This file is indexed.

/usr/lib/python3/dist-packages/intervaltree/intervaltree.py is in python3-intervaltree 2.1.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
"""
intervaltree: A mutable, self-balancing interval tree for Python 2 and 3.
Queries may be by point, by range overlap, or by range envelopment.

Core logic.

Copyright 2013-2015 Chaim-Leib Halbert
Modifications Copyright 2014 Konstantin Tretyakov

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from .interval import Interval
from .node import Node
from numbers import Number
import collections
from sortedcontainers import SortedDict
from copy import copy
from warnings import warn

try:
    xrange  # Python 2?
except NameError:  # pragma: no cover
    xrange = range


# noinspection PyBroadException
class IntervalTree(collections.MutableSet):
    """
    A binary lookup tree of intervals.
    The intervals contained in the tree are represented using ``Interval(a, b, data)`` objects.
    Each such object represents a half-open interval ``[a, b)`` with optional data.
    
    Examples:
    ---------
    
    Initialize a blank tree::
    
        >>> tree = IntervalTree()
        >>> tree
        IntervalTree()
    
    Initialize a tree from an iterable set of Intervals in O(n * log n)::
    
        >>> tree = IntervalTree([Interval(-10, 10), Interval(-20.0, -10.0)])
        >>> tree
        IntervalTree([Interval(-20.0, -10.0), Interval(-10, 10)])
        >>> len(tree)
        2
    
    Note that this is a set, i.e. repeated intervals are ignored. However,
    Intervals with different data fields are regarded as different::
    
        >>> tree = IntervalTree([Interval(-10, 10), Interval(-10, 10), Interval(-10, 10, "x")])
        >>> tree
        IntervalTree([Interval(-10, 10), Interval(-10, 10, 'x')])
        >>> len(tree)
        2
    
    Insertions::
        >>> tree = IntervalTree()
        >>> tree[0:1] = "data"
        >>> tree.add(Interval(10, 20))
        >>> tree.addi(19.9, 20)
        >>> tree
        IntervalTree([Interval(0, 1, 'data'), Interval(10, 20), Interval(19.9, 20)])
        >>> tree.update([Interval(19.9, 20.1), Interval(20.1, 30)])
        >>> len(tree)
        5

        Inserting the same Interval twice does nothing::
            >>> tree = IntervalTree()
            >>> tree[-10:20] = "arbitrary data"
            >>> tree[-10:20] = None  # Note that this is also an insertion
            >>> tree
            IntervalTree([Interval(-10, 20), Interval(-10, 20, 'arbitrary data')])
            >>> tree[-10:20] = None  # This won't change anything
            >>> tree[-10:20] = "arbitrary data" # Neither will this
            >>> len(tree)
            2

    Deletions::
        >>> tree = IntervalTree(Interval(b, e) for b, e in [(-10, 10), (-20, -10), (10, 20)])
        >>> tree
        IntervalTree([Interval(-20, -10), Interval(-10, 10), Interval(10, 20)])
        >>> tree.remove(Interval(-10, 10))
        >>> tree
        IntervalTree([Interval(-20, -10), Interval(10, 20)])
        >>> tree.remove(Interval(-10, 10))
        Traceback (most recent call last):
        ...
        ValueError
        >>> tree.discard(Interval(-10, 10))  # Same as remove, but no exception on failure
        >>> tree
        IntervalTree([Interval(-20, -10), Interval(10, 20)])
        
    Delete intervals, overlapping a given point::
    
        >>> tree = IntervalTree([Interval(-1.1, 1.1), Interval(-0.5, 1.5), Interval(0.5, 1.7)])
        >>> tree.remove_overlap(1.1)
        >>> tree
        IntervalTree([Interval(-1.1, 1.1)])
        
    Delete intervals, overlapping an interval::
    
