This file is indexed.

/usr/lib/python3/dist-packages/joblib/parallel.py is in python3-joblib 0.11-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
"""
Helpers for embarrassingly parallel code.
"""
# Author: Gael Varoquaux < gael dot varoquaux at normalesup dot org >
# Copyright: 2010, Gael Varoquaux
# License: BSD 3 clause

from __future__ import division

import os
import sys
from math import sqrt
import functools
import time
import threading
import itertools
from numbers import Integral
from contextlib import contextmanager
import warnings
try:
    import cPickle as pickle
except ImportError:
    import pickle

from ._multiprocessing_helpers import mp

from .format_stack import format_outer_frames
from .logger import Logger, short_format_time
from .my_exceptions import TransportableException, _mk_exception
from .disk import memstr_to_bytes
from ._parallel_backends import (FallbackToBackend, MultiprocessingBackend,
                                 ThreadingBackend, SequentialBackend)
from ._compat import _basestring

# Make sure that those two classes are part of the public joblib.parallel API
# so that 3rd party backend implementers can import them from here.
from ._parallel_backends import AutoBatchingMixin  # noqa
from ._parallel_backends import ParallelBackendBase  # noqa

BACKENDS = {
    'multiprocessing': MultiprocessingBackend,
    'threading': ThreadingBackend,
    'sequential': SequentialBackend,
}

# name of the backend used by default by Parallel outside of any context
# managed by ``parallel_backend``.
DEFAULT_BACKEND = 'multiprocessing'
DEFAULT_N_JOBS = 1

# Thread local value that can be overriden by the ``parallel_backend`` context
# manager
_backend = threading.local()


def get_active_backend():
    """Return the active default backend"""
    active_backend_and_jobs = getattr(_backend, 'backend_and_jobs', None)
    if active_backend_and_jobs is not None:
        return active_backend_and_jobs
    # We are outside of the scope of any parallel_backend context manager,
    # create the default backend instance now
    active_backend = BACKENDS[DEFAULT_BACKEND]()
    return active_backend, DEFAULT_N_JOBS


@contextmanager
def parallel_backend(backend, n_jobs=-1, **backend_params):
    """Change the default backend used by Parallel inside a with block.

    If ``backend`` is a string it must match a previously registered
    implementation using the ``register_parallel_backend`` function.

    Alternatively backend can be passed directly as an instance.

    By default all available workers will be used (``n_jobs=-1``) unless the
    caller passes an explicit value for the ``n_jobs`` parameter.

    This is an alternative to passing a ``backend='backend_name'`` argument to
    the ``Parallel`` class constructor. It is particularly useful when calling
    into library code that uses joblib internally but does not expose the
    backend argument in its own API.

    >>> from operator import neg
    >>> with parallel_backend('threading'):
    ...     print(Parallel()(delayed(neg)(i + 1) for i in range(5)))
    ...
    [-1, -2, -3, -4, -5]

    Warning: this function is experimental and subject to change in a future
    version of joblib.

    .. versionadded:: 0.10

    """
    if isinstance(backend, _basestring):
        backend = BACKENDS[backend](**backend_params)
    old_backend_and_jobs = getattr(_backend, 'backend_and_jobs', None)
    try:
        _backend.backend_and_jobs = (backend, n_jobs)
        # return the backend instance to make it easier to write tests
        yield backend, n_jobs
    finally:
        if old_backend_and_jobs is None:
            if getattr(_backend, 'backend_and_jobs', None) is not None:
                del _backend.backend_and_jobs
        else:
            _backend.backend_and_jobs = old_backend_and_jobs


