This file is indexed.

/usr/lib/python3/dist-packages/gwcs/utils.py is in python3-gwcs 0.7-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Utility function for WCS

"""
from __future__ import absolute_import, division, unicode_literals, print_function

import re
import functools
import numpy as np
from astropy.modeling import models as astmodels
from astropy.modeling.models import Mapping
from astropy.modeling import core, projections
from astropy.io import fits
from astropy import coordinates as coords
from astropy import units as u


# these ctype values do not include yzLN and yzLT pairs
sky_pairs = {"equatorial": ["RA--", "DEC-"],
             "ecliptic": ["ELON", "ELAT"],
             "galactic": ["GLON", "GLAT"],
             "helioecliptic": ["HLON", "HLAT"],
             "supergalactic": ["SLON", "SLAT"],
             # "spec": specsystems
             }

radesys = ['ICRS', 'FK5', 'FK4', 'FK4-NO-E', 'GAPPT', 'GALACTIC']


class UnsupportedTransformError(Exception):

    def __init__(self, message):
        super(UnsupportedTransformError, self).__init__(message)


class UnsupportedProjectionError(Exception):
    def __init__(self, code):
        message = "Unsupported projection: {0}".format(code)
        super(UnsupportedProjectionError, self).__init__(message)


class ModelDimensionalityError(Exception):

    def __init__(self, message):
        super(ModelDimensionalityError, self).__init__(message)


class RegionError(Exception):

    def __init__(self, message):
        super(RegionError, self).__init__(message)


class CoordinateFrameError(Exception):

    def __init__(self, message):
        super(CoordinateFrameError, self).__init__(message)


def _toindex(value):
    """
    Convert value to an int or an int array.

    Input coordinates converted to integers
    corresponding to the center of the pixel.
    The convention is that the center of the pixel is
    (0, 0), while the lower left corner is (-0.5, -0.5).
    The outputs are used to index the mask.

    Examples
    --------
    >>> _toindex(np.array([-0.5, 0.49999]))
    array([0, 0])
    >>> _toindex(np.array([0.5, 1.49999]))
    array([1, 1])
    >>> _toindex(np.array([1.5, 2.49999]))
    array([2, 2])
    """
    indx = np.asarray(np.floor(value + 0.5), dtype=np.int)
    return indx


def _domain_to_bounds(domain):
    def _get_bounds(axis_domain):
        step = axis_domain.get('step', 1)
        x = axis_domain['lower'] if axis_domain.get('includes_lower', True) \
            else axis_domain['lower'] + step
        y = axis_domain['upper'] - 1 if not axis_domain.get('includes_upper', False) \
            else axis_domain['upper']
        return (x, y)

    bounds = [_get_bounds(d) for d in domain]
    return bounds


def _get_slice(axis_domain):
    step = axis_domain.get('step', 1)
    x = axis_domain['lower'] if axis_domain.get('includes_lower', True) \
        else axis_domain['lower'] + step
    y = axis_domain['upper'] if not axis_domain.get('includes_upper', False) \
        else axis_domain['upper'] + step
    return slice(x, y, step)


def _get_values(units, *args):
    """
    Return the values of SkyCoord or Quantity objects.

    Parameters
    ----------
    units : str or `~astropy.units.Unit`
        Units of the wcs object.
        The input values are converted to ``units`` before the values are returned.
    """
    val = []
    values = []
    print('args', args)
    for arg in args:
        print('arg', arg)
        if isinstance(arg, coords.SkyCoord):
            try:
                print('arg1', arg)
                lon = arg.data.lon
                lat = arg.data.lat
            except AttributeError:
                lon = arg.spherical.lon
                lat = arg.spherical.lat
            val.extend([lon, lat])
        elif isinstance(arg, u.Quantity):
            val.append(arg)
        else:
            raise TypeError("Unsupported coordinate type {}".format(arg))
    for va, un in zip(val, units):
        values.append(va.to(un).value)
    return values


def _compute_lon_pole(skycoord, projection):
    """
    Compute the longitude of the celestial pole of a standard frame in the
    native frame.

