsaxes + 1):
try:
if wcs_info['has_cd']:
pc[i-1, j-1] = header['CD{0}_{1}'.format(i, j)]
else:
pc[i-1, j-1] = header['PC{0}_{1}'.format(i, j)]
except KeyError:
if i == j:
pc[i-1, j-1] = 1.
else:
pc[i-1, j-1] = 0.
wcs_info['CTYPE'] = ctype
wcs_info['CUNIT'] = cunit
wcs_info['CRPIX'] = crpix
wcs_info['CRVAL'] = crval
wcs_info['CDELT'] = cdelt
wcs_info['PC'] = pc
return wcs_info
def get_axes(header):
"""
Matches input with spectral and sky coordinate axes.
Parameters
----------
header : astropy.io.fits.Header or dict
FITS Header (or dict) with basic WCS information.
Returns
-------
sky_inmap, spectral_inmap : tuples
indices in the input representing sky and spectral cordinates.
"""
if isinstance(header, fits.Header):
wcs_info = read_wcs_from_header(header)
elif isinstance(header, dict):
wcs_info = header
else:
raise TypeError("Expected a FITS Header or a dict.")
ctype = [ax[:4] for ax in wcs_info['CTYPE']]
sky_inmap = []
spec_inmap = []
for ax in ctype:
if ax.upper() in specsystems:
spec_inmap.append(ctype.index(ax))
else:
sky_inmap.append(ctype.index(ax))
for item in sky_pairs.values():
if ctype[sky_inmap[0]] == item[0]:
if ctype[sky_inmap[1]] != item[1]:
raise ValueError(
"Inconsistent ctype for sky coordinates {0} and {1}".format(*ctype))
break
elif ctype[sky_inmap[1]] == item[0]:
if ctype[sky_inmap[0]] != item[1]:
raise ValueError(
"Inconsistent ctype for sky coordinates {0} and {1}".format(*ctype))
sky_inmap = sky_inmap[::-1]
break
return sky_inmap, spec_inmap
specsystems = ["WAVE", "FREQ", "ENER", "WAVEN", "AWAV",
"VRAD", "VOPT", "ZOPT", "BETA", "VELO"]
sky_systems_map = {'ICRS': coords.ICRS,
'FK5': coords.FK5,
'FK4': coords.FK4,
'FK4NOE': coords.FK4NoETerms,
'GAL': coords.Galactic,
'HOR': coords.AltAz
}
def make_fitswcs_transform(header):
"""
Create a basic FITS WCS transform.
It does not include distortions.
Parameters
----------
header : astropy.io.fits.Header or dict
FITS Header (or dict) with basic WCS information
"""
if isinstance(header, fits.Header):
wcs_info = read_wcs_from_header(header)
elif isinstance(header, dict):
wcs_info = header
else:
raise TypeError("Expected a FITS Header or a dict.")
wcs_linear = fitswcs_linear(wcs_info)
wcs_nonlinear = fitswcs_nonlinear(wcs_info)
return functools.reduce(core._model_oper('|'), [wcs_linear, wcs_nonlinear])
def fitswcs_linear(header):
"""
Create a WCS linear transform from a FITS header.
Parameters
----------
header : astropy.io.fits.Header or dict
FITS Header or dict with basic FITS WCS keywords.
"""
if isinstance(header, fits.Header):
wcs_info = read_wcs_from_header(header)
elif isinstance(header, dict):
wcs_info = header
else:
raise TypeError("Expected a FITS Header or a dict.")
pc = wcs_info['PC']
# get the part of the PC matrix corresponding to the imaging axes
sky_axes = None
if pc.shape != (2, 2):
sky_axes, _ = get_axes(wcs_info)
i, j = sky_axes
sky_pc = np.zeros((2, 2))
sky_pc[0, 0] = pc[i, i]
sky_pc[0, 1] = pc[i, j]
sky_pc[1, 0] = pc[j, i]
sky_pc[1, 1] = pc[j, j]
pc = sky_pc.copy()
if sky_axes is not None:
crpix = []
cdelt = []
for i in sky_axes:
crpix.append(wcs_info['CRPIX'][i])
cdelt.append(wcs_info['CDELT'][i])
else:
cdelt = wcs_info['CDELT']
crpix = wcs_info['CRPIX']
# if wcsaxes == 2:
rotation = astmodels.AffineTransformation2D(matrix=pc, name='pc_matrix')
# elif wcsaxes == 3 :
# rotation = AffineTransformation3D(matrix=matrix)
# else:
# raise DimensionsError("WCSLinearTransform supports only 2 or 3 dimensions, "
# "{0} given".format(wcsaxes))
translation_models = [astmodels.Shift(-shift, name='crpix' + str(i + 1))
for i, shift in enumerate(crpix)]
translation = functools.reduce(lambda x, y: x & y, translation_models)
if not wcs_info['has_cd']:
# Do not compute scaling since CDELT* = 1 if CD is present.
scaling_models = [astmodels.Scale(scale, name='cdelt' + str(i + 1)) \
for i, scale in enumerate(cdelt)]
scaling = functools.reduce(lambda x, y: x & y, scaling_models)
wcs_linear = translation | rotation | scaling
else:
wcs_linear = translation | rotation
return wcs_linear
def fitswcs_nonlinear(header):
"""
Create a WCS linear transform from a FITS header.