# Under Linux or OS X the default start method of multiprocessing
# can cause third party libraries to crash. Under Python 3.4+ it is possible
# to set an environment variable to switch the default start method from
# 'fork' to 'forkserver' or 'spawn' to avoid this issue albeit at the cost
# of causing semantic changes and some additional pool instantiation overhead.
if hasattr(mp, 'get_context'):
    method = os.environ.get('JOBLIB_START_METHOD', '').strip() or None
    DEFAULT_MP_CONTEXT = mp.get_context(method=method)
else:
    DEFAULT_MP_CONTEXT = None


class BatchedCalls(object):
    """Wrap a sequence of (func, args, kwargs) tuples as a single callable"""

    def __init__(self, iterator_slice):
        self.items = list(iterator_slice)
        self._size = len(self.items)

    def __call__(self):
        return [func(*args, **kwargs) for func, args, kwargs in self.items]

    def __len__(self):
        return self._size


###############################################################################
# CPU count that works also when multiprocessing has been disabled via
# the JOBLIB_MULTIPROCESSING environment variable
def cpu_count():
    """Return the number of CPUs."""
    if mp is None:
        return 1
    return mp.cpu_count()


###############################################################################
# For verbosity

def _verbosity_filter(index, verbose):
    """ Returns False for indices increasingly apart, the distance
        depending on the value of verbose.

        We use a lag increasing as the square of index
    """
    if not verbose:
        return True
    elif verbose > 10:
        return False
    if index == 0:
        return False
    verbose = .5 * (11 - verbose) ** 2
    scale = sqrt(index / verbose)
    next_scale = sqrt((index + 1) / verbose)
    return (int(next_scale) == int(scale))


###############################################################################
def delayed(function, check_pickle=True):
    """Decorator used to capture the arguments of a function.

    Pass `check_pickle=False` when:

    - performing a possibly repeated check is too costly and has been done
      already once outside of the call to delayed.

    - when used in conjunction `Parallel(backend='threading')`.

    """
    # Try to pickle the input function, to catch the problems early when
    # using with multiprocessing:
    if check_pickle:
        pickle.dumps(function)

    def delayed_function(*args, **kwargs):
        return function, args, kwargs
    try:
        delayed_function = functools.wraps(function)(delayed_function)
    except AttributeError:
        " functools.wraps fails on some callable objects "
    return delayed_function


###############################################################################
class BatchCompletionCallBack(object):
    """Callback used by joblib.Parallel's multiprocessing backend.

    This callable is executed by the parent process whenever a worker process
    has returned the results of a batch of tasks.

    It is used for progress reporting, to update estimate of the batch
    processing duration and to schedule the next batch of tasks to be
    processed.

    """
    def __init__(self, dispatch_timestamp, batch_size, parallel):
        self.dispatch_timestamp = dispatch_timestamp
        self.batch_size = batch_size
        self.parallel = parallel

    def __call__(self, out):
        self.parallel.n_completed_tasks += self.batch_size
        this_batch_duration = time.time() - self.dispatch_timestamp

        self.parallel._backend.batch_completed(self.batch_size,
                                               this_batch_duration)
        self.parallel.print_progress()
        if self.parallel._original_iterator is not None:
            self.parallel.dispatch_next()


###############################################################################
def register_parallel_backend(name, factory, make_default=False):
    """Register a new Parallel backend factory.

    The new backend can then be selected by passing its name as the backend
    argument to the Parallel class. Moreover, the default backend can be
    overwritten globally by setting make_default=True.

    The factory can be any callable that takes no argument and return an
    instance of ``ParallelBackendBase``.

    Warning: this function is experimental and subject to change in a future
    version of joblib.

    .. versionadded:: 0.10

    """
    BACKENDS[name] = factory
    if make_default:
        global DEFAULT_BACKEND
        DEFAULT_BACKEND = name


def effective_n_jobs(n_jobs=-1):
    """Determine the number of jobs that can actually run in parallel

    n_jobs is the is the number of workers requested by the callers.
    Passing n_jobs=-1 means requesting all available workers for instance
    matching the number of CPU cores on the worker host(s).

    This method should return a guesstimate of the number of workers that can
    actually perform work concurrently with the currently enabled default
    backend. The primary use case is to make it possible for the caller to know
    in how many chunks to slice the work.

