This file is indexed.

/usr/lib/python3/dist-packages/keras/callbacks.py is in python3-keras 2.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
from __future__ import absolute_import
from __future__ import print_function

import os
import csv
import six

import numpy as np
import time
import json
import warnings

from collections import deque
from collections import OrderedDict
from collections import Iterable
from .utils.generic_utils import Progbar
from . import backend as K

try:
    import requests
except ImportError:
    requests = None


class CallbackList(object):
    """Container abstracting a list of callbacks.

    # Arguments
        callbacks: List of `Callback` instances.
        queue_length: Queue length for keeping
            running statistics over callback execution time.
    """

    def __init__(self, callbacks=None, queue_length=10):
        callbacks = callbacks or []
        self.callbacks = [c for c in callbacks]
        self.queue_length = queue_length

    def append(self, callback):
        self.callbacks.append(callback)

    def set_params(self, params):
        for callback in self.callbacks:
            callback.set_params(params)

    def set_model(self, model):
        for callback in self.callbacks:
            callback.set_model(model)

    def on_epoch_begin(self, epoch, logs=None):
        """Called at the start of an epoch.

        # Arguments
            epoch: integer, index of epoch.
            logs: dictionary of logs.
        """
        logs = logs or {}
        for callback in self.callbacks:
            callback.on_epoch_begin(epoch, logs)
        self._delta_t_batch = 0.
        self._delta_ts_batch_begin = deque([], maxlen=self.queue_length)
        self._delta_ts_batch_end = deque([], maxlen=self.queue_length)

    def on_epoch_end(self, epoch, logs=None):
        """Called at the end of an epoch.

        # Arguments
            epoch: integer, index of epoch.
            logs: dictionary of logs.
        """
        logs = logs or {}
        for callback in self.callbacks:
            callback.on_epoch_end(epoch, logs)

    def on_batch_begin(self, batch, logs=None):
        """Called right before processing a batch.

        # Arguments
            batch: integer, index of batch within the current epoch.
            logs: dictionary of logs.
        """
        logs = logs or {}
        t_before_callbacks = time.time()
        for callback in self.callbacks:
            callback.on_batch_begin(batch, logs)
        self._delta_ts_batch_begin.append(time.time() - t_before_callbacks)
        delta_t_median = np.median(self._delta_ts_batch_begin)
        if (self._delta_t_batch > 0. and
           delta_t_median > 0.95 * self._delta_t_batch and
           delta_t_median > 0.1):
            warnings.warn('Method on_batch_begin() is slow compared '
                          'to the batch update (%f). Check your callbacks.'
                          % delta_t_median)
        self._t_enter_batch = time.time()

    def on_batch_end(self, batch, logs=None):
        """Called at the end of a batch.

        # Arguments
            batch: integer, index of batch within the current epoch.
            logs: dictionary of logs.
        """
        logs = logs or {}
        if not hasattr(self, '_t_enter_batch'):
            self._t_enter_batch = time.time()
        self._delta_t_batch = time.time() - self._t_enter_batch
        t_before_callbacks = time.time()
        for callback in self.callbacks:
            callback.on_batch_end(batch, logs)
        self._delta_ts_batch_end.append(time.time() - t_before_callbacks)
        delta_t_median = np.median(self._delta_ts_batch_end)
        if (self._delta_t_batch > 0. and
           (delta_t_median > 0.95 * self._delta_t_batch and delta_t_median > 0.1)):
            warnings.warn('Method on_batch_end() is slow compared '
                          'to the batch update (%f). Check your callbacks.'
                          % delta_t_median)

    def on_train_begin(self, logs=None):
        """Called at the beginning of training.

        # Arguments
            logs: dictionary of logs.
        """
        logs = logs or {}
        for callback in self.callbacks:
            callback.on_train_begin(logs)

    def on_train_end(self, logs=None):
        """Called at the end of training.