        >>> tree = IntervalTree([Interval(-1.1, 1.1), Interval(-0.5, 1.5), Interval(0.5, 1.7)])
        >>> tree.remove_overlap(0, 0.5)
        >>> tree
        IntervalTree([Interval(0.5, 1.7)])
        >>> tree.remove_overlap(1.7, 1.8)
        >>> tree
        IntervalTree([Interval(0.5, 1.7)])
        >>> tree.remove_overlap(1.6, 1.6)  # Null interval does nothing
        >>> tree
        IntervalTree([Interval(0.5, 1.7)])
        >>> tree.remove_overlap(1.6, 1.5)  # Ditto
        >>> tree
        IntervalTree([Interval(0.5, 1.7)])
        
    Delete intervals, enveloped in the range::
    
        >>> tree = IntervalTree([Interval(-1.1, 1.1), Interval(-0.5, 1.5), Interval(0.5, 1.7)])
        >>> tree.remove_envelop(-1.0, 1.5)
        >>> tree
        IntervalTree([Interval(-1.1, 1.1), Interval(0.5, 1.7)])
        >>> tree.remove_envelop(-1.1, 1.5)
        >>> tree
        IntervalTree([Interval(0.5, 1.7)])
        >>> tree.remove_envelop(0.5, 1.5)
        >>> tree
        IntervalTree([Interval(0.5, 1.7)])
        >>> tree.remove_envelop(0.5, 1.7)
        >>> tree
        IntervalTree()
        
    Point/interval overlap queries::
    
        >>> tree = IntervalTree([Interval(-1.1, 1.1), Interval(-0.5, 1.5), Interval(0.5, 1.7)])
        >>> assert tree[-1.1]         == set([Interval(-1.1, 1.1)])
        >>> assert tree.search(1.1)   == set([Interval(-0.5, 1.5), Interval(0.5, 1.7)])   # Same as tree[1.1]
        >>> assert tree[-0.5:0.5]     == set([Interval(-0.5, 1.5), Interval(-1.1, 1.1)])  # Interval overlap query
        >>> assert tree.search(1.5, 1.5) == set()                                         # Same as tree[1.5:1.5]
        >>> assert tree.search(1.5) == set([Interval(0.5, 1.7)])                          # Same as tree[1.5]

        >>> assert tree.search(1.7, 1.8) == set()

    Envelop queries::
    
        >>> assert tree.search(-0.5, 0.5, strict=True) == set()
        >>> assert tree.search(-0.4, 1.7, strict=True) == set([Interval(0.5, 1.7)])
        
    Membership queries::

        >>> tree = IntervalTree([Interval(-1.1, 1.1), Interval(-0.5, 1.5), Interval(0.5, 1.7)])
        >>> Interval(-0.5, 0.5) in tree
        False
        >>> Interval(-1.1, 1.1) in tree
        True
        >>> Interval(-1.1, 1.1, "x") in tree
        False
        >>> tree.overlaps(-1.1)
        True
        >>> tree.overlaps(1.7)
        False
        >>> tree.overlaps(1.7, 1.8)
        False
        >>> tree.overlaps(-1.2, -1.1)
        False
        >>> tree.overlaps(-1.2, -1.0)
        True
    
    Sizing::

        >>> tree = IntervalTree([Interval(-1.1, 1.1), Interval(-0.5, 1.5), Interval(0.5, 1.7)])
        >>> len(tree)
        3
        >>> tree.is_empty()
        False
        >>> IntervalTree().is_empty()
        True
        >>> not tree
        False
        >>> not IntervalTree()
        True
        >>> print(tree.begin())    # using print() because of floats in Python 2.6
        -1.1
        >>> print(tree.end())      # ditto
        1.7
        
    Iteration::

        >>> tree = IntervalTree([Interval(-11, 11), Interval(-5, 15), Interval(5, 17)])
        >>> [iv.begin for iv in sorted(tree)]
        [-11, -5, 5]
        >>> assert tree.items() == set([Interval(-5, 15), Interval(-11, 11), Interval(5, 17)])

    Copy- and typecasting, pickling::
    