    In general working on larger data chunks is more efficient (less
    scheduling overhead and better use of CPU cache prefetching heuristics)
    as long as all the workers have enough work to do.

    Warning: this function is experimental and subject to change in a future
    version of joblib.

    .. versionadded:: 0.10

    """
    backend, _ = get_active_backend()
    return backend.effective_n_jobs(n_jobs=n_jobs)


###############################################################################
class Parallel(Logger):
    ''' Helper class for readable parallel mapping.

        Parameters
        -----------
        n_jobs: int, default: 1
            The maximum number of concurrently running jobs, such as the number
            of Python worker processes when backend="multiprocessing"
            or the size of the thread-pool when backend="threading".
            If -1 all CPUs are used. If 1 is given, no parallel computing code
            is used at all, which is useful for debugging. For n_jobs below -1,
            (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all
            CPUs but one are used.
        backend: str, ParallelBackendBase instance or None, \
                default: 'multiprocessing'
            Specify the parallelization backend implementation.
            Supported backends are:

            - "multiprocessing" used by default, can induce some
              communication and memory overhead when exchanging input and
              output data with the worker Python processes.
            - "threading" is a very low-overhead backend but it suffers
              from the Python Global Interpreter Lock if the called function
              relies a lot on Python objects. "threading" is mostly useful
              when the execution bottleneck is a compiled extension that
              explicitly releases the GIL (for instance a Cython loop wrapped
              in a "with nogil" block or an expensive call to a library such
              as NumPy).
            - finally, you can register backends by calling
              register_parallel_backend. This will allow you to implement
              a backend of your liking.
        verbose: int, optional
            The verbosity level: if non zero, progress messages are
            printed. Above 50, the output is sent to stdout.
            The frequency of the messages increases with the verbosity level.
            If it more than 10, all iterations are reported.
        timeout: float, optional
            Timeout limit for each task to complete.  If any task takes longer
            a TimeOutError will be raised. Only applied when n_jobs != 1
        pre_dispatch: {'all', integer, or expression, as in '3*n_jobs'}
            The number of batches (of tasks) to be pre-dispatched.
            Default is '2*n_jobs'. When batch_size="auto" this is reasonable
            default and the multiprocessing workers should never starve.
        batch_size: int or 'auto', default: 'auto'
            The number of atomic tasks to dispatch at once to each
            worker. When individual evaluations are very fast, multiprocessing
            can be slower than sequential computation because of the overhead.
            Batching fast computations together can mitigate this.
            The ``'auto'`` strategy keeps track of the time it takes for a batch
            to complete, and dynamically adjusts the batch size to keep the time
            on the order of half a second, using a heuristic. The initial batch
            size is 1.
            ``batch_size="auto"`` with ``backend="threading"`` will dispatch
            batches of a single task at a time as the threading backend has
            very little overhead and using larger batch size has not proved to
            bring any gain in that case.
        temp_folder: str, optional
            Folder to be used by the pool for memmaping large arrays
            for sharing memory with worker processes. If None, this will try in
            order:

            - a folder pointed by the JOBLIB_TEMP_FOLDER environment
              variable,
            - /dev/shm if the folder exists and is writable: this is a
              RAMdisk filesystem available by default on modern Linux
              distributions,
            - the default system temporary folder that can be
              overridden with TMP, TMPDIR or TEMP environment
              variables, typically /tmp under Unix operating systems.

            Only active when backend="multiprocessing".
        max_nbytes int, str, or None, optional, 1M by default
            Threshold on the size of arrays passed to the workers that
            triggers automated memory mapping in temp_folder. Can be an int
            in Bytes, or a human-readable string, e.g., '1M' for 1 megabyte.
            Use None to disable memmaping of large arrays.
            Only active when backend="multiprocessing".
        mmap_mode: {None, 'r+', 'r', 'w+', 'c'}
            Memmapping mode for numpy arrays passed to workers.
            See 'max_nbytes' parameter documentation for more details.