        # Arguments
            logs: dictionary of logs.
        """
        logs = logs or {}
        for callback in self.callbacks:
            callback.on_train_end(logs)

    def __iter__(self):
        return iter(self.callbacks)


class Callback(object):
    """Abstract base class used to build new callbacks.

    # Properties
        params: dict. Training parameters
            (eg. verbosity, batch size, number of epochs...).
        model: instance of `keras.models.Model`.
            Reference of the model being trained.

    The `logs` dictionary that callback methods
    take as argument will contain keys for quantities relevant to
    the current batch or epoch.

    Currently, the `.fit()` method of the `Sequential` model class
    will include the following quantities in the `logs` that
    it passes to its callbacks:

        on_epoch_end: logs include `acc` and `loss`, and
            optionally include `val_loss`
            (if validation is enabled in `fit`), and `val_acc`
            (if validation and accuracy monitoring are enabled).
        on_batch_begin: logs include `size`,
            the number of samples in the current batch.
        on_batch_end: logs include `loss`, and optionally `acc`
            (if accuracy monitoring is enabled).
    """

    def __init__(self):
        self.validation_data = None

    def set_params(self, params):
        self.params = params

    def set_model(self, model):
        self.model = model

    def on_epoch_begin(self, epoch, logs=None):
        pass

    def on_epoch_end(self, epoch, logs=None):
        pass

    def on_batch_begin(self, batch, logs=None):
        pass

    def on_batch_end(self, batch, logs=None):
        pass

    def on_train_begin(self, logs=None):
        pass

    def on_train_end(self, logs=None):
        pass


class BaseLogger(Callback):
    """Callback that accumulates epoch averages of metrics.

    This callback is automatically applied to every Keras model.
    """

    def on_epoch_begin(self, epoch, logs=None):
        self.seen = 0
        self.totals = {}

    def on_batch_end(self, batch, logs=None):
        logs = logs or {}
        batch_size = logs.get('size', 0)
        self.seen += batch_size

        for k, v in logs.items():
            if k in self.totals:
                self.totals[k] += v * batch_size
            else:
                self.totals[k] = v * batch_size

    def on_epoch_end(self, epoch, logs=None):
        if logs is not None:
            for k in self.params['metrics']:
                if k in self.totals:
                    # Make value available to next callbacks.
                    logs[k] = self.totals[k] / self.seen


class TerminateOnNaN(Callback):
    """Callback that terminates training when a NaN loss is encountered.
    """

    def __init__(self):
        super(TerminateOnNaN, self).__init__()

    def on_batch_end(self, batch, logs=None):
        logs = logs or {}
        loss = logs.get('loss')
        if loss is not None:
            if np.isnan(loss) or np.isinf(loss):
                print('Batch %d: Invalid loss, terminating training' % (batch))
                self.model.stop_training = True


class ProgbarLogger(Callback):
    """Callback that prints metrics to stdout.

    # Arguments
        count_mode: One of "steps" or "samples".
            Whether the progress bar should
            count samples seen or steps (batches) seen.

    # Raises
        ValueError: In case of invalid `count_mode`.
    """

    def __init__(self, count_mode='samples'):
        super(ProgbarLogger, self).__init__()
        if count_mode == 'samples':
            self.use_steps = False
        elif count_mode == 'steps':
            self.use_steps = True
        else:
            raise ValueError('Unknown `count_mode`: ' + str(count_mode))

    def on_train_begin(self, logs=None):
        self.verbose = self.params['verbose']
        self.epochs = self.params['epochs']

    def on_epoch_begin(self, epoch, logs=None):
        if self.verbose:
            print('Epoch %d/%d' % (epoch + 1, self.epochs))
            if self.use_steps:
                target = self.params['steps']
            else:
                target = self.params['samples']
            self.target = target
            self.progbar = Progbar(target=self.target,
                                   verbose=self.verbose)
        self.seen = 0

    def on_batch_begin(self, batch, logs=None):
        if self.seen < self.target:
            self.log_values = []

    def on_batch_end(self, batch, logs=None):
        logs = logs or {}
        batch_size = logs.get('size', 0)
        if self.use_steps:
            self.seen += 1
        else:
            self.seen += batch_size

        for k in self.params['metrics']:
            if k in logs:
                self.log_values.append((k, logs[k]))