        >>> tree0 = IntervalTree([Interval(0, 1, "x"), Interval(1, 2, ["x"])])
        >>> tree1 = IntervalTree(tree0)  # Shares Interval objects
        >>> tree2 = tree0.copy()         # Shallow copy (same as above, as Intervals are singletons)
        >>> import pickle
        >>> tree3 = pickle.loads(pickle.dumps(tree0))  # Deep copy
        >>> list(tree0[1])[0].data[0] = "y"  # affects shallow copies, but not deep copies
        >>> tree0
        IntervalTree([Interval(0, 1, 'x'), Interval(1, 2, ['y'])])
        >>> tree1
        IntervalTree([Interval(0, 1, 'x'), Interval(1, 2, ['y'])])
        >>> tree2
        IntervalTree([Interval(0, 1, 'x'), Interval(1, 2, ['y'])])
        >>> tree3
        IntervalTree([Interval(0, 1, 'x'), Interval(1, 2, ['x'])])
        
    Equality testing::
    
        >>> IntervalTree([Interval(0, 1)]) == IntervalTree([Interval(0, 1)])
        True
        >>> IntervalTree([Interval(0, 1)]) == IntervalTree([Interval(0, 1, "x")])
        False
    """
    @classmethod
    def from_tuples(cls, tups):
        """
        Create a new IntervalTree from an iterable of 2- or 3-tuples,
         where the tuple lists begin, end, and optionally data.
        """
        ivs = [Interval(*t) for t in tups]
        return IntervalTree(ivs)

    def __init__(self, intervals=None):
        """
        Set up a tree. If intervals is provided, add all the intervals 
        to the tree.
        
        Completes in O(n*log n) time.
        """
        intervals = set(intervals) if intervals is not None else set()
        for iv in intervals:
            if iv.is_null():
                raise ValueError(
                    "IntervalTree: Null Interval objects not allowed in IntervalTree:"
                    " {0}".format(iv)
                )
        self.all_intervals = intervals
        self.top_node = Node.from_intervals(self.all_intervals)
        self.boundary_table = SortedDict()
        for iv in self.all_intervals:
            self._add_boundaries(iv)

    def copy(self):
        """
        Construct a new IntervalTree using shallow copies of the 
        intervals in the source tree.
        
        Completes in O(n*log n) time.
        :rtype: IntervalTree
        """
        return IntervalTree(iv.copy() for iv in self)
    
    def _add_boundaries(self, interval):
        """
        Records the boundaries of the interval in the boundary table.
        """
        begin = interval.begin
        end = interval.end
        if begin in self.boundary_table: 
            self.boundary_table[begin] += 1
        else:
            self.boundary_table[begin] = 1
        
        if end in self.boundary_table:
            self.boundary_table[end] += 1
        else:
            self.boundary_table[end] = 1
    
    def _remove_boundaries(self, interval):
        """
        Removes the boundaries of the interval from the boundary table.
        """
        begin = interval.begin
        end = interval.end
        if self.boundary_table[begin] == 1:
            del self.boundary_table[begin]
        else:
            self.boundary_table[begin] -= 1
        
        if self.boundary_table[end] == 1:
            del self.boundary_table[end]
        else:
            self.boundary_table[end] -= 1
    
    def add(self, interval):
        """
        Adds an interval to the tree, if not already present.
        
        Completes in O(log n) time.
        """
        if interval in self: 
            return

        if interval.is_null():
            raise ValueError(
                "IntervalTree: Null Interval objects not allowed in IntervalTree:"
                " {0}".format(interval)
            )

        if not self.top_node:
            self.top_node = Node.from_interval(interval)
        else:
            self.top_node = self.top_node.add(interval)
        self.all_intervals.add(interval)
        self._add_boundaries(interval)
    append = add
    
    def addi(self, begin, end, data=None):
        """
        Shortcut for add(Interval(begin, end, data)).
        
        Completes in O(log n) time.
        """
        return self.add(Interval(begin, end, data))
    appendi = addi
    
    def update(self, intervals):
        """
        Given an iterable of intervals, add them to the tree.
        
        Completes in O(m*log(n+m), where m = number of intervals to 
        add.
        """
        for iv in intervals:
            self.add(iv)

    def extend(self, intervals):
        """
        Deprecated: Replaced by update().
        """
        warn("IntervalTree.extend() has been deprecated. Consider using update() instead", DeprecationWarning)
        self.update(intervals)

    def remove(self, interval):
        """
        Removes an interval from the tree, if present. If not, raises 
        ValueError.
        