        Notes
        -----

        This object uses the multiprocessing module to compute in
        parallel the application of a function to many different
        arguments. The main functionality it brings in addition to
        using the raw multiprocessing API are (see examples for details):

        * More readable code, in particular since it avoids
          constructing list of arguments.

        * Easier debugging:
            - informative tracebacks even when the error happens on
              the client side
            - using 'n_jobs=1' enables to turn off parallel computing
              for debugging without changing the codepath
            - early capture of pickling errors

        * An optional progress meter.

        * Interruption of multiprocesses jobs with 'Ctrl-C'

        * Flexible pickling control for the communication to and from
          the worker processes.

        * Ability to use shared memory efficiently with worker
          processes for large numpy-based datastructures.

        Examples
        --------

        A simple example:

        >>> from math import sqrt
        >>> from joblib import Parallel, delayed
        >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10))
        [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]

        Reshaping the output when the function has several return
        values:

        >>> from math import modf
        >>> from joblib import Parallel, delayed
        >>> r = Parallel(n_jobs=1)(delayed(modf)(i/2.) for i in range(10))
        >>> res, i = zip(*r)
        >>> res
        (0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5)
        >>> i
        (0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0)

        The progress meter: the higher the value of `verbose`, the more
        messages:

        >>> from time import sleep
        >>> from joblib import Parallel, delayed
        >>> r = Parallel(n_jobs=2, verbose=5)(delayed(sleep)(.1) for _ in range(10)) #doctest: +SKIP
        [Parallel(n_jobs=2)]: Done   1 out of  10 | elapsed:    0.1s remaining:    0.9s
        [Parallel(n_jobs=2)]: Done   3 out of  10 | elapsed:    0.2s remaining:    0.5s
        [Parallel(n_jobs=2)]: Done   6 out of  10 | elapsed:    0.3s remaining:    0.2s
        [Parallel(n_jobs=2)]: Done   9 out of  10 | elapsed:    0.5s remaining:    0.1s
        [Parallel(n_jobs=2)]: Done  10 out of  10 | elapsed:    0.5s finished

        Traceback example, note how the line of the error is indicated
        as well as the values of the parameter passed to the function that
        triggered the exception, even though the traceback happens in the
        child process:

        >>> from heapq import nlargest
        >>> from joblib import Parallel, delayed
        >>> Parallel(n_jobs=2)(delayed(nlargest)(2, n) for n in (range(4), 'abcde', 3)) #doctest: +SKIP
        #...
        ---------------------------------------------------------------------------
        Sub-process traceback:
        ---------------------------------------------------------------------------
        TypeError                                          Mon Nov 12 11:37:46 2012
        PID: 12934                                    Python 2.7.3: /usr/bin/python
        ...........................................................................
        /usr/lib/python2.7/heapq.pyc in nlargest(n=2, iterable=3, key=None)
            419         if n >= size:
            420             return sorted(iterable, key=key, reverse=True)[:n]
            421
            422     # When key is none, use simpler decoration
            423     if key is None:
        --> 424         it = izip(iterable, count(0,-1))                    # decorate
            425         result = _nlargest(n, it)
            426         return map(itemgetter(0), result)                   # undecorate
            427
            428     # General case, slowest method
         TypeError: izip argument #1 must support iteration
        ___________________________________________________________________________


        Using pre_dispatch in a producer/consumer situation, where the
        data is generated on the fly. Note how the producer is first
        called 3 times before the parallel loop is initiated, and then
        called to generate new data on the fly. In this case the total
        number of iterations cannot be reported in the progress messages:

        >>> from math import sqrt
        >>> from joblib import Parallel, delayed
        >>> def producer():
        ...     for i in range(6):
        ...         print('Produced %s' % i)
        ...         yield i
        >>> out = Parallel(n_jobs=2, verbose=100, pre_dispatch='1.5*n_jobs')(
        ...                delayed(sqrt)(i) for i in producer()) #doctest: +SKIP
        Produced 0
        Produced 1
        Produced 2
        [Parallel(n_jobs=2)]: Done 1 jobs     | elapsed:  0.0s
        Produced 3
        [Parallel(n_jobs=2)]: Done 2 jobs     | elapsed:  0.0s
        Produced 4
        [Parallel(n_jobs=2)]: Done 3 jobs     | elapsed:  0.0s
        Produced 5
        [Parallel(n_jobs=2)]: Done 4 jobs     | elapsed:  0.0s
        [Parallel(n_jobs=2)]: Done 5 out of 6 | elapsed:  0.0s remaining: 0.0s
        [Parallel(n_jobs=2)]: Done 6 out of 6 | elapsed:  0.0s finished

    '''
    def __init__(self, n_jobs=1, backend=None, verbose=0, timeout=None,
                 pre_dispatch='2 * n_jobs', batch_size='auto',
                 temp_folder=None, max_nbytes='1M', mmap_mode='r'):
        active_backend, default_n_jobs = get_active_backend()
        if backend is None and n_jobs == 1:
            # If we are under a parallel_backend context manager, look up
            # the default number of jobs and use that instead:
            n_jobs = default_n_jobs
        self.n_jobs = n_jobs
        self.verbose = verbose
        self.timeout = timeout
        self.pre_dispatch = pre_dispatch

        if isinstance(max_nbytes, _basestring):
            max_nbytes = memstr_to_bytes(max_nbytes)

        self._backend_args = dict(
            max_nbytes=max_nbytes,
            mmap_mode=mmap_mode,
            temp_folder=temp_folder,
            verbose=max(0, self.verbose - 50),
        )
        if DEFAULT_MP_CONTEXT is not None:
            self._backend_args['context'] = DEFAULT_MP_CONTEXT

        if backend is None:
            backend = active_backend
        elif isinstance(backend, ParallelBackendBase):
            # Use provided backend as is
            pass
        elif hasattr(backend, 'Pool') and hasattr(backend, 'Lock'):
            # Make it possible to pass a custom multiprocessing context as
            # backend to change the start method to forkserver or spawn or
            # preload modules on the forkserver helper process.
            self._backend_args['context'] = backend
            backend = MultiprocessingBackend()
        else:
            try:
                backend_factory = BACKENDS[backend]
            except KeyError:
                raise ValueError("Invalid backend: %s, expected one of %r"
                                 % (backend, sorted(BACKENDS.keys())))
            backend = backend_factory()

        if (batch_size == 'auto' or isinstance(batch_size, Integral) and
                batch_size > 0):
            self.batch_size = batch_size
        else:
            raise ValueError(
                "batch_size must be 'auto' or a positive integer, got: %r"
                % batch_size)

        self._backend = backend
        self._output = None
        self._jobs = list()
        self._managed_backend = False

        # This lock is used coordinate the main thread of this process with
        # the async callback thread of our the pool.
        self._lock = threading.Lock()

    def __enter__(self):
        self._managed_backend = True
        self._initialize_backend()
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self._terminate_backend()
        self._managed_backend = False

    def _initialize_backend(self):
        """Build a process or thread pool and return the number of workers"""
        try:
            n_jobs = self._backend.configure(n_jobs=self.n_jobs, parallel=self,
                                             **self._backend_args)
            if self.timeout is not None and not self._backend.supports_timeout:
                warnings.warn(
                    'The backend class {!r} does not support timeout. '
                    "You have set 'timeout={}' in Parallel but "
                    "the 'timeout' parameter will not be used.".format(
                        self._backend.__class__.__name__,
                        self.timeout))

        except FallbackToBackend as e:
            # Recursively initialize the backend in case of requested fallback.
            self._backend = e.backend
            n_jobs = self._initialize_backend()

        return n_jobs

    def _effective_n_jobs(self):
        if self._backend:
            return self._backend.effective_n_jobs(self.n_jobs)
        return 1

    def _terminate_backend(self):
        if self._backend is not None:
            self._backend.terminate()

    def _dispatch(self, batch):
        """Queue the batch for computing, with or without multiprocessing

        WARNING: this method is not thread-safe: it should be only called
        indirectly via dispatch_one_batch.