        # Skip progbar update for the last batch;
        # will be handled by on_epoch_end.
        if self.verbose and self.seen < self.target:
            self.progbar.update(self.seen, self.log_values)

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        for k in self.params['metrics']:
            if k in logs:
                self.log_values.append((k, logs[k]))
        if self.verbose:
            self.progbar.update(self.seen, self.log_values, force=True)


class History(Callback):
    """Callback that records events into a `History` object.

    This callback is automatically applied to
    every Keras model. The `History` object
    gets returned by the `fit` method of models.
    """

    def on_train_begin(self, logs=None):
        self.epoch = []
        self.history = {}

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        self.epoch.append(epoch)
        for k, v in logs.items():
            self.history.setdefault(k, []).append(v)


class ModelCheckpoint(Callback):
    """Save the model after every epoch.

    `filepath` can contain named formatting options,
    which will be filled the value of `epoch` and
    keys in `logs` (passed in `on_epoch_end`).

    For example: if `filepath` is `weights.{epoch:02d}-{val_loss:.2f}.hdf5`,
    then the model checkpoints will be saved with the epoch number and
    the validation loss in the filename.

    # Arguments
        filepath: string, path to save the model file.
        monitor: quantity to monitor.
        verbose: verbosity mode, 0 or 1.
        save_best_only: if `save_best_only=True`,
            the latest best model according to
            the quantity monitored will not be overwritten.
        mode: one of {auto, min, max}.
            If `save_best_only=True`, the decision
            to overwrite the current save file is made
            based on either the maximization or the
            minimization of the monitored quantity. For `val_acc`,
            this should be `max`, for `val_loss` this should
            be `min`, etc. In `auto` mode, the direction is
            automatically inferred from the name of the monitored quantity.
        save_weights_only: if True, then only the model's weights will be
            saved (`model.save_weights(filepath)`), else the full model
            is saved (`model.save(filepath)`).
        period: Interval (number of epochs) between checkpoints.
    """

    def __init__(self, filepath, monitor='val_loss', verbose=0,
                 save_best_only=False, save_weights_only=False,
                 mode='auto', period=1):
        super(ModelCheckpoint, self).__init__()
        self.monitor = monitor
        self.verbose = verbose
        self.filepath = filepath
        self.save_best_only = save_best_only
        self.save_weights_only = save_weights_only
        self.period = period
        self.epochs_since_last_save = 0

        if mode not in ['auto', 'min', 'max']:
            warnings.warn('ModelCheckpoint mode %s is unknown, '
                          'fallback to auto mode.' % (mode),
                          RuntimeWarning)
            mode = 'auto'

        if mode == 'min':
            self.monitor_op = np.less
            self.best = np.Inf
        elif mode == 'max':
            self.monitor_op = np.greater
            self.best = -np.Inf
        else:
            if 'acc' in self.monitor or self.monitor.startswith('fmeasure'):
                self.monitor_op = np.greater
                self.best = -np.Inf
            else:
                self.monitor_op = np.less
                self.best = np.Inf

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        self.epochs_since_last_save += 1
        if self.epochs_since_last_save >= self.period:
            self.epochs_since_last_save = 0
            filepath = self.filepath.format(epoch=epoch + 1, **logs)
            if self.save_best_only:
                current = logs.get(self.monitor)
                if current is None:
                    warnings.warn('Can save best model only with %s available, '
                                  'skipping.' % (self.monitor), RuntimeWarning)
                else:
                    if self.monitor_op(current, self.best):
                        if self.verbose > 0:
                            print('Epoch %05d: %s improved from %0.5f to %0.5f,'
                                  ' saving model to %s'
                                  % (epoch + 1, self.monitor, self.best,
                                     current, filepath))
                        self.best = current
                        if self.save_weights_only:
                            self.model.save_weights(filepath, overwrite=True)
                        else:
                            self.model.save(filepath, overwrite=True)
                    else:
                        if self.verbose > 0:
                            print('Epoch %05d: %s did not improve' %
                                  (epoch + 1, self.monitor))
            else:
                if self.verbose > 0:
                    print('Epoch %05d: saving model to %s' % (epoch + 1, filepath))
                if self.save_weights_only:
                    self.model.save_weights(filepath, overwrite=True)
                else:
                    self.model.save(filepath, overwrite=True)


class EarlyStopping(Callback):
    """Stop training when a monitored quantity has stopped improving.

