/usr/lib/python3/dist-packages/jaraco/itertools.py is in python3-jaraco.itertools 2.0.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 | # -*- coding: UTF-8 -*-
"""
jaraco.itertools
Tools for working with iterables. Complements itertools and more_itertools.
"""
from __future__ import absolute_import, unicode_literals, print_function
import operator
import itertools
import collections
import math
import warnings
import functools
import six
from six.moves import queue, xrange as range
import inflect
from more_itertools import more
from more_itertools import recipes
def make_rows(num_columns, seq):
"""
Make a sequence into rows of num_columns columns.
>>> tuple(make_rows(2, [1, 2, 3, 4, 5]))
((1, 4), (2, 5), (3, None))
>>> tuple(make_rows(3, [1, 2, 3, 4, 5]))
((1, 3, 5), (2, 4, None))
"""
# calculate the minimum number of rows necessary to fit the list in
# num_columns Columns
num_rows, partial = divmod(len(seq), num_columns)
if partial:
num_rows += 1
# break the seq into num_columns of length num_rows
result = recipes.grouper(num_rows, seq)
# result is now a list of columns... transpose it to return a list
# of rows
return zip(*result)
def bisect(seq, func=bool):
"""
Split a sequence into two sequences: the first is elements that
return False for func(element) and the second for True for
func(element).
By default, func is ``bool``, so uses the truth value of the object.
>>> is_odd = lambda n: n%2
>>> even, odd = bisect(range(5), is_odd)
>>> list(odd)
[1, 3]
>>> list(even)
[0, 2, 4]
>>> other, zeros = bisect(reversed(range(5)))
>>> list(zeros)
[0]
>>> list(other)
[4, 3, 2, 1]
"""
queues = GroupbySaved(seq, func)
return queues.get_first_n_queues(2)
class GroupbySaved(object):
"""
Split a sequence into n sequences where n is determined by the
number of distinct values returned by a key function applied to each
element in the sequence.
>>> truthsplit = GroupbySaved(['Test', '', 30, None], bool)
>>> truthsplit['x']
Traceback (most recent call last):
...
KeyError: 'x'
>>> true_items = truthsplit[True]
>>> false_items = truthsplit[False]
>>> tuple(iter(false_items))
('', None)
>>> tuple(iter(true_items))
('Test', 30)
>>> every_third_split = GroupbySaved(range(99), lambda n: n%3)
>>> zeros = every_third_split[0]
>>> ones = every_third_split[1]
>>> twos = every_third_split[2]
>>> next(zeros)
0
>>> next(zeros)
3
>>> next(ones)
1
>>> next(twos)
2
>>> next(ones)
4
"""
def __init__(self, sequence, func = lambda x: x):
self.sequence = iter(sequence)
self.func = func
self.queues = collections.OrderedDict()
def __getitem__(self, key):
try:
return self.queues[key]
except KeyError:
return self.__find_queue__(key)
def __fetch__(self):
"get the next item from the sequence and queue it up"
item = next(self.sequence)
key = self.func(item)
queue = self.queues.setdefault(key, FetchingQueue(self.__fetch__))
queue.enqueue(item)
def __find_queue__(self, key):
"search for the queue indexed by key"
try:
while not key in self.queues:
self.__fetch__()
return self.queues[key]
except StopIteration:
raise KeyError(key)
def get_first_n_queues(self, n):
"""
Run through the sequence until n queues are created and return
them. If fewer are created, return those plus empty iterables to
compensate.
"""
try:
while len(self.queues) < n:
self.__fetch__()
except StopIteration:
pass
values = list(self.queues.values())
missing = n - len(values)
values.extend(iter([]) for n in range(missing))
return values
class FetchingQueue(queue.Queue):
"""
A FIFO Queue that is supplied with a function to inject more into
the queue if it is empty.
>>> values = iter(range(10))
>>> get_value = lambda: globals()['q'].enqueue(next(values))
>>> q = FetchingQueue(get_value)
>>> [x for x in q] == list(range(10))
True
Note that tuple(q) or list(q) would not have worked above because
tuple(q) just copies the elements in the list (of which there are
none).
"""
def __init__(self, fetcher):
if six.PY3:
super(FetchingQueue, self).__init__()
else:
queue.Queue.__init__(self)
self._fetcher = fetcher
def __next__(self):
while self.empty():
self._fetcher()
return self.get()
next = __next__
def __iter__(self):
while True:
yield next(self)
def enqueue(self, item):
self.put_nowait(item)
class Count(object):
"""
A stop object that will count how many times it's been called and return
False on the N+1st call. Useful for use with takewhile.