        """
        # If job.get() catches an exception, it closes the queue:
        if self._aborting:
            return

        self.n_dispatched_tasks += len(batch)
        self.n_dispatched_batches += 1

        dispatch_timestamp = time.time()
        cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self)
        job = self._backend.apply_async(batch, callback=cb)
        self._jobs.append(job)

    def dispatch_next(self):
        """Dispatch more data for parallel processing

        This method is meant to be called concurrently by the multiprocessing
        callback. We rely on the thread-safety of dispatch_one_batch to protect
        against concurrent consumption of the unprotected iterator.

        """
        if not self.dispatch_one_batch(self._original_iterator):
            self._iterating = False
            self._original_iterator = None

    def dispatch_one_batch(self, iterator):
        """Prefetch the tasks for the next batch and dispatch them.

        The effective size of the batch is computed here.
        If there are no more jobs to dispatch, return False, else return True.

        The iterator consumption and dispatching is protected by the same
        lock so calling this function should be thread safe.

        """
        if self.batch_size == 'auto':
            batch_size = self._backend.compute_batch_size()
        else:
            # Fixed batch size strategy
            batch_size = self.batch_size

        with self._lock:
            tasks = BatchedCalls(itertools.islice(iterator, batch_size))
            if len(tasks) == 0:
                # No more tasks available in the iterator: tell caller to stop.
                return False
            else:
                self._dispatch(tasks)
                return True

    def _print(self, msg, msg_args):
        """Display the message on stout or stderr depending on verbosity"""
        # XXX: Not using the logger framework: need to
        # learn to use logger better.
        if not self.verbose:
            return
        if self.verbose < 50:
            writer = sys.stderr.write
        else:
            writer = sys.stdout.write
        msg = msg % msg_args
        writer('[%s]: %s\n' % (self, msg))

    def print_progress(self):
        """Display the process of the parallel execution only a fraction
           of time, controlled by self.verbose.
        """
        if not self.verbose:
            return
        elapsed_time = time.time() - self._start_time

        # Original job iterator becomes None once it has been fully
        # consumed : at this point we know the total number of jobs and we are
        # able to display an estimation of the remaining time based on already
        # completed jobs. Otherwise, we simply display the number of completed
        # tasks.
        if self._original_iterator is not None:
            if _verbosity_filter(self.n_dispatched_batches, self.verbose):
                return
            self._print('Done %3i tasks      | elapsed: %s',
                        (self.n_completed_tasks,
                         short_format_time(elapsed_time), ))
        else:
            index = self.n_completed_tasks
            # We are finished dispatching
            total_tasks = self.n_dispatched_tasks
            # We always display the first loop
            if not index == 0:
                # Display depending on the number of remaining items
                # A message as soon as we finish dispatching, cursor is 0
                cursor = (total_tasks - index + 1 -
                          self._pre_dispatch_amount)
                frequency = (total_tasks // self.verbose) + 1
                is_last_item = (index + 1 == total_tasks)
                if (is_last_item or cursor % frequency):
                    return
            remaining_time = (elapsed_time / index) * \
                             (self.n_dispatched_tasks - index * 1.0)
            # only display status if remaining time is greater or equal to 0
            self._print('Done %3i out of %3i | elapsed: %s remaining: %s',
                        (index,
                         total_tasks,
                         short_format_time(elapsed_time),
                         short_format_time(remaining_time),
                         ))

