/usr/lib/python3/dist-packages/joblib/pool.py is in python3-joblib 0.11-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 | """Custom implementation of multiprocessing.Pool with custom pickler.
This module provides efficient ways of working with data stored in
shared memory with numpy.memmap arrays without inducing any memory
copy between the parent and child processes.
This module should not be imported if multiprocessing is not
available as it implements subclasses of multiprocessing Pool
that uses a custom alternative to SimpleQueue.
"""
# Author: Olivier Grisel <olivier.grisel@ensta.org>
# Copyright: 2012, Olivier Grisel
# License: BSD 3 clause
from mmap import mmap
import errno
import os
import stat
import sys
import threading
import atexit
import tempfile
import shutil
import warnings
from time import sleep
try:
WindowsError
except NameError:
WindowsError = type(None)
from pickle import whichmodule
try:
# Python 2 compat
from cPickle import loads
from cPickle import dumps
except ImportError:
from pickle import loads
from pickle import dumps
import copyreg
# Customizable pure Python pickler in Python 2
# customizable C-optimized pickler under Python 3.3+
from pickle import Pickler
from pickle import HIGHEST_PROTOCOL
from io import BytesIO
from ._multiprocessing_helpers import mp, assert_spawning
# We need the class definition to derive from it not the multiprocessing.Pool
# factory function
from multiprocessing.pool import Pool
try:
import numpy as np
from numpy.lib.stride_tricks import as_strided
except ImportError:
np = None
from .numpy_pickle import load
from .numpy_pickle import dump
from .hashing import hash
from .backports import make_memmap
# Some system have a ramdisk mounted by default, we can use it instead of /tmp
# as the default folder to dump big arrays to share with subprocesses
SYSTEM_SHARED_MEM_FS = '/dev/shm'
# Folder and file permissions to chmod temporary files generated by the
# memmaping pool. Only the owner of the Python process can access the
# temporary files and folder.
FOLDER_PERMISSIONS = stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR
FILE_PERMISSIONS = stat.S_IRUSR | stat.S_IWUSR
###############################################################################
# Support for efficient transient pickling of numpy data structures
def _get_backing_memmap(a):
"""Recursively look up the original np.memmap instance base if any."""
b = getattr(a, 'base', None)
if b is None:
# TODO: check scipy sparse datastructure if scipy is installed
# a nor its descendants do not have a memmap base
return None
elif isinstance(b, mmap):
# a is already a real memmap instance.
return a
else:
# Recursive exploration of the base ancestry
return _get_backing_memmap(b)
def has_shareable_memory(a):
"""Return True if a is backed by some mmap buffer directly or not."""
return _get_backing_memmap(a) is not None
def _strided_from_memmap(filename, dtype, mode, offset, order, shape, strides,
total_buffer_len):
"""Reconstruct an array view on a memory mapped file."""
if mode == 'w+':
# Do not zero the original data when unpickling
mode = 'r+'
if strides is None:
# Simple, contiguous memmap
return make_memmap(filename, dtype=dtype, shape=shape, mode=mode,
offset=offset, order=order)
else:
# For non-contiguous data, memmap the total enclosing buffer and then
# extract the non-contiguous view with the stride-tricks API
base = make_memmap(filename, dtype=dtype, shape=total_buffer_len,
mode=mode, offset=offset, order=order)
return as_strided(base, shape=shape, strides=strides)
def _reduce_memmap_backed(a, m):
"""Pickling reduction for memmap backed arrays.
a is expected to be an instance of np.ndarray (or np.memmap)
m is expected to be an instance of np.memmap on the top of the ``base``
attribute ancestry of a. ``m.base`` should be the real python mmap object.