>>> tuple(itertools.takewhile(Count(5), range(20)))
(0, 1, 2, 3, 4)
>>> print('catch', Count(5))
catch at most 5
It's possible to construct a Count with no limit or infinite limit.
>>> unl_c = Count(None)
>>> inf_c = Count(float('Inf'))
Unlimited or limited by infinity are equivalent.
>>> unl_c == inf_c
True
An unlimited counter is useful for wrapping an iterable to get the
count after it's consumed.
>>> tuple(itertools.takewhile(unl_c, range(20)))[-3:]
(17, 18, 19)
>>> unl_c.count
20
If all you need is the count of items, consider :class:`Counter` instead.
"""
def __init__(self, limit):
self.count = 0
self.limit = limit if limit is not None else float('Inf')
def __call__(self, arg):
if self.count > self.limit:
raise ValueError("Should not call count stop more anymore.")
self.count += 1
return self.count <= self.limit
def __str__(self):
if self.limit:
return 'at most %d' % self.limit
else:
return 'all'
def __eq__(self, other):
return vars(self) == vars(other)
class islice(object):
"""May be applied to an iterable to limit the number of items returned.
Works similarly to count, except is called only once on an iterable.
Functionality is identical to islice, except for __str__ and reusability.
>>> tuple(islice(5).apply(range(20)))
(0, 1, 2, 3, 4)
>>> tuple(islice(None).apply(range(20)))
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19)
>>> print(islice(3, 10))
items 3 to 9
>>> print(islice(3, 10, 2))
every 2nd item from 3 to 9
"""
def __init__(self, *sliceArgs):
self.sliceArgs = sliceArgs
def apply(self, i):
return itertools.islice(i, *self.sliceArgs)
def __str__(self):
if self.sliceArgs == (None,):
result = 'all'
else:
result = self._formatArgs()
return result
def _formatArgs(self):
slice_range = lambda a_b: '%d to %d' % (a_b[0], a_b[1] - 1)
if len(self.sliceArgs) == 1:
result = 'at most %d' % self.sliceArgs
if len(self.sliceArgs) == 2:
result = 'items %s' % slice_range(self.sliceArgs)
if len(self.sliceArgs) == 3:
ord = inflect.engine().ordinal(self.sliceArgs[2])
range = slice_range(self.sliceArgs[0:2])
result = 'every %(ord)s item from %(range)s' % locals()
return result
class LessThanNBlanks(object):
"""
An object that when called will return True until n false elements
are encountered.
Can be used with filter or itertools.ifilter, for example:
>>> import itertools
>>> sampleData = ['string 1', 'string 2', '', 'string 3', '', 'string 4', '', '', 'string 5']
>>> first = itertools.takewhile(LessThanNBlanks(2), sampleData)
>>> tuple(first)
('string 1', 'string 2', '', 'string 3')
>>> first = itertools.takewhile(LessThanNBlanks(3), sampleData)
>>> tuple(first)
('string 1', 'string 2', '', 'string 3', '', 'string 4')
"""
def __init__(self, nBlanks):
self.limit = nBlanks
self.count = 0
def __call__(self, arg):
self.count += not arg
if self.count > self.limit:
raise ValueError("Should not call this object anymore.")
return self.count < self.limit
class LessThanNConsecutiveBlanks(object):
"""
An object that when called will return True until n consecutive
false elements are encountered.
Can be used with filter or itertools.ifilter, for example:
>>> import itertools
>>> sampleData = ['string 1', 'string 2', '', 'string 3', '', 'string 4', '', '', 'string 5']
>>> first = itertools.takewhile(LessThanNConsecutiveBlanks(2), sampleData)
>>> tuple(first)
('string 1', 'string 2', '', 'string 3', '', 'string 4', '')
"""
def __init__(self, nBlanks):
self.limit = nBlanks
self.count = 0
self.last = False
def __call__(self, arg):
self.count += not arg
if arg:
self.count = 0
self.last = operator.truth(arg)
if self.count > self.limit:
raise ValueError("Should not call this object anymore.")
return self.count < self.limit
class splitter(object):
"""
object that will split a string with the given arguments for each call.