    def retrieve(self):
        self._output = list()
        while self._iterating or len(self._jobs) > 0:
            if len(self._jobs) == 0:
                # Wait for an async callback to dispatch new jobs
                time.sleep(0.01)
                continue
            # We need to be careful: the job list can be filling up as
            # we empty it and Python list are not thread-safe by default hence
            # the use of the lock
            with self._lock:
                job = self._jobs.pop(0)

            try:
                if getattr(self._backend, 'supports_timeout', False):
                    self._output.extend(job.get(timeout=self.timeout))
                else:
                    self._output.extend(job.get())

            except BaseException as exception:
                # Note: we catch any BaseException instead of just Exception
                # instances to also include KeyboardInterrupt.

                # Stop dispatching any new job in the async callback thread
                self._aborting = True

                # If the backend allows it, cancel or kill remaining running
                # tasks without waiting for the results as we will raise
                # the exception we got back to the caller instead of returning
                # any result.
                backend = self._backend
                if (backend is not None and
                        hasattr(backend, 'abort_everything')):
                    # If the backend is managed externally we need to make sure
                    # to leave it in a working state to allow for future jobs
                    # scheduling.
                    ensure_ready = self._managed_backend
                    backend.abort_everything(ensure_ready=ensure_ready)

                if not isinstance(exception, TransportableException):
                    raise
                else:
                    # Capture exception to add information on the local
                    # stack in addition to the distant stack
                    this_report = format_outer_frames(context=10,
                                                      stack_start=1)
                    report = """Multiprocessing exception:
%s
---------------------------------------------------------------------------
Sub-process traceback:
---------------------------------------------------------------------------
%s""" % (this_report, exception.message)
                    # Convert this to a JoblibException
                    exception_type = _mk_exception(exception.etype)[0]
                    exception = exception_type(report)

                    raise exception

    def __call__(self, iterable):
        if self._jobs:
            raise ValueError('This Parallel instance is already running')
        # A flag used to abort the dispatching of jobs in case an
        # exception is found
        self._aborting = False
        if not self._managed_backend:
            n_jobs = self._initialize_backend()
        else:
            n_jobs = self._effective_n_jobs()

        iterator = iter(iterable)
        pre_dispatch = self.pre_dispatch

        if pre_dispatch == 'all' or n_jobs == 1:
            # prevent further dispatch via multiprocessing callback thread
            self._original_iterator = None
            self._pre_dispatch_amount = 0
        else:
            self._original_iterator = iterator
            if hasattr(pre_dispatch, 'endswith'):
                pre_dispatch = eval(pre_dispatch)
            self._pre_dispatch_amount = pre_dispatch = int(pre_dispatch)

            # The main thread will consume the first pre_dispatch items and
            # the remaining items will later be lazily dispatched by async
            # callbacks upon task completions.
            iterator = itertools.islice(iterator, pre_dispatch)

        self._start_time = time.time()
        self.n_dispatched_batches = 0
        self.n_dispatched_tasks = 0
        self.n_completed_tasks = 0
        try:
            # Only set self._iterating to True if at least a batch
            # was dispatched. In particular this covers the edge
            # case of Parallel used with an exhausted iterator.
            while self.dispatch_one_batch(iterator):
                self._iterating = True
            else:
                self._iterating = False

            if pre_dispatch == "all" or n_jobs == 1:
                # The iterable was consumed all at once by the above for loop.
                # No need to wait for async callbacks to trigger to
                # consumption.
                self._iterating = False
            self.retrieve()
            # Make sure that we get a last message telling us we are done
            elapsed_time = time.time() - self._start_time
            self._print('Done %3i out of %3i | elapsed: %s finished',
                        (len(self._output), len(self._output),
                         short_format_time(elapsed_time)))
        finally:
            if not self._managed_backend:
                self._terminate_backend()
            self._jobs = list()
        output = self._output
        self._output = None
        return output

    def __repr__(self):
        return '%s(n_jobs=%s)' % (self.__class__.__name__, self.n_jobs)