        Completes in O(log n) time.
        """
        #self.verify()
        if interval not in self:
            #print(self.all_intervals)
            raise ValueError
        self.top_node = self.top_node.remove(interval)
        self.all_intervals.remove(interval)
        self._remove_boundaries(interval)
        #self.verify()
    
    def removei(self, begin, end, data=None):
        """
        Shortcut for remove(Interval(begin, end, data)).
        
        Completes in O(log n) time.
        """
        return self.remove(Interval(begin, end, data))
    
    def discard(self, interval):
        """
        Removes an interval from the tree, if present. If not, does 
        nothing.
        
        Completes in O(log n) time.
        """
        if interval not in self:
            return
        self.all_intervals.discard(interval)
        self.top_node = self.top_node.discard(interval)
        self._remove_boundaries(interval)
    
    def discardi(self, begin, end, data=None):
        """
        Shortcut for discard(Interval(begin, end, data)).
        
        Completes in O(log n) time.
        """
        return self.discard(Interval(begin, end, data))

    def difference(self, other):
        """
        Returns a new tree, comprising all intervals in self but not
        in other.
        """
        ivs = set()
        for iv in self:
            if iv not in other:
                ivs.add(iv)
        return IntervalTree(ivs)

    def difference_update(self, other):
        """
        Removes all intervals in other from self.
        """
        for iv in other:
            self.discard(iv)

    def union(self, other):
        """
        Returns a new tree, comprising all intervals from self
        and other.
        """
        return IntervalTree(set(self).union(other))

    def intersection(self, other):
        """
        Returns a new tree of all intervals common to both self and
        other.
        """
        ivs = set()
        shorter, longer = sorted([self, other], key=len)
        for iv in shorter:
            if iv in longer:
                ivs.add(iv)
        return IntervalTree(ivs)

    def intersection_update(self, other):
        """
        Removes intervals from self unless they also exist in other.
        """
        for iv in self:
            if iv not in other:
                self.remove(iv)

    def symmetric_difference(self, other):
        """
        Return a tree with elements only in self or other but not
        both.
        """
        if not isinstance(other, set): other = set(other)
        me = set(self)
        ivs = me - other + (other - me)
        return IntervalTree(ivs)

    def symmetric_difference_update(self, other):
        """
        Throws out all intervals except those only in self or other,
        not both.
        """
        other = set(other)
        for iv in self:
            if iv in other:
                self.remove(iv)
                other.remove(iv)
        self.update(other)

    def remove_overlap(self, begin, end=None):
        """
        Removes all intervals overlapping the given point or range.
        
        Completes in O((r+m)*log n) time, where:
          * n = size of the tree
          * m = number of matches
          * r = size of the search range (this is 1 for a point)
        """
        hitlist = self.search(begin, end)
        for iv in hitlist: 
            self.remove(iv)

    def remove_envelop(self, begin, end):
        """
        Removes all intervals completely enveloped in the given range.
        
        Completes in O((r+m)*log n) time, where:
          * n = size of the tree
          * m = number of matches
          * r = size of the search range (this is 1 for a point)
        """
        hitlist = self.search(begin, end, strict=True)
        for iv in hitlist:
            self.remove(iv)

    def chop(self, begin, end, datafunc=None):
        """
        Like remove_envelop(), but trims back Intervals hanging into
        the chopped area so that nothing overlaps.
        """
        insertions = set()
        begin_hits = [iv for iv in self[begin] if iv.begin < begin]
        end_hits = [iv for iv in self[end] if iv.end > end]

        if datafunc:
            for iv in begin_hits:
                insertions.add(Interval(iv.begin, begin, datafunc(iv, True)))
            for iv in end_hits:
                insertions.add(Interval(end, iv.end, datafunc(iv, False)))
        else:
            for iv in begin_hits:
                insertions.add(Interval(iv.begin, begin, iv.data))
            for iv in end_hits:
                insertions.add(Interval(end, iv.end, iv.data))