>>> s = splitter(',')
>>> list(s('hello, world, this is your, master calling'))
['hello', ' world', ' this is your', ' master calling']
"""
def __init__(self, sep = None):
self.sep = sep
def __call__(self, s):
lastIndex = 0
while True:
nextIndex = s.find(self.sep, lastIndex)
if nextIndex != -1:
yield s[lastIndex:nextIndex]
lastIndex = nextIndex + 1
else:
yield s[lastIndex:]
break
def grouper_nofill_str(n, iterable):
"""
Take a sequence and break it up into chunks of the specified size.
The last chunk may be smaller than size.
This works very similar to grouper_nofill, except
it works with strings as well.
>>> tuple(grouper_nofill_str(3, 'foobarbaz'))
('foo', 'bar', 'baz')
You can still use it on non-strings too if you like.
>>> tuple(grouper_nofill_str(42, []))
()
>>> tuple(grouper_nofill_str(3, list(range(10))))
([0, 1, 2], [3, 4, 5], [6, 7, 8], [9])
"""
res = more.chunked(iterable, n)
if isinstance(iterable, six.string_types):
res = (''.join(item) for item in res)
return res
def infinite_call(f):
"""
Perpetually yield the result of calling function f.
>>> counter = itertools.count()
>>> get_next = functools.partial(next, counter)
>>> numbers = infinite_call(get_next)
>>> next(numbers)
0
>>> next(numbers)
1
"""
return (f() for _ in itertools.repeat(None))
def infiniteCall(f, *args):
warnings.warn("Use infinite_call")
return infinite_call(functools.partial(f, *args))
class Counter(object):
"""
Wrap an iterable in an object that stores the count of items
that pass through it.
>>> items = Counter(range(20))
>>> values = list(items)
>>> items.count
20
"""
def __init__(self, i):
self.count = 0
self._orig_iter = iter(i)
def __iter__(self):
return self
def __next__(self):
result = next(self._orig_iter)
self.count += 1
return result
next = __next__
def GetCount(self):
warnings.warn("Use count attribute directly", DeprecationWarning)
return self.count
# todo, factor out caching capability
class iterable_test(dict):
"""
Test objects for iterability, caching the result by type
>>> test = iterable_test()
>>> test['foo']
False
>>> test[[]]
True
"""
def __init__(self, ignore_classes=six.string_types+(six.binary_type,)):
"""ignore_classes must include str, because if a string
is iterable, so is a single character, and the routine runs
into an infinite recursion"""
assert set(six.string_types) <= set(ignore_classes), (
'str must be in ignore_classes')
self.ignore_classes = ignore_classes
def __getitem__(self, candidate):
return dict.get(self, type(candidate)) or self._test(candidate)
def _test(self, candidate):
try:
if isinstance(candidate, tuple(self.ignore_classes)):
raise TypeError
iter(candidate)
result = True
except TypeError:
result = False
self[type(candidate)] = result
return result
def iflatten(subject, test=None):
if test is None:
test = iterable_test()
if not test[subject]:
yield subject
else:
for elem in subject:
for subelem in iflatten(elem, test):
yield subelem
def flatten(subject, test=None):
"""
Flatten an iterable with possible nested iterables.
Adapted from
http://mail.python.org/pipermail/python-list/2003-November/233971.html
>>> flatten(['a','b',['c','d',['e','f'],'g'],'h'])
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
Note this will normally ignore string types as iterables.
>>> flatten(['ab', 'c'])
['ab', 'c']
Same for bytes
>>> flatten([b'ab', b'c'])
[b'ab', b'c']
"""
return list(iflatten(subject, test))
def empty():
"""
An empty iterator.
"""
return iter(tuple())
def is_empty(iterable):
"""
Return whether the iterable is empty or not. Consumes at most one item
from the iterator to test.
>>> is_empty(iter(range(0)))
True
>>> is_empty(iter(range(1)))
False
"""
try:
next(iter(iterable))
except StopIteration:
return True
return False
class Reusable(object):
"""
An iterator that may be reset and reused.
>>> ri = Reusable(range(3))
>>> tuple(ri)
(0, 1, 2)
>>> next(ri)
0
>>> tuple(ri)
(1, 2)
>>> next(ri)
0
>>> ri.reset()
>>> tuple(ri)
(0, 1, 2)
"""
def __init__(self, iterable):
self.__saved = iterable
self.reset()
def __iter__(self): return self
def reset(self):
"""
Resets the iterator to the start.
Any remaining values in the current iteration are discarded.