    This angle then can be used as one of the Euler angles (the other two being skyccord)
    to rotate the native frame into the standard frame ``skycoord.frame``.

    Parameters
    ----------
    skycoord : `astropy.coordinates.SkyCoord`, or
               sequence of floats or `~astropy.units.Quantity` of length 2
        The fiducial point of the native coordinate system.
        If tuple, its length is 2
    projection : `astropy.modeling.projections.Projection`
        A Projection instance.

    Returns
    -------
    lon_pole : float or `~astropy/units.Quantity`
        Native longitude of the celestial pole [deg].

    TODO: Implement all projections
        Currently this only supports Zenithal and Cylindrical.
    """
    if isinstance(skycoord, coords.SkyCoord):
        lat = skycoord.spherical.lat
        unit = u.deg
    else:
        lon, lat = skycoord
        if isinstance(lat, u.Quantity):
            unit = u.deg
        else:
            unit = None
    if isinstance(projection, projections.Zenithal):
        lon_pole = 180
    elif isinstance(projection, projections.Cylindrical):
        if lat >= 0:
            lon_pole = 0
        else:
            lon_pole = 180
    else:
        raise UnsupportedProjectionError("Projection {0} is not supported.".format(projection))
    if unit is not None:
        lon_pole = lon_pole * unit
    return lon_pole


def get_projcode(wcs_info):
    # CTYPE here is only the imaging CTYPE keywords
    sky_axes, _ = get_axes(wcs_info)
    projcode = wcs_info['CTYPE'][sky_axes[0]][5:8].upper()
    if projcode not in projections.projcodes:
        raise UnsupportedProjectionError('Projection code %s, not recognized' % projcode)
    return projcode


def read_wcs_from_header(header):
    """
    Extract basic FITS WCS keywords from a FITS Header.

    Parameters
    ----------
    header : astropy.io.fits.Header
        FITS Header with WCS information.

    Returns
    -------
    wcs_info : dict
        A dictionary with WCS keywords.
    """
    wcs_info = {}

    try:
        wcs_info['WCSAXES'] = header['WCSAXES']
    except KeyError:
        p = re.compile('ctype[\d]*', re.IGNORECASE)
        ctypes = header['CTYPE*']
        keys = ctypes.keys()
        for key in keys[::-1]:
            if p.split(key)[-1] != "":
                keys.remove(key)
        wcs_info['WCSAXES'] = len(keys)
    wcsaxes = wcs_info['WCSAXES']
    # if not present call get_csystem
    wcs_info['RADESYS'] = header.get('RADESYS', 'ICRS')
    wcs_info['VAFACTOR'] = header.get('VAFACTOR', 1)
    wcs_info['NAXIS'] = header.get('NAXIS', 0)
    # date keyword?
    # wcs_info['DATEOBS'] = header.get('DATE-OBS', 'DATEOBS')
    wcs_info['EQUINOX'] = header.get("EQUINOX", None)
    wcs_info['EPOCH'] = header.get("EPOCH", None)
    wcs_info['DATEOBS'] = header.get("MJD-OBS", header.get("DATE-OBS", None))

    ctype = []
    cunit = []
    crpix = []
    crval = []
    cdelt = []
    for i in range(1, wcsaxes + 1):
        ctype.append(header['CTYPE{0}'.format(i)])
        cunit.append(header.get('CUNIT{0}'.format(i), None))
        crpix.append(header.get('CRPIX{0}'.format(i), 0.0))
        crval.append(header.get('CRVAL{0}'.format(i), 0.0))
        cdelt.append(header.get('CDELT{0}'.format(i), 1.0))