        self.remove_envelop(begin, end)
        self.difference_update(begin_hits)
        self.difference_update(end_hits)
        self.update(insertions)

    def slice(self, point, datafunc=None):
        """
        Split Intervals that overlap point into two new Intervals. if
        specified, uses datafunc(interval, islower=True/False) to
        set the data field of the new Intervals.
        :param point: where to slice
        :param datafunc(interval, isupper): callable returning a new
        value for the interval's data field
        """
        hitlist = set(iv for iv in self[point] if iv.begin < point)
        insertions = set()
        if datafunc:
            for iv in hitlist:
                insertions.add(Interval(iv.begin, point, datafunc(iv, True)))
                insertions.add(Interval(point, iv.end, datafunc(iv, False)))
        else:
            for iv in hitlist:
                insertions.add(Interval(iv.begin, point, iv.data))
                insertions.add(Interval(point, iv.end, iv.data))
        self.difference_update(hitlist)
        self.update(insertions)

    def clear(self):
        """
        Empties the tree.

        Completes in O(1) tine.
        """
        self.__init__()

    def find_nested(self):
        """
        Returns a dictionary mapping parent intervals to sets of 
        intervals overlapped by and contained in the parent.
        
        Completes in O(n^2) time.
        :rtype: dict of [Interval, set of Interval]
        """
        result = {}
        
        def add_if_nested():
            if parent.contains_interval(child):
                if parent not in result:
                    result[parent] = set()
                result[parent].add(child)
                
        long_ivs = sorted(self.all_intervals, key=Interval.length, reverse=True)
        for i, parent in enumerate(long_ivs):
            for child in long_ivs[i + 1:]:
                add_if_nested()
        return result
    
    def overlaps(self, begin, end=None):
        """
        Returns whether some interval in the tree overlaps the given
        point or range.
        
        Completes in O(r*log n) time, where r is the size of the
        search range.
        :rtype: bool
        """
        if end is not None:
            return self.overlaps_range(begin, end)
        elif isinstance(begin, Number):
            return self.overlaps_point(begin)
        else:
            return self.overlaps_range(begin.begin, begin.end)
    
    def overlaps_point(self, p):
        """
        Returns whether some interval in the tree overlaps p.
        
        Completes in O(log n) time.
        :rtype: bool
        """
        if self.is_empty():
            return False
        return bool(self.top_node.contains_point(p))
    
    def overlaps_range(self, begin, end):
        """
        Returns whether some interval in the tree overlaps the given
        range. Returns False if given a null interval over which to
        test.
        
        Completes in O(r*log n) time, where r is the range length and n
        is the table size.
        :rtype: bool
        """
        if self.is_empty():
            return False
        elif begin >= end:
            return False
        elif self.overlaps_point(begin):
            return True
        return any(
            self.overlaps_point(bound) 
            for bound in self.boundary_table 
            if begin < bound < end
        )
    
    def split_overlaps(self):
        """
        Finds all intervals with overlapping ranges and splits them
        along the range boundaries.
        
        Completes in worst-case O(n^2*log n) time (many interval 
        boundaries are inside many intervals), best-case O(n*log n)
        time (small number of overlaps << n per interval).
        """
        if not self:
            return
        if len(self.boundary_table) == 2:
            return

        bounds = sorted(self.boundary_table)  # get bound locations

        new_ivs = set()
        for lbound, ubound in zip(bounds[:-1], bounds[1:]):
            for iv in self[lbound]:
                new_ivs.add(Interval(lbound, ubound, iv.data))

        self.__init__(new_ivs)

    def merge_overlaps(self, data_reducer=None, data_initializer=None):
        """
        Finds all intervals with overlapping ranges and merges them
        into a single interval. If provided, uses data_reducer and
        data_initializer with similar semantics to Python's built-in
        reduce(reducer_func[, initializer]), as follows:

        If data_reducer is set to a function, combines the data
        fields of the Intervals with
            current_reduced_data = data_reducer(current_reduced_data, new_data)
        If data_reducer is None, the merged Interval's data
        field will be set to None, ignoring all the data fields
        of the merged Intervals.