"""
self.__iterator, self.__saved = itertools.tee(self.__saved)
def __next__(self):
try:
return next(self.__iterator)
except StopIteration:
# we're still going to raise the exception, but first
# reset the iterator so it's good for next time
self.reset()
raise
next = __next__
def every_other(iterable):
"""
Yield every other item from the iterable
>>> ' '.join(every_other('abcdefg'))
'a c e g'
"""
items = iter(iterable)
while True:
yield next(items)
next(items)
def remove_duplicates(iterable, key=None):
"""
Given an iterable with items that may come in as sequential duplicates,
remove those duplicates.
Unlike unique_justseen, this function does not remove triplicates.
>>> ' '.join(remove_duplicates('abcaabbccaaabbbcccbcbc'))
'a b c a b c a a b b c c b c b c'
>>> ' '.join(remove_duplicates('aaaabbbbb'))
'a a b b b'
"""
return itertools.chain.from_iterable(six.moves.map(
every_other, six.moves.map(
operator.itemgetter(1),
itertools.groupby(iterable, key)
)))
def skip_first(iterable):
"""
Skip the first element of an iterable
>>> tuple(skip_first(range(10)))
(1, 2, 3, 4, 5, 6, 7, 8, 9)
"""
return itertools.islice(iterable, 1, None)
def peek(iterable):
"""
Get the next value from an iterable, but also return an iterable
that will subsequently return that value and the rest of the
original iterable.
>>> l = iter([1,2,3])
>>> val, l = peek(l)
>>> val
1
>>> list(l)
[1, 2, 3]
"""
peeker, original = itertools.tee(iterable)
return next(peeker), original
class Peekable(object):
"""
Wrapper for a traditional iterable to give it a peek attribute.
>>> nums = Peekable(range(2))
>>> nums.peek()
0
>>> nums.peek()
0
>>> next(nums)
0
>>> nums.peek()
1
>>> next(nums)
1
>>> nums.peek()
Traceback (most recent call last):
...
StopIteration
Peekable should accept an iterable and not just an iterator.
>>> list(Peekable(range(2)))
[0, 1]
"""
def __new__(cls, iterator):
# if the iterator is already 'peekable', return it; otherwise
# wrap it
if hasattr(iterator, 'peek'):
return iterator
else:
return object.__new__(cls)
def __init__(self, iterator):
self.iterator = iter(iterator)
def __iter__(self):
return self
def __next__(self):
return next(self.iterator)
next = __next__
def peek(self):
result, self.iterator = peek(self.iterator)
return result
def takewhile_peek(predicate, iterable):
"""
Like takewhile, but takes a peekable iterable and doesn't
consume the non-matching item.
>>> items = Peekable(range(10))
>>> is_small = lambda n: n < 4
>>> small_items = takewhile_peek(is_small, items)
>>> list(small_items)
[0, 1, 2, 3]
>>> list(items)
[4, 5, 6, 7, 8, 9]
"""
while True:
if not predicate(iterable.peek()):
break
yield next(iterable)
def first(iterable):
"""
Return the first item from the iterable.
>>> first(range(11))
0
>>> first([3,2,1])
3
>>> iter = range(11)
>>> first(iter)
0
"""
iterable = iter(iterable)
return next(iterable)
def last(iterable):
"""
Return the last item from the iterable, discarding the rest.
>>> last(range(20))
19
>>> last([])
Traceback (most recent call last):
...
ValueError: Iterable contains no items
"""
for item in iterable:
pass
try:
return item
except NameError:
raise ValueError("Iterable contains no items")
def one(item):
"""
Return the first element from the iterable, but raise an exception
if elements remain in the iterable after the first.
>>> one(['val'])
'val'
>>> one(['val', 'other'])
Traceback (most recent call last):
...
ValueError: ...values to unpack...
>>> one([])
Traceback (most recent call last):
...
ValueError: ...values to unpack...
>>> numbers = itertools.count()
>>> one(numbers)
Traceback (most recent call last):
...
ValueError: ...values to unpack...
>>> next(numbers)
2
"""
result, = item
return result
def nwise(iter, n):
"""
Like pairwise, except returns n-tuples of adjacent items.
s -> (s0,s1,...,sn), (s1,s2,...,s(n+1)), ...
"""
iterset = [iter]
while len(iterset) < n:
iterset[-1:] = itertools.tee(iterset[-1])
next(iterset[-1], None)
return six.moves.zip(*iterset)
def window(iter, pre_size=1, post_size=1):
"""
Given an iterable, return a new iterable which yields triples of
(pre, item, post), where pre and post are the items preceeding and
following the item (or None if no such item is appropriate). pre
and post will always be pre_size and post_size in length.