    if 'CD1_1' in header:
        wcs_info['has_cd'] = True
    else:
        wcs_info['has_cd'] = False
    pc = np.zeros((wcsaxes, wcsaxes))
    for i in range(1, wcsaxes + 1):
        for j in range(1, wcsaxes + 1):
            try:
                if wcs_info['has_cd']:
                    pc[i-1, j-1] = header['CD{0}_{1}'.format(i, j)]
                else:
                    pc[i-1, j-1] = header['PC{0}_{1}'.format(i, j)]
            except KeyError:
                if i == j:
                    pc[i-1, j-1] = 1.
                else:
                    pc[i-1, j-1] = 0.
    wcs_info['CTYPE'] = ctype
    wcs_info['CUNIT'] = cunit
    wcs_info['CRPIX'] = crpix
    wcs_info['CRVAL'] = crval
    wcs_info['CDELT'] = cdelt
    wcs_info['PC'] = pc

    return wcs_info


def get_axes(header):
    """
    Matches input with spectral and sky coordinate axes.

    Parameters
    ----------
    header : astropy.io.fits.Header or dict
        FITS Header (or dict) with basic WCS information.

    Returns
    -------
    sky_inmap, spectral_inmap : tuples
        indices in the input representing sky and spectral cordinates.

    """
    if isinstance(header, fits.Header):
        wcs_info = read_wcs_from_header(header)
    elif isinstance(header, dict):
        wcs_info = header
    else:
        raise TypeError("Expected a FITS Header or a dict.")

    ctype = [ax[:4] for ax in wcs_info['CTYPE']]
    sky_inmap = []
    spec_inmap = []
    for ax in ctype:
        if ax.upper() in specsystems:
            spec_inmap.append(ctype.index(ax))
        else:
            sky_inmap.append(ctype.index(ax))
    for item in sky_pairs.values():
        if ctype[sky_inmap[0]] == item[0]:
            if ctype[sky_inmap[1]] != item[1]:
                raise ValueError(
                    "Inconsistent ctype for sky coordinates {0} and {1}".format(*ctype))
            break
        elif ctype[sky_inmap[1]] == item[0]:
            if ctype[sky_inmap[0]] != item[1]:
                raise ValueError(
                    "Inconsistent ctype for sky coordinates {0} and {1}".format(*ctype))
            sky_inmap = sky_inmap[::-1]
            break
    return sky_inmap, spec_inmap


specsystems = ["WAVE", "FREQ", "ENER", "WAVEN", "AWAV",
               "VRAD", "VOPT", "ZOPT", "BETA", "VELO"]

sky_systems_map = {'ICRS': coords.ICRS,
                   'FK5': coords.FK5,
                   'FK4': coords.FK4,
                   'FK4NOE': coords.FK4NoETerms,
                   'GAL': coords.Galactic,
                   'HOR': coords.AltAz
                   }


def make_fitswcs_transform(header):
    """
    Create a basic FITS WCS transform.
    It does not include distortions.

    Parameters
    ----------
    header : astropy.io.fits.Header or dict
        FITS Header (or dict) with basic WCS information

    """
    if isinstance(header, fits.Header):
        wcs_info = read_wcs_from_header(header)
    elif isinstance(header, dict):
        wcs_info = header
    else:
        raise TypeError("Expected a FITS Header or a dict.")
    wcs_linear = fitswcs_linear(wcs_info)
    wcs_nonlinear = fitswcs_nonlinear(wcs_info)
    return functools.reduce(core._model_oper('|'), [wcs_linear, wcs_nonlinear])


def fitswcs_linear(header):
    """
    Create a WCS linear transform from a FITS header.

    Parameters
    ----------
    header : astropy.io.fits.Header or dict
        FITS Header or dict with basic FITS WCS keywords.