        On encountering the first Interval to merge, if
        data_initializer is None (default), uses the first
        Interval's data field as the first value for
        current_reduced_data. If data_initializer is not None,
        current_reduced_data is set to a shallow copy of
        data_initiazer created with
            copy.copy(data_initializer).

        Completes in O(n*logn).
        """
        if not self:
            return

        sorted_intervals = sorted(self.all_intervals)  # get sorted intervals
        merged = []
        # use mutable object to allow new_series() to modify it
        current_reduced = [None]
        higher = None  # iterating variable, which new_series() needs access to

        def new_series():
            if data_initializer is None:
                current_reduced[0] = higher.data
                merged.append(higher)
                return
            else:  # data_initializer is not None
                current_reduced[0] = copy(data_initializer)
                current_reduced[0] = data_reducer(current_reduced[0], higher.data)
                merged.append(Interval(higher.begin, higher.end, current_reduced[0]))

        for higher in sorted_intervals:
            if merged:  # series already begun
                lower = merged[-1]
                if higher.begin <= lower.end:  # should merge
                    upper_bound = max(lower.end, higher.end)
                    if data_reducer is not None:
                        current_reduced[0] = data_reducer(current_reduced[0], higher.data)
                    else:  # annihilate the data, since we don't know how to merge it
                        current_reduced[0] = None
                    merged[-1] = Interval(lower.begin, upper_bound, current_reduced[0])
                else:
                    new_series()
            else:  # not merged; is first of Intervals to merge
                new_series()

        self.__init__(merged)

    def merge_equals(self, data_reducer=None, data_initializer=None):
        """
        Finds all intervals with equal ranges and merges them
        into a single interval. If provided, uses data_reducer and
        data_initializer with similar semantics to Python's built-in
        reduce(reducer_func[, initializer]), as follows:

        If data_reducer is set to a function, combines the data
        fields of the Intervals with
            current_reduced_data = data_reducer(current_reduced_data, new_data)
        If data_reducer is None, the merged Interval's data
        field will be set to None, ignoring all the data fields
        of the merged Intervals.

        On encountering the first Interval to merge, if
        data_initializer is None (default), uses the first
        Interval's data field as the first value for
        current_reduced_data. If data_initializer is not None,
        current_reduced_data is set to a shallow copy of
        data_initiazer created with
            copy.copy(data_initializer).

        Completes in O(n*logn).
        """
        if not self:
            return

        sorted_intervals = sorted(self.all_intervals)  # get sorted intervals
        merged = []
        # use mutable object to allow new_series() to modify it
        current_reduced = [None]
        higher = None  # iterating variable, which new_series() needs access to

        def new_series():
            if data_initializer is None:
                current_reduced[0] = higher.data
                merged.append(higher)
                return
            else:  # data_initializer is not None
                current_reduced[0] = copy(data_initializer)
                current_reduced[0] = data_reducer(current_reduced[0], higher.data)
                merged.append(Interval(higher.begin, higher.end, current_reduced[0]))

        for higher in sorted_intervals:
            if merged:  # series already begun
                lower = merged[-1]
                if higher.range_matches(lower):  # should merge
                    upper_bound = max(lower.end, higher.end)
                    if data_reducer is not None:
                        current_reduced[0] = data_reducer(current_reduced[0], higher.data)
                    else:  # annihilate the data, since we don't know how to merge it
                        current_reduced[0] = None
                    merged[-1] = Interval(lower.begin, upper_bound, current_reduced[0])
                else:
                    new_series()
            else:  # not merged; is first of Intervals to merge
                new_series()

        self.__init__(merged)

    def items(self):
        """
        Constructs and returns a set of all intervals in the tree. 
        
        Completes in O(n) time.
        :rtype: set of Interval
        """
        return set(self.all_intervals)
    
    def is_empty(self):
        """
        Returns whether the tree is empty.
        
        Completes in O(1) time.
        :rtype: bool
        """
        return 0 == len(self)

    def search(self, begin, end=None, strict=False):
        """
        Returns a set of all intervals overlapping the given range. Or,
        if strict is True, returns the set of all intervals fully
        contained in the range [begin, end].
        