>>> example = window(range(10), pre_size=2)
>>> pre, item, post = next(example)
>>> pre
(None, None)
>>> post
(1,)
>>> next(example)
((None, 0), 1, (2,))
>>> list(example)[-1]
((7, 8), 9, (None,))
"""
pre_iter, iter = itertools.tee(iter)
pre_iter = itertools.chain((None,) * pre_size, pre_iter)
pre_iter = nwise(pre_iter, pre_size)
post_iter, iter = itertools.tee(iter)
post_iter = itertools.chain(post_iter, (None,) * post_size)
post_iter = nwise(post_iter, post_size)
next(post_iter, None)
return six.moves.zip(pre_iter, iter, post_iter)
class IterSaver(object):
def __init__(self, n, iterable):
self.n = n
self.iterable = iterable
self.buffer = collections.deque()
def __next__(self):
while len(self.buffer) <= self.n:
self.buffer.append(next(self.iterable))
return self.buffer.popleft()
next = __next__
def partition_items(count, bin_size):
"""
Given the total number of items, determine the number of items that
can be added to each bin with a limit on the bin size.
So if you want to partition 11 items into groups of 3, you'll want
three of three and one of two.
>>> partition_items(11, 3)
[3, 3, 3, 2]
But if you only have ten items, you'll have two groups of three and
two of two.
>>> partition_items(10, 3)
[3, 3, 2, 2]
"""
num_bins = int(math.ceil(count / float(bin_size)))
bins = [0] * num_bins
for i in range(count):
bins[i % num_bins] += 1
return bins
def balanced_rows(n, iterable, fillvalue=None):
"""
Like grouper, but balance the rows to minimize fill per row.
balanced_rows(3, 'ABCDEFG', 'x') --> ABC DEx FGx"
"""
iterable, iterable_copy = itertools.tee(iterable)
count = len(tuple(iterable_copy))
for allocation in partition_items(count, n):
row = itertools.islice(iterable, allocation)
if allocation < n:
row = itertools.chain(row, [fillvalue])
yield tuple(row)
def reverse_lists(lists):
"""
>>> reverse_lists([[1,2,3], [4,5,6]])
[[3, 2, 1], [6, 5, 4]]
"""
return list(map(list, map(reversed, lists)))
def always_iterable(item):
"""
Given an object, always return an iterable. If the item is not
already iterable, return a tuple containing only the item. If item is
None, an empty iterable is returned.
>>> always_iterable([1,2,3])
[1, 2, 3]
>>> always_iterable('foo')
('foo',)
>>> always_iterable(None)
()
>>> always_iterable(range(10))
range(0, 10)
>>> def _test_func(): yield "I'm iterable"
>>> print(next(always_iterable(_test_func())))
I'm iterable
Although mappings are iterable, treat each like a singleton, as
it's more like an object than a sequence.
>>> always_iterable(dict(a=1))
({'a': 1},)
"""
if item is None:
item = ()
singleton = (
isinstance(item, six.string_types)
or isinstance(item, collections.Mapping)
or not hasattr(item, '__iter__')
)
return (item,) if singleton else item
def suppress_exceptions(callables, *exceptions):
"""
Call each callable in callables, suppressing any exceptions supplied. If
no exception classes are supplied, all Exceptions will be suppressed.
>>> import functools
>>> c1 = functools.partial(int, 'a')
>>> c2 = functools.partial(int, '10')
>>> list(suppress_exceptions((c1, c2)))
[10]
>>> list(suppress_exceptions((c1, c2), KeyError))
Traceback (most recent call last):
...
ValueError: invalid literal for int() with base 10: 'a'
"""
if not exceptions:
exceptions = Exception,
for callable in callables:
try:
yield callable()
except exceptions:
pass
def apply(func, iterable):
"""
Like 'map', invoking func on each item in the iterable,
except return the original item and not the return
value from the function.
Useful when the side-effect of the func is what's desired.
>>> res = apply(print, range(1, 4))
>>> list(res)
1
2
3
[1, 2, 3]
"""
for item in iterable:
func(item)
yield item
def list_or_single(iterable):
"""
Given an iterable, return the items as a list. If the iterable contains
exactly one item, return that item. Correlary function to always_iterable.
>>> list_or_single(iter('abcd'))
['a', 'b', 'c', 'd']
>>> list_or_single(['a'])
'a'
"""
result = list(iterable)
if len(result) == 1:
result = result[0]
return result
|