    """
    if isinstance(header, fits.Header):
        wcs_info = read_wcs_from_header(header)
    elif isinstance(header, dict):
        wcs_info = header
    else:
        raise TypeError("Expected a FITS Header or a dict.")

    pc = wcs_info['PC']
    # get the part of the PC matrix corresponding to the imaging axes
    sky_axes = None
    if pc.shape != (2, 2):
        sky_axes, _ = get_axes(wcs_info)
        i, j = sky_axes
        sky_pc = np.zeros((2, 2))
        sky_pc[0, 0] = pc[i, i]
        sky_pc[0, 1] = pc[i, j]
        sky_pc[1, 0] = pc[j, i]
        sky_pc[1, 1] = pc[j, j]
        pc = sky_pc.copy()

    if sky_axes is not None:
        crpix = []
        cdelt = []
        for i in sky_axes:
            crpix.append(wcs_info['CRPIX'][i])
            cdelt.append(wcs_info['CDELT'][i])
    else:
        cdelt = wcs_info['CDELT']
        crpix = wcs_info['CRPIX']

    # if wcsaxes == 2:
    rotation = astmodels.AffineTransformation2D(matrix=pc, name='pc_matrix')
    # elif wcsaxes == 3 :
    # rotation = AffineTransformation3D(matrix=matrix)
    # else:
    # raise DimensionsError("WCSLinearTransform supports only 2 or 3 dimensions, "
    # "{0} given".format(wcsaxes))

    translation_models = [astmodels.Shift(-shift, name='crpix' + str(i + 1))
                          for i, shift in enumerate(crpix)]
    translation = functools.reduce(lambda x, y: x & y, translation_models)

    if not wcs_info['has_cd']:
        # Do not compute scaling since CDELT* = 1 if CD is present.
        scaling_models = [astmodels.Scale(scale, name='cdelt' + str(i + 1)) \
                          for i, scale in enumerate(cdelt)]

        scaling = functools.reduce(lambda x, y: x & y, scaling_models)
        wcs_linear = translation | rotation | scaling
    else:
        wcs_linear = translation | rotation

    return wcs_linear


def fitswcs_nonlinear(header):
    """
    Create a WCS linear transform from a FITS header.

    Parameters
    ----------
    header : astropy.io.fits.Header or dict
        FITS Header or dict with basic FITS WCS keywords.
    """
    if isinstance(header, fits.Header):
        wcs_info = read_wcs_from_header(header)
    elif isinstance(header, dict):
        wcs_info = header
    else:
        raise TypeError("Expected a FITS Header or a dict.")

    projcode = get_projcode(wcs_info)
    projection = create_projection_transform(projcode).rename(projcode)

    # Create the sky rotation transform
    sky_axes, _ = get_axes(wcs_info)
    phip, lonp = [wcs_info['CRVAL'][i] for i in sky_axes]
    # TODO: write "def compute_lonpole(projcode, l)"
    # Set a defaul tvalue for now
    thetap = 180
    n2c = astmodels.RotateNative2Celestial(phip, lonp, thetap, name="crval")
    return projection | n2c


def create_projection_transform(projcode):
    """
    Create the non-linear projection transform.

    Parameters
    ----------
    projcode : str
        FITS WCS projection code.

    Returns
    -------
    transform : astropy.modeling.Model
        Projection transform.
    """

    projklassname = 'Pix2Sky_' + projcode
    try:
        projklass = getattr(projections, projklassname)
    except AttributeError:
        raise UnsupportedProjectionError(projcode)

    projparams = {}
    return projklass(**projparams)


def isnumerical(val):
    """
    Determine if a value is numerical (number or np.array of numbers).
    """
    dtypes = ['uint64', 'float64', 'int8', 'int64', 'int16', 'uint16', 'uint8',
              'float32', 'int32', 'uint32']
    isnum = True
    if isinstance(val, coords.SkyCoord):
        isnum = False
    elif isinstance(val, u.Quantity):
        isnum = False
    elif isinstance(val, np.ndarray) and val.dtype not in dtypes:
        isnum = False
    return isnum


# ######### axis separability #########
# Functions to determine axis separability
# The interface will change most likely


def _compute_n_outputs(left, right):
    """
    Compute the number of outputs of two models.