"""
# offset that comes from the striding differences between a and m
a_start, a_end = np.byte_bounds(a)
m_start = np.byte_bounds(m)[0]
offset = a_start - m_start
# offset from the backing memmap
offset += m.offset
if m.flags['F_CONTIGUOUS']:
order = 'F'
else:
# The backing memmap buffer is necessarily contiguous hence C if not
# Fortran
order = 'C'
if a.flags['F_CONTIGUOUS'] or a.flags['C_CONTIGUOUS']:
# If the array is a contiguous view, no need to pass the strides
strides = None
total_buffer_len = None
else:
# Compute the total number of items to map from which the strided
# view will be extracted.
strides = a.strides
total_buffer_len = (a_end - a_start) // a.itemsize
return (_strided_from_memmap,
(m.filename, a.dtype, m.mode, offset, order, a.shape, strides,
total_buffer_len))
def reduce_memmap(a):
"""Pickle the descriptors of a memmap instance to reopen on same file."""
m = _get_backing_memmap(a)
if m is not None:
# m is a real mmap backed memmap instance, reduce a preserving striding
# information
return _reduce_memmap_backed(a, m)
else:
# This memmap instance is actually backed by a regular in-memory
# buffer: this can happen when using binary operators on numpy.memmap
# instances
return (loads, (dumps(np.asarray(a), protocol=HIGHEST_PROTOCOL),))
class ArrayMemmapReducer(object):
"""Reducer callable to dump large arrays to memmap files.
Parameters
----------
max_nbytes: int
Threshold to trigger memmaping of large arrays to files created
a folder.
temp_folder: str
Path of a folder where files for backing memmaped arrays are created.
mmap_mode: 'r', 'r+' or 'c'
Mode for the created memmap datastructure. See the documentation of
numpy.memmap for more details. Note: 'w+' is coerced to 'r+'
automatically to avoid zeroing the data on unpickling.
verbose: int, optional, 0 by default
If verbose > 0, memmap creations are logged.
If verbose > 1, both memmap creations, reuse and array pickling are
logged.
prewarm: bool, optional, False by default.
Force a read on newly memmaped array to make sure that OS pre-cache it
memory. This can be useful to avoid concurrent disk access when the
same data array is passed to different worker processes.
"""
def __init__(self, max_nbytes, temp_folder, mmap_mode, verbose=0,
context_id=None, prewarm=True):
self._max_nbytes = max_nbytes
self._temp_folder = temp_folder
self._mmap_mode = mmap_mode
self.verbose = int(verbose)
self._prewarm = prewarm
if context_id is not None:
warnings.warn('context_id is deprecated and ignored in joblib'
' 0.9.4 and will be removed in 0.11',
DeprecationWarning)
def __call__(self, a):
m = _get_backing_memmap(a)
if m is not None:
# a is already backed by a memmap file, let's reuse it directly
return _reduce_memmap_backed(a, m)
if (not a.dtype.hasobject
and self._max_nbytes is not None
and a.nbytes > self._max_nbytes):
# check that the folder exists (lazily create the pool temp folder
# if required)
try:
os.makedirs(self._temp_folder)
os.chmod(self._temp_folder, FOLDER_PERMISSIONS)
except OSError as e:
if e.errno != errno.EEXIST:
raise e
# Find a unique, concurrent safe filename for writing the
# content of this array only once.
basename = "%d-%d-%s.pkl" % (
os.getpid(), id(threading.current_thread()), hash(a))
filename = os.path.join(self._temp_folder, basename)
# In case the same array with the same content is passed several
# times to the pool subprocess children, serialize it only once
# XXX: implement an explicit reference counting scheme to make it
# possible to delete temporary files as soon as the workers are
# done processing this data.
if not os.path.exists(filename):
if self.verbose > 0:
print("Memmaping (shape=%r, dtype=%s) to new file %s" % (
a.shape, a.dtype, filename))
for dumped_filename in dump(a, filename):
os.chmod(dumped_filename, FILE_PERMISSIONS)
if self._prewarm:
# Warm up the data to avoid concurrent disk access in
# multiple children processes
load(filename, mmap_mode=self._mmap_mode).max()
elif self.verbose > 1:
print("Memmaping (shape=%s, dtype=%s) to old file %s" % (
a.shape, a.dtype, filename))
# The worker process will use joblib.load to memmap the data
return (load, (filename, self._mmap_mode))
else:
# do not convert a into memmap, let pickler do its usual copy with
# the default system pickler
if self.verbose > 1:
print("Pickling array (shape=%r, dtype=%s)." % (
a.shape, a.dtype))
return (loads, (dumps(a, protocol=HIGHEST_PROTOCOL),))
###############################################################################
# Enable custom pickling in Pool queues
class CustomizablePickler(Pickler):
"""Pickler that accepts custom reducers.