        Completes in O(m + k*log n) time, where:
          * n = size of the tree
          * m = number of matches
          * k = size of the search range (this is 1 for a point)
        :rtype: set of Interval
        """
        root = self.top_node
        if not root:
            return set()
        if end is None:
            try:
                iv = begin
                return self.search(iv.begin, iv.end, strict=strict)
            except:
                return root.search_point(begin, set())
        elif begin >= end:
            return set()
        else:
            result = root.search_point(begin, set())

            boundary_table = self.boundary_table
            bound_begin = boundary_table.bisect_left(begin)
            bound_end = boundary_table.bisect_left(end)  # exclude final end bound
            result.update(root.search_overlap(
                # slice notation is slightly slower
                boundary_table.iloc[index] for index in xrange(bound_begin, bound_end)
            ))

            # TODO: improve strict search to use node info instead of less-efficient filtering
            if strict:
                result = set(
                    iv for iv in result
                    if iv.begin >= begin and iv.end <= end
                )
            return result
    
    def begin(self):
        """
        Returns the lower bound of the first interval in the tree.
        
        Completes in O(n) time.
        """
        if not self.boundary_table:
            return 0
        return self.boundary_table.iloc[0]
    
    def end(self):
        """
        Returns the upper bound of the last interval in the tree.
        
        Completes in O(n) time.
        """
        if not self.boundary_table:
            return 0
        return self.boundary_table.iloc[-1]

    def range(self):
        """
        Returns a minimum-spanning Interval that encloses all the
        members of this IntervalTree. If the tree is empty, returns
        null Interval.
        :rtype: Interval
        """
        return Interval(self.begin(), self.end())

    def span(self):
        """
        Returns the length of the minimum-spanning Interval that
        encloses all the members of this IntervalTree. If the tree
        is empty, return 0.
        """
        if not self:
            return 0
        return self.end() - self.begin()

    def print_structure(self, tostring=False):
        """
        ## FOR DEBUGGING ONLY ##
        Pretty-prints the structure of the tree. 
        If tostring is true, prints nothing and returns a string.
        :rtype: None or str
        """
        if self.top_node:
            return self.top_node.print_structure(tostring=tostring)
        else:
            result = "<empty IntervalTree>"
            if not tostring:
                print(result)
            else:
                return result
        
    def verify(self):
        """
        ## FOR DEBUGGING ONLY ##
        Checks the table to ensure that the invariants are held.
        """
        if self.all_intervals:
            ## top_node.all_children() == self.all_intervals
            try:
                assert self.top_node.all_children() == self.all_intervals
            except AssertionError as e:
                print(
                    'Error: the tree and the membership set are out of sync!'
                )
                tivs = set(self.top_node.all_children())
                print('top_node.all_children() - all_intervals:')
                try:
                    pprint
                except NameError:
                    from pprint import pprint
                pprint(tivs - self.all_intervals)
                print('all_intervals - top_node.all_children():')
                pprint(self.all_intervals - tivs)
                raise e

            ## All members are Intervals
            for iv in self:
                assert isinstance(iv, Interval), (
                    "Error: Only Interval objects allowed in IntervalTree:"
                    " {0}".format(iv)
                )

            ## No null intervals
            for iv in self:
                assert not iv.is_null(), (
                    "Error: Null Interval objects not allowed in IntervalTree:"
                    " {0}".format(iv)
                )

            ## Reconstruct boundary_table
            bound_check = {}
            for iv in self:
                if iv.begin in bound_check:
                    bound_check[iv.begin] += 1
                else:
                    bound_check[iv.begin] = 1
                if iv.end in bound_check:
                    bound_check[iv.end] += 1
                else:
                    bound_check[iv.end] = 1

            ## Reconstructed boundary table (bound_check) ==? boundary_table
            assert set(self.boundary_table.keys()) == set(bound_check.keys()),\
                'Error: boundary_table is out of sync with ' \
                'the intervals in the tree!'