    The two models are the left and right model to an operation in
    the expression tree of a compound model.

    Parameters
    ----------
    left, right : `astropy.modeling.Model` or ndarray
        If input is of an array, it is the output of `coord_matrix`.

    """
    if isinstance(left, core.Model):
        lnout = left.n_outputs
    else:
        lnout = left.shape[0]
    if isinstance(right, core.Model):
        rnout = right.n_outputs
    else:
        rnout = right.shape[0]
    noutp = lnout + rnout
    return noutp


def _arith_oper(left, right):
    """
    Function corresponding to one of the arithmetic operators ['+', '-'. '*', '/', '**'].

    This always returns a nonseparable outputs.


    Parameters
    ----------
    left, right : `astropy.modeling.Model` or ndarray
        If input is of an array, it is the output of `coord_matrix`.

    Returns
    -------
    result : ndarray
        Result from this operation.
    """
    # models have the same number of outputs
    if isinstance(left, core.Model):
        noutp = left.n_outputs
    else:
        noutp = left.shape[0]
    if isinstance(left, core.Model):
        ninp = left.n_inputs
    else:
        ninp = left.shape[1]
    result = np.ones((noutp, ninp))
    return result


def _coord_matrix(model, pos, noutp):
    """
    Create an array representing inputs and outputs of a simple model.

    The array has a shape (noutp, model.n_inputs).

    Parameters
    ----------
    model : `astropy.modeling.Model`
        model
    pos : str
        Position of this model in the expression tree.
        One of ['left', 'right'].
    noutp : int
        Number of outputs of the compound model of which the input model
        is a left or right child.

    Examples
    --------
    >>> _coord_matrix(Shift(1), 'left', 2)
        array([[ 1.],
        [ 0.]])
    >>> _coord_matrix(Shift(1), 'right', 2)
        array([[ 0.],
               [ 1.]])
    >>> _coord_matrix(Rotation2D, 'right', 4)
        array([[ 0.,  0.],
            [ 0.,  0.],
            [ 1.,  1.],
            [ 1.,  1.]])
    """
    if isinstance(model, Mapping):
        axes = []
        for i in model.mapping:
            axis = np.zeros((model.n_inputs,))
            axis[i] = 1
            axes.append(axis)
        m = np.vstack(axes)
        mat = np.zeros((noutp, model.n_inputs))
        if pos == 'left':
            mat[: model.n_outputs, :model.n_inputs] = m
        else:
            mat[-model.n_outputs:, -model.n_inputs:] = m
        return mat
    if not model.separable:
        # this does not work for more than 2 coordinates
        mat = np.zeros((noutp, model.n_inputs))
        if pos == 'left':
            mat[:model.n_outputs, : model.n_inputs] = 1
        else:
            mat[-model.n_outputs:, -model.n_inputs:] = 1
    else:
        mat = np.zeros((noutp, model.n_inputs))

        for i in range(model.n_inputs):
            mat[i, i] = 1
        if pos == 'right':
            mat = np.roll(mat, (noutp - model.n_outputs))
    return mat


def _cstack(left, right):
    """
    Function corresponding to '&' operation.

    Parameters
    ----------
    left, right : `astropy.modeling.Model` or ndarray
        If input is of an array, it is the output of `coord_matrix`.

    Returns
    -------
    result : ndarray
        Result from this operation.

    """
    noutp = _compute_n_outputs(left, right)

    if isinstance(left, core.Model):
        cleft = _coord_matrix(left, 'left', noutp)
    else:
        cleft = np.zeros((noutp, left.shape[1]))
        cleft[: left.shape[0], :left.shape[1]] = left
    if isinstance(right, core.Model):
        cright = _coord_matrix(right, 'right', noutp)
    else:
        cright = np.zeros((noutp, right.shape[1]))
        cright[-right.shape[0]:, -right.shape[1]:] = 1

    return np.hstack([cleft, cright])


def _cdot(left, right):
    """
    Function corresponding to "|" operation.