HIGHEST_PROTOCOL is selected by default as this pickler is used
to pickle ephemeral datastructures for interprocess communication
hence no backward compatibility is required.
`reducers` is expected to be a dictionary with key/values
being `(type, callable)` pairs where `callable` is a function that
give an instance of `type` will return a tuple `(constructor,
tuple_of_objects)` to rebuild an instance out of the pickled
`tuple_of_objects` as would return a `__reduce__` method. See the
standard library documentation on pickling for more details.
"""
# We override the pure Python pickler as its the only way to be able to
# customize the dispatch table without side effects in Python 2.7
# to 3.2. For Python 3.3+ leverage the new dispatch_table
# feature from http://bugs.python.org/issue14166 that makes it possible
# to use the C implementation of the Pickler which is faster.
def __init__(self, writer, reducers=None, protocol=HIGHEST_PROTOCOL):
Pickler.__init__(self, writer, protocol=protocol)
if reducers is None:
reducers = {}
if hasattr(Pickler, 'dispatch'):
# Make the dispatch registry an instance level attribute instead of
# a reference to the class dictionary under Python 2
self.dispatch = Pickler.dispatch.copy()
else:
# Under Python 3 initialize the dispatch table with a copy of the
# default registry
self.dispatch_table = copyreg.dispatch_table.copy()
for type, reduce_func in reducers.items():
self.register(type, reduce_func)
def register(self, type, reduce_func):
"""Attach a reducer function to a given type in the dispatch table."""
if hasattr(Pickler, 'dispatch'):
# Python 2 pickler dispatching is not explicitly customizable.
# Let us use a closure to workaround this limitation.
def dispatcher(self, obj):
reduced = reduce_func(obj)
self.save_reduce(obj=obj, *reduced)
self.dispatch[type] = dispatcher
else:
self.dispatch_table[type] = reduce_func
class CustomizablePicklingQueue(object):
"""Locked Pipe implementation that uses a customizable pickler.
This class is an alternative to the multiprocessing implementation
of SimpleQueue in order to make it possible to pass custom
pickling reducers, for instance to avoid memory copy when passing
memory mapped datastructures.
`reducers` is expected to be a dict with key / values being
`(type, callable)` pairs where `callable` is a function that, given an
instance of `type`, will return a tuple `(constructor, tuple_of_objects)`
to rebuild an instance out of the pickled `tuple_of_objects` as would
return a `__reduce__` method.
See the standard library documentation on pickling for more details.
"""
def __init__(self, context, reducers=None):
self._reducers = reducers
self._reader, self._writer = context.Pipe(duplex=False)
self._rlock = context.Lock()
if sys.platform == 'win32':
self._wlock = None
else:
self._wlock = context.Lock()
self._make_methods()
def __getstate__(self):
assert_spawning(self)
return (self._reader, self._writer, self._rlock, self._wlock,
self._reducers)
def __setstate__(self, state):
(self._reader, self._writer, self._rlock, self._wlock,
self._reducers) = state
self._make_methods()
def empty(self):
return not self._reader.poll()
def _make_methods(self):
self._recv = recv = self._reader.recv
racquire, rrelease = self._rlock.acquire, self._rlock.release
def get():
racquire()
try:
return recv()
finally:
rrelease()
self.get = get
if self._reducers:
def send(obj):
buffer = BytesIO()
CustomizablePickler(buffer, self._reducers).dump(obj)
self._writer.send_bytes(buffer.getvalue())
self._send = send
else:
self._send = send = self._writer.send
if self._wlock is None:
# writes to a message oriented win32 pipe are atomic
self.put = send
else:
wlock_acquire, wlock_release = (
self._wlock.acquire, self._wlock.release)
def put(obj):
wlock_acquire()
try:
return send(obj)
finally:
wlock_release()
self.put = put
class PicklingPool(Pool):
"""Pool implementation with customizable pickling reducers.