            # For efficiency reasons this should be iteritems in Py2, but we
            # don't care much for efficiency in debug methods anyway.
            for key, val in self.boundary_table.items():
                assert bound_check[key] == val, \
                    'Error: boundary_table[{0}] should be {1},' \
                    ' but is {2}!'.format(
                        key, bound_check[key], val)

            ## Internal tree structure
            self.top_node.verify(set())
        else:
            ## Verify empty tree
            assert not self.boundary_table, \
                "Error: boundary table should be empty!"
            assert self.top_node is None, \
                "Error: top_node isn't None!"

    def score(self, full_report=False):
        """
        Returns a number between 0 and 1, indicating how suboptimal the tree
        is. The lower, the better. Roughly, this number represents the
        fraction of flawed Intervals in the tree.
        :rtype: float
        """
        if len(self) <= 2:
            return 0.0

        n = len(self)
        m = self.top_node.count_nodes()

        def s_center_score():
            """
            Returns a normalized score, indicating roughly how many times
            intervals share s_center with other intervals. Output is full-scale
            from 0 to 1.
            :rtype: float
            """
            raw = n - m
            maximum = n - 1
            return raw / float(maximum)

        report = {
            "depth": self.top_node.depth_score(n, m),
            "s_center": s_center_score(),
        }
        cumulative = max(report.values())
        report["_cumulative"] = cumulative
        if full_report:
            return report
        return cumulative


    def __getitem__(self, index):
        """
        Returns a set of all intervals overlapping the given index or 
        slice.
        
        Completes in O(k * log(n) + m) time, where:
          * n = size of the tree
          * m = number of matches
          * k = size of the search range (this is 1 for a point)
        :rtype: set of Interval
        """
        try:
            start, stop = index.start, index.stop
            if start is None:
                start = self.begin()
                if stop is None:
                    return set(self)
            if stop is None:
                stop = self.end()
            return self.search(start, stop)
        except AttributeError:
            return self.search(index)
    
    def __setitem__(self, index, value):
        """
        Adds a new interval to the tree. A shortcut for
        add(Interval(index.start, index.stop, value)).
        
        If an identical Interval object with equal range and data 
        already exists, does nothing.
        
        Completes in O(log n) time.
        """
        self.addi(index.start, index.stop, value)

    def __delitem__(self, point):
        """
        Delete all items overlapping point.
        """
        self.remove_overlap(point)

    def __contains__(self, item):
        """
        Returns whether item exists as an Interval in the tree.
        This method only returns True for exact matches; for
        overlaps, see the overlaps() method.
        
        Completes in O(1) time.
        :rtype: bool
        """
        # Removed point-checking code; it might trick the user into
        # thinking that this is O(1), which point-checking isn't.
        #if isinstance(item, Interval):
        return item in self.all_intervals
        #else:
        #    return self.contains_point(item)
    
    def containsi(self, begin, end, data=None):
        """
        Shortcut for (Interval(begin, end, data) in tree).
        
        Completes in O(1) time.
        :rtype: bool
        """
        return Interval(begin, end, data) in self
    
    def __iter__(self):
        """
        Returns an iterator over all the intervals in the tree.
        
        Completes in O(1) time.
        :rtype: collections.Iterable[Interval]
        """
        return self.all_intervals.__iter__()
    iter = __iter__
    
    def __len__(self):
        """
        Returns how many intervals are in the tree.
        
        Completes in O(1) time.
        :rtype: int
        """
        return len(self.all_intervals)
    
    def __eq__(self, other):
        """
        Whether two IntervalTrees are equal.
        
        Completes in O(n) time if sizes are equal; O(1) time otherwise.
        :rtype: bool
        """
        return (
            isinstance(other, IntervalTree) and 
            self.all_intervals == other.all_intervals
        )
    
    def __repr__(self):
        """
        :rtype: str
        """
        ivs = sorted(self)
        if not ivs:
            return "IntervalTree()"
        else:
            return "IntervalTree({0})".format(ivs)

    __str__ = __repr__

    def __reduce__(self):
        """
        For pickle-ing.
        :rtype: tuple
        """
        return IntervalTree, (sorted(self.all_intervals),)