Parameters
----------
header : astropy.io.fits.Header or dict
FITS Header or dict with basic FITS WCS keywords.
"""
if isinstance(header, fits.Header):
wcs_info = read_wcs_from_header(header)
elif isinstance(header, dict):
wcs_info = header
else:
raise TypeError("Expected a FITS Header or a dict.")
projcode = get_projcode(wcs_info)
projection = create_projection_transform(projcode).rename(projcode)
# Create the sky rotation transform
sky_axes, _ = get_axes(wcs_info)
phip, lonp = [wcs_info['CRVAL'][i] for i in sky_axes]
# TODO: write "def compute_lonpole(projcode, l)"
# Set a defaul tvalue for now
thetap = 180
n2c = astmodels.RotateNative2Celestial(phip, lonp, thetap, name="crval")
return projection | n2c
def create_projection_transform(projcode):
"""
Create the non-linear projection transform.
Parameters
----------
projcode : str
FITS WCS projection code.
Returns
-------
transform : astropy.modeling.Model
Projection transform.
"""
projklassname = 'Pix2Sky_' + projcode
try:
projklass = getattr(projections, projklassname)
except AttributeError:
raise UnsupportedProjectionError(projcode)
projparams = {}
return projklass(**projparams)
def isnumerical(val):
"""
Determine if a value is numerical (number or np.array of numbers).
"""
dtypes = ['uint64', 'float64', 'int8', 'int64', 'int16', 'uint16', 'uint8',
'float32', 'int32', 'uint32']
isnum = True
if isinstance(val, coords.SkyCoord):
isnum = False
elif isinstance(val, u.Quantity):
isnum = False
elif isinstance(val, np.ndarray) and val.dtype not in dtypes:
isnum = False
return isnum
# ######### axis separability #########
# Functions to determine axis separability
# The interface will change most likely
def _compute_n_outputs(left, right):
"""
Compute the number of outputs of two models.
The two models are the left and right model to an operation in
the expression tree of a compound model.
Parameters
----------
left, right : `astropy.modeling.Model` or ndarray
If input is of an array, it is the output of `coord_matrix`.
"""
if isinstance(left, core.Model):
lnout = left.n_outputs
else:
lnout = left.shape[0]
if isinstance(right, core.Model):
rnout = right.n_outputs
else:
rnout = right.shape[0]
noutp = lnout + rnout
return noutp
def _arith_oper(left, right):
"""
Function corresponding to one of the arithmetic operators ['+', '-'. '*', '/', '**'].
This always returns a nonseparable outputs.
Parameters
----------
left, right : `astropy.modeling.Model` or ndarray
If input is of an array, it is the output of `coord_matrix`.
Returns
-------
result : ndarray
Result from this operation.
"""
# models have the same number of outputs
if isinstance(left, core.Model):
noutp = left.n_outputs
else:
noutp = left.shape[0]
if isinstance(left, core.Model):
ninp = left.n_inputs
else:
ninp = left.shape[1]
result = np.ones((noutp, ninp))
return result
def _coord_matrix(model, pos, noutp):
"""
Create an array representing inputs and outputs of a simple model.
The array has a shape (noutp, model.n_inputs).
Parameters
----------
model : `astropy.modeling.Model`
model
pos : str
Position of this model in the expression tree.
One of ['left', 'right'].
noutp : int
Number of outputs of the compound model of which the input model
is a left or right child.
Examples
--------
>>> _coord_matrix(Shift(1), 'left', 2)
array([[ 1.],
[ 0.]])
>>> _coord_matrix(Shift(1), 'right', 2)
array([[ 0.],
[ 1.]])
>>> _coord_matrix(Rotation2D, 'right', 4)
array([[ 0., 0.],
[ 0., 0.],
[ 1., 1.],
[ 1., 1.]])
"""
if isinstance(model, Mapping):
axes = []
for i in model.mapping:
axis = np.zeros((model.n_inputs,))
axis[i] = 1
axes.append(axis)
m = np.vstack(axes)
mat = np.zeros((noutp, model.n_inputs))
if pos == 'left':
mat[: model.n_outputs, :model.n_inputs] = m
else:
mat[-model.n_outputs:, -model.n_inputs:] = m
return mat
if not model.separable:
# this does not work for more than 2 coordinates
mat = np.zeros((noutp, model.n_inputs))
if pos == 'left':
mat[:model.n_outputs, : model.n_inputs] = 1
else:
mat[-model.n_outputs:, -model.n_inputs:] = 1
else:
mat = np.zeros((noutp, model.n_inputs))
for i in range(model.n_inputs):
mat[i, i] = 1
if pos == 'right':
mat = np.roll(mat, (noutp - model.n_outputs))
return mat
def _cstack(left, right):
"""
Function corresponding to '&' operation.