    # Arguments
        monitor: quantity to be monitored.
        min_delta: minimum change in the monitored quantity
            to qualify as an improvement, i.e. an absolute
            change of less than min_delta, will count as no
            improvement.
        patience: number of epochs with no improvement
            after which training will be stopped.
        verbose: verbosity mode.
        mode: one of {auto, min, max}. In `min` mode,
            training will stop when the quantity
            monitored has stopped decreasing; in `max`
            mode it will stop when the quantity
            monitored has stopped increasing; in `auto`
            mode, the direction is automatically inferred
            from the name of the monitored quantity.
    """

    def __init__(self, monitor='val_loss',
                 min_delta=0, patience=0, verbose=0, mode='auto'):
        super(EarlyStopping, self).__init__()

        self.monitor = monitor
        self.patience = patience
        self.verbose = verbose
        self.min_delta = min_delta
        self.wait = 0
        self.stopped_epoch = 0

        if mode not in ['auto', 'min', 'max']:
            warnings.warn('EarlyStopping mode %s is unknown, '
                          'fallback to auto mode.' % mode,
                          RuntimeWarning)
            mode = 'auto'

        if mode == 'min':
            self.monitor_op = np.less
        elif mode == 'max':
            self.monitor_op = np.greater
        else:
            if 'acc' in self.monitor:
                self.monitor_op = np.greater
            else:
                self.monitor_op = np.less

        if self.monitor_op == np.greater:
            self.min_delta *= 1
        else:
            self.min_delta *= -1

    def on_train_begin(self, logs=None):
        # Allow instances to be re-used
        self.wait = 0
        self.stopped_epoch = 0
        self.best = np.Inf if self.monitor_op == np.less else -np.Inf

    def on_epoch_end(self, epoch, logs=None):
        current = logs.get(self.monitor)
        if current is None:
            warnings.warn(
                'Early stopping conditioned on metric `%s` '
                'which is not available. Available metrics are: %s' %
                (self.monitor, ','.join(list(logs.keys()))), RuntimeWarning
            )
            return
        if self.monitor_op(current - self.min_delta, self.best):
            self.best = current
            self.wait = 0
        else:
            self.wait += 1
            if self.wait >= self.patience:
                self.stopped_epoch = epoch
                self.model.stop_training = True

    def on_train_end(self, logs=None):
        if self.stopped_epoch > 0 and self.verbose > 0:
            print('Epoch %05d: early stopping' % (self.stopped_epoch + 1))


class RemoteMonitor(Callback):
    """Callback used to stream events to a server.

    Requires the `requests` library.
    Events are sent to `root + '/publish/epoch/end/'` by default. Calls are
    HTTP POST, with a `data` argument which is a
    JSON-encoded dictionary of event data.

    # Arguments
        root: String; root url of the target server.
        path: String; path relative to `root` to which the events will be sent.
        field: String; JSON field under which the data will be stored.
        headers: Dictionary; optional custom HTTP headers.
    """

    def __init__(self,
                 root='http://localhost:9000',
                 path='/publish/epoch/end/',
                 field='data',
                 headers=None):
        super(RemoteMonitor, self).__init__()

        self.root = root
        self.path = path
        self.field = field
        self.headers = headers

    def on_epoch_end(self, epoch, logs=None):
        if requests is None:
            raise ImportError('RemoteMonitor requires '
                              'the `requests` library.')
        logs = logs or {}
        send = {}
        send['epoch'] = epoch
        for k, v in logs.items():
            send[k] = v
        try:
            requests.post(self.root + self.path,
                          {self.field: json.dumps(send)},
                          headers=self.headers)
        except requests.exceptions.RequestException:
            warnings.warn('Warning: could not reach RemoteMonitor '
                          'root server at ' + str(self.root))


class LearningRateScheduler(Callback):
    """Learning rate scheduler.