This is useful to control how data is shipped between processes
and makes it possible to use shared memory without useless
copies induces by the default pickling methods of the original
objects passed as arguments to dispatch.
`forward_reducers` and `backward_reducers` are expected to be
dictionaries with key/values being `(type, callable)` pairs where
`callable` is a function that, given an instance of `type`, will return a
tuple `(constructor, tuple_of_objects)` to rebuild an instance out of the
pickled `tuple_of_objects` as would return a `__reduce__` method.
See the standard library documentation about pickling for more details.
"""
def __init__(self, processes=None, forward_reducers=None,
backward_reducers=None, **kwargs):
if forward_reducers is None:
forward_reducers = dict()
if backward_reducers is None:
backward_reducers = dict()
self._forward_reducers = forward_reducers
self._backward_reducers = backward_reducers
poolargs = dict(processes=processes)
poolargs.update(kwargs)
super(PicklingPool, self).__init__(**poolargs)
def _setup_queues(self):
context = getattr(self, '_ctx', mp)
self._inqueue = CustomizablePicklingQueue(context,
self._forward_reducers)
self._outqueue = CustomizablePicklingQueue(context,
self._backward_reducers)
self._quick_put = self._inqueue._send
self._quick_get = self._outqueue._recv
def delete_folder(folder_path):
"""Utility function to cleanup a temporary folder if still existing."""
try:
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
except WindowsError:
warnings.warn("Failed to clean temporary folder: %s" % folder_path)
class MemmapingPool(PicklingPool):
"""Process pool that shares large arrays to avoid memory copy.
This drop-in replacement for `multiprocessing.pool.Pool` makes
it possible to work efficiently with shared memory in a numpy
context.
Existing instances of numpy.memmap are preserved: the child
suprocesses will have access to the same shared memory in the
original mode except for the 'w+' mode that is automatically
transformed as 'r+' to avoid zeroing the original data upon
instantiation.
Furthermore large arrays from the parent process are automatically
dumped to a temporary folder on the filesystem such as child
processes to access their content via memmaping (file system
backed shared memory).
Note: it is important to call the terminate method to collect
the temporary folder used by the pool.
Parameters
----------
processes: int, optional
Number of worker processes running concurrently in the pool.
initializer: callable, optional
Callable executed on worker process creation.
initargs: tuple, optional
Arguments passed to the initializer callable.
temp_folder: str, optional
Folder to be used by the pool for memmaping large arrays
for sharing memory with worker processes. If None, this will try in
order:
- a folder pointed by the JOBLIB_TEMP_FOLDER environment variable,
- /dev/shm if the folder exists and is writable: this is a RAMdisk
filesystem available by default on modern Linux distributions,
- the default system temporary folder that can be overridden
with TMP, TMPDIR or TEMP environment variables, typically /tmp
under Unix operating systems.
max_nbytes int or None, optional, 1e6 by default
Threshold on the size of arrays passed to the workers that
triggers automated memory mapping in temp_folder.
Use None to disable memmaping of large arrays.
mmap_mode: {'r+', 'r', 'w+', 'c'}
Memmapping mode for numpy arrays passed to workers.
See 'max_nbytes' parameter documentation for more details.
forward_reducers: dictionary, optional
Reducers used to pickle objects passed from master to worker
processes: see below.
backward_reducers: dictionary, optional
Reducers used to pickle return values from workers back to the
master process.
verbose: int, optional
Make it possible to monitor how the communication of numpy arrays
with the subprocess is handled (pickling or memmaping)
prewarm: bool or str, optional, "auto" by default.
If True, force a read on newly memmaped array to make sure that OS pre-
cache it in memory. This can be useful to avoid concurrent disk access
when the same data array is passed to different worker processes.
If "auto" (by default), prewarm is set to True, unless the Linux shared
memory partition /dev/shm is available and used as temp_folder.
`forward_reducers` and `backward_reducers` are expected to be
dictionaries with key/values being `(type, callable)` pairs where
`callable` is a function that give an instance of `type` will return
a tuple `(constructor, tuple_of_objects)` to rebuild an instance out
of the pickled `tuple_of_objects` as would return a `__reduce__`
method. See the standard library documentation on pickling for more
details.