Parameters
----------
left, right : `astropy.modeling.Model` or ndarray
If input is of an array, it is the output of `coord_matrix`.
Returns
-------
result : ndarray
Result from this operation.
"""
noutp = _compute_n_outputs(left, right)
if isinstance(left, core.Model):
cleft = _coord_matrix(left, 'left', noutp)
else:
cleft = np.zeros((noutp, left.shape[1]))
cleft[: left.shape[0], :left.shape[1]] = left
if isinstance(right, core.Model):
cright = _coord_matrix(right, 'right', noutp)
else:
cright = np.zeros((noutp, right.shape[1]))
cright[-right.shape[0]:, -right.shape[1]:] = 1
return np.hstack([cleft, cright])
def _cdot(left, right):
"""
Function corresponding to "|" operation.
Parameters
----------
left, right : `astropy.modeling.Model` or ndarray
If input is of an array, it is the output of `coord_matrix`.
Returns
-------
result : ndarray
Result from this operation.
"""
left, right = right, left
if isinstance(right, core.Model):
cright = _coord_matrix(right, 'right', right.n_outputs)
else:
cright = right
if isinstance(left, core.Model):
cleft = _coord_matrix(left, 'left', left.n_outputs)
else:
cleft = left
result = np.dot(cleft, cright)
return result
def _separable(transform):
"""
Calculate the separability of outputs.
Parameters
----------
transform : `astropy.modeling.Model`
A transform (usually a compound model).
Returns
-------
is_separable : ndarray of dtype np.bool
An array of shape (transform.n_outputs,) of boolean type
Each element represents the separablity of the corresponding output.
Examples
--------
>>> separable(Shift(1) & Shift(2) | Scale(1) & Scale(2))
array([ True, True], dtype=bool)
>>> separable(Shift(1) & Shift(2) | Rotation2D(2))
array([False, False], dtype=bool)
>>> separable(Shift(1) & Shift(2) | Mapping([0, 1, 0, 1]) | Polynomial2D(1) & Polynomial2D(2))
array([False, False], dtype=bool)
>>> separable(Shift(1) & Shift(2) | Mapping([0, 1, 0, 1]))
array([ True, True, True, True], dtype=bool)
"""
if isinstance(transform, core._CompoundModel):
is_separable = transform._tree.evaluate(_operators)
elif isinstance(transform, core.Model):
is_separable = _coord_matrix(transform, 'left', transform.n_outputs)
return is_separable
def is_separable(transform):
if transform.n_inputs == 1 and transform.n_outputs > 1:
is_separable = np.array([False] * transform.n_outputs)
return is_separable
separable_matrix = _separable(transform)
is_separable = separable_matrix.sum(1)
is_separable = np.where(is_separable != 1, False, True)
return is_separable
def separable_axes(wcsobj, start_frame=None, end_frame=None):
"""
Computes the separability of axes in ``end_frame``.
Returns a 1D boolean array of size frame.naxes where True means
the axis is completely separable and False means the axis is nonseparable
from at least one other axis.
Parameters
----------
wcsobj : `~gwcs.wcs.WCS`
WCS object
start_frame : `~gwcs.coordinate_frames.CoordinateFrame`
A frame in the WCS pipeline.
The transform between start_frame and the end frame is used to compute the
mapping inputs: outputs.
If None the input_frame is used as start_frame.
end_frame : `~gwcs.coordinate_frames.CoordinateFrame`
A frame in the WCS pipeline.
The transform between start_frame and the end frame is used to compute the
mapping inputs: outputs.
If None wcsobj.output_frame is used.
See Also
--------
input_axes : For each output axis return the input axes contributing to it.
"""
if wcsobj is not None:
if start_frame is None:
start_frame = wcsobj.input_frame
else:
if start_frame not in wcsobj.available_frames:
raise ValueError("Unrecognized frame {0}".format(start_frame))
if end_frame is None:
end_frame = wcsobj.output_frame
else:
if end_frame not in wcsobj.available_frames:
raise ValueError("Unrecognized frame {0}".format(end_frame))
transform = wcsobj.get_transform(start_frame, end_frame)
else:
raise ValueError("A starting frame is needed to determine separability of axes.")
sep = is_separable(transform)
return [sep[ax] for ax in end_frame.axes_order]
_operators = {'&': _cstack, '|': _cdot, '+': _arith_oper, '-': _arith_oper,
'*': _arith_oper, '/': _arith_oper, '**': _arith_oper}
|