    # Arguments
        schedule: a function that takes an epoch index as input
            (integer, indexed from 0) and returns a new
            learning rate as output (float).
    """

    def __init__(self, schedule):
        super(LearningRateScheduler, self).__init__()
        self.schedule = schedule

    def on_epoch_begin(self, epoch, logs=None):
        if not hasattr(self.model.optimizer, 'lr'):
            raise ValueError('Optimizer must have a "lr" attribute.')
        lr = self.schedule(epoch)
        if not isinstance(lr, (float, np.float32, np.float64)):
            raise ValueError('The output of the "schedule" function '
                             'should be float.')
        K.set_value(self.model.optimizer.lr, lr)


class TensorBoard(Callback):
    """Tensorboard basic visualizations.

    [TensorBoard](https://www.tensorflow.org/get_started/summaries_and_tensorboard)
    is a visualization tool provided with TensorFlow.

    This callback writes a log for TensorBoard, which allows
    you to visualize dynamic graphs of your training and test
    metrics, as well as activation histograms for the different
    layers in your model.

    If you have installed TensorFlow with pip, you should be able
    to launch TensorBoard from the command line:
    ```sh
    tensorboard --logdir=/full_path_to_your_logs
    ```

    # Arguments
        log_dir: the path of the directory where to save the log
            files to be parsed by TensorBoard.
        histogram_freq: frequency (in epochs) at which to compute activation
            and weight histograms for the layers of the model. If set to 0,
            histograms won't be computed. Validation data (or split) must be
            specified for histogram visualizations.
        write_graph: whether to visualize the graph in TensorBoard.
            The log file can become quite large when
            write_graph is set to True.
        write_grads: whether to visualize gradient histograms in TensorBoard.
            `histogram_freq` must be greater than 0.
        batch_size: size of batch of inputs to feed to the network
            for histograms computation.
        write_images: whether to write model weights to visualize as
            image in TensorBoard.
        embeddings_freq: frequency (in epochs) at which selected embedding
            layers will be saved.
        embeddings_layer_names: a list of names of layers to keep eye on. If
            None or empty list all the embedding layer will be watched.
        embeddings_metadata: a dictionary which maps layer name to a file name
            in which metadata for this embedding layer is saved. See the
            [details](https://www.tensorflow.org/how_tos/embedding_viz/#metadata_optional)
            about metadata files format. In case if the same metadata file is
            used for all embedding layers, string can be passed.
    """

    def __init__(self, log_dir='./logs',
                 histogram_freq=0,
                 batch_size=32,
                 write_graph=True,
                 write_grads=False,
                 write_images=False,
                 embeddings_freq=0,
                 embeddings_layer_names=None,
                 embeddings_metadata=None):
        super(TensorBoard, self).__init__()
        if K.backend() != 'tensorflow':
            raise RuntimeError('TensorBoard callback only works '
                               'with the TensorFlow backend.')
        global tf, projector
        import tensorflow as tf
        from tensorflow.contrib.tensorboard.plugins import projector
        self.log_dir = log_dir
        self.histogram_freq = histogram_freq
        self.merged = None
        self.write_graph = write_graph
        self.write_grads = write_grads
        self.write_images = write_images
        self.embeddings_freq = embeddings_freq
        self.embeddings_layer_names = embeddings_layer_names
        self.embeddings_metadata = embeddings_metadata or {}
        self.batch_size = batch_size

    def set_model(self, model):
        self.model = model
        self.sess = K.get_session()
        if self.histogram_freq and self.merged is None:
            for layer in self.model.layers:

                for weight in layer.weights:
                    mapped_weight_name = weight.name.replace(':', '_')
                    tf.summary.histogram(mapped_weight_name, weight)
                    if self.write_grads:
                        grads = model.optimizer.get_gradients(model.total_loss,
                                                              weight)