"""
def __init__(self, processes=None, temp_folder=None, max_nbytes=1e6,
mmap_mode='r', forward_reducers=None, backward_reducers=None,
verbose=0, context_id=None, prewarm=False, **kwargs):
if forward_reducers is None:
forward_reducers = dict()
if backward_reducers is None:
backward_reducers = dict()
if context_id is not None:
warnings.warn('context_id is deprecated and ignored in joblib'
' 0.9.4 and will be removed in 0.11',
DeprecationWarning)
# Prepare a sub-folder name for the serialization of this particular
# pool instance (do not create in advance to spare FS write access if
# no array is to be dumped):
use_shared_mem = False
pool_folder_name = "joblib_memmaping_pool_%d_%d" % (
os.getpid(), id(self))
if temp_folder is None:
temp_folder = os.environ.get('JOBLIB_TEMP_FOLDER', None)
if temp_folder is None:
if os.path.exists(SYSTEM_SHARED_MEM_FS):
try:
temp_folder = SYSTEM_SHARED_MEM_FS
pool_folder = os.path.join(temp_folder, pool_folder_name)
if not os.path.exists(pool_folder):
os.makedirs(pool_folder)
use_shared_mem = True
except IOError:
# Missing rights in the the /dev/shm partition,
# fallback to regular temp folder.
temp_folder = None
if temp_folder is None:
# Fallback to the default tmp folder, typically /tmp
temp_folder = tempfile.gettempdir()
temp_folder = os.path.abspath(os.path.expanduser(temp_folder))
pool_folder = os.path.join(temp_folder, pool_folder_name)
self._temp_folder = pool_folder
# Register the garbage collector at program exit in case caller forgets
# to call terminate explicitly: note we do not pass any reference to
# self to ensure that this callback won't prevent garbage collection of
# the pool instance and related file handler resources such as POSIX
# semaphores and pipes
pool_module_name = whichmodule(delete_folder, 'delete_folder')
def _cleanup():
# In some cases the Python runtime seems to set delete_folder to
# None just before exiting when accessing the delete_folder
# function from the closure namespace. So instead we reimport
# the delete_folder function explicitly.
# https://github.com/joblib/joblib/issues/328
# We cannot just use from 'joblib.pool import delete_folder'
# because joblib should only use relative imports to allow
# easy vendoring.
delete_folder = __import__(
pool_module_name, fromlist=['delete_folder']).delete_folder
delete_folder(pool_folder)
atexit.register(_cleanup)
if np is not None:
# Register smart numpy.ndarray reducers that detects memmap backed
# arrays and that is alse able to dump to memmap large in-memory
# arrays over the max_nbytes threshold
if prewarm == "auto":
prewarm = not use_shared_mem
forward_reduce_ndarray = ArrayMemmapReducer(
max_nbytes, pool_folder, mmap_mode, verbose,
prewarm=prewarm)
forward_reducers[np.ndarray] = forward_reduce_ndarray
forward_reducers[np.memmap] = reduce_memmap
# Communication from child process to the parent process always
# pickles in-memory numpy.ndarray without dumping them as memmap
# to avoid confusing the caller and make it tricky to collect the
# temporary folder
backward_reduce_ndarray = ArrayMemmapReducer(
None, pool_folder, mmap_mode, verbose)
backward_reducers[np.ndarray] = backward_reduce_ndarray
backward_reducers[np.memmap] = reduce_memmap
poolargs = dict(
processes=processes,
forward_reducers=forward_reducers,
backward_reducers=backward_reducers)
poolargs.update(kwargs)
super(MemmapingPool, self).__init__(**poolargs)
def terminate(self):
n_retries = 10
for i in range(n_retries):
try:
super(MemmapingPool, self).terminate()
break
except OSError as e:
if isinstance(e, WindowsError):
# Workaround occasional "[Error 5] Access is denied" issue
# when trying to terminate a process under windows.
sleep(0.1)
if i + 1 == n_retries:
warnings.warn("Failed to terminate worker processes in"
" multiprocessing pool: %r" % e)
delete_folder(self._temp_folder)
|