    Parameters
    ----------
    left, right : `astropy.modeling.Model` or ndarray
        If input is of an array, it is the output of `coord_matrix`.

    Returns
    -------
    result : ndarray
        Result from this operation.
    """
    left, right = right, left
    if isinstance(right, core.Model):
        cright = _coord_matrix(right, 'right', right.n_outputs)
    else:
        cright = right
    if isinstance(left, core.Model):
        cleft = _coord_matrix(left, 'left', left.n_outputs)
    else:
        cleft = left
    result = np.dot(cleft, cright)
    return result


def _separable(transform):
    """
    Calculate the separability of outputs.

    Parameters
    ----------
    transform : `astropy.modeling.Model`
        A transform (usually a compound model).

    Returns
    -------
    is_separable : ndarray of dtype np.bool
        An array of shape (transform.n_outputs,) of boolean type
        Each element represents the separablity of the corresponding output.

    Examples
    --------
    >>> separable(Shift(1) & Shift(2) | Scale(1) & Scale(2))
        array([ True,  True], dtype=bool)
    >>> separable(Shift(1) & Shift(2) | Rotation2D(2))
        array([False, False], dtype=bool)
    >>> separable(Shift(1) & Shift(2) | Mapping([0, 1, 0, 1]) | Polynomial2D(1) & Polynomial2D(2))
        array([False, False], dtype=bool)
    >>> separable(Shift(1) & Shift(2) | Mapping([0, 1, 0, 1]))
        array([ True,  True,  True,  True], dtype=bool)

    """
    if isinstance(transform, core._CompoundModel):
        is_separable = transform._tree.evaluate(_operators)
    elif isinstance(transform, core.Model):
        is_separable = _coord_matrix(transform, 'left', transform.n_outputs)
    return is_separable


def is_separable(transform):
    if transform.n_inputs == 1 and transform.n_outputs > 1:
        is_separable = np.array([False] * transform.n_outputs)
        return is_separable
    separable_matrix = _separable(transform)
    is_separable = separable_matrix.sum(1)
    is_separable = np.where(is_separable != 1, False, True)
    return is_separable


def separable_axes(wcsobj, start_frame=None, end_frame=None):
        """
        Computes the separability of axes in ``end_frame``.

        Returns a 1D boolean array of size frame.naxes where True means
        the axis is completely separable and False means the axis is nonseparable
        from at least one other axis.

        Parameters
        ----------
        wcsobj : `~gwcs.wcs.WCS`
            WCS object
        start_frame : `~gwcs.coordinate_frames.CoordinateFrame`
            A frame in the WCS pipeline.
            The transform between start_frame and the end frame is used to compute the
            mapping inputs: outputs.
            If None the input_frame is used as start_frame.
        end_frame : `~gwcs.coordinate_frames.CoordinateFrame`
            A frame in the WCS pipeline.
            The transform between start_frame and the end frame is used to compute the
            mapping inputs: outputs.
            If None wcsobj.output_frame is used.

        See Also
        --------
        input_axes : For each output axis return the input axes contributing to it.

        """
        if wcsobj is not None:
            if start_frame is None:
                start_frame = wcsobj.input_frame
            else:
                if start_frame not in wcsobj.available_frames:
                    raise ValueError("Unrecognized frame {0}".format(start_frame))
            if end_frame is None:
                end_frame = wcsobj.output_frame
            else:
                if end_frame not in wcsobj.available_frames:
                    raise ValueError("Unrecognized frame {0}".format(end_frame))
            transform = wcsobj.get_transform(start_frame, end_frame)
        else:
            raise ValueError("A starting frame is needed to determine separability of axes.")

        sep = is_separable(transform)
        return [sep[ax] for ax in end_frame.axes_order]


_operators = {'&': _cstack, '|': _cdot, '+': _arith_oper, '-': _arith_oper,
              '*': _arith_oper, '/': _arith_oper, '**': _arith_oper}