                        def is_indexed_slices(grad):
                            return type(grad).__name__ == 'IndexedSlices'
                        grads = [
                            grad.values if is_indexed_slices(grad) else grad
                            for grad in grads]
                        tf.summary.histogram('{}_grad'.format(mapped_weight_name), grads)
                    if self.write_images:
                        w_img = tf.squeeze(weight)
                        shape = K.int_shape(w_img)
                        if len(shape) == 2:  # dense layer kernel case
                            if shape[0] > shape[1]:
                                w_img = tf.transpose(w_img)
                                shape = K.int_shape(w_img)
                            w_img = tf.reshape(w_img, [1,
                                                       shape[0],
                                                       shape[1],
                                                       1])
                        elif len(shape) == 3:  # convnet case
                            if K.image_data_format() == 'channels_last':
                                # switch to channels_first to display
                                # every kernel as a separate image
                                w_img = tf.transpose(w_img, perm=[2, 0, 1])
                                shape = K.int_shape(w_img)
                            w_img = tf.reshape(w_img, [shape[0],
                                                       shape[1],
                                                       shape[2],
                                                       1])
                        elif len(shape) == 1:  # bias case
                            w_img = tf.reshape(w_img, [1,
                                                       shape[0],
                                                       1,
                                                       1])
                        else:
                            # not possible to handle 3D convnets etc.
                            continue

                        shape = K.int_shape(w_img)
                        assert len(shape) == 4 and shape[-1] in [1, 3, 4]
                        tf.summary.image(mapped_weight_name, w_img)

                if hasattr(layer, 'output'):
                    tf.summary.histogram('{}_out'.format(layer.name),
                                         layer.output)
        self.merged = tf.summary.merge_all()

        if self.write_graph:
            self.writer = tf.summary.FileWriter(self.log_dir,
                                                self.sess.graph)
        else:
            self.writer = tf.summary.FileWriter(self.log_dir)

        if self.embeddings_freq:
            embeddings_layer_names = self.embeddings_layer_names

            if not embeddings_layer_names:
                embeddings_layer_names = [layer.name for layer in self.model.layers
                                          if type(layer).__name__ == 'Embedding']

            embeddings = {layer.name: layer.weights[0]
                          for layer in self.model.layers
                          if layer.name in embeddings_layer_names}

            self.saver = tf.train.Saver(list(embeddings.values()))

            embeddings_metadata = {}

            if not isinstance(self.embeddings_metadata, str):
                embeddings_metadata = self.embeddings_metadata
            else:
                embeddings_metadata = {layer_name: self.embeddings_metadata
                                       for layer_name in embeddings.keys()}

            config = projector.ProjectorConfig()
            self.embeddings_ckpt_path = os.path.join(self.log_dir,
                                                     'keras_embedding.ckpt')

            for layer_name, tensor in embeddings.items():
                embedding = config.embeddings.add()
                embedding.tensor_name = tensor.name

                if layer_name in embeddings_metadata:
                    embedding.metadata_path = embeddings_metadata[layer_name]

            projector.visualize_embeddings(self.writer, config)

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}

        if not self.validation_data and self.histogram_freq:
            raise ValueError('If printing histograms, validation_data must be '
                             'provided, and cannot be a generator.')
        if self.validation_data and self.histogram_freq:
            if epoch % self.histogram_freq == 0:

                val_data = self.validation_data
                tensors = (self.model.inputs +
                           self.model.targets +
                           self.model.sample_weights)

                if self.model.uses_learning_phase:
                    tensors += [K.learning_phase()]

                assert len(val_data) == len(tensors)
                val_size = val_data[0].shape[0]
                i = 0
                while i < val_size:
                    step = min(self.batch_size, val_size - i)
                    if self.model.uses_learning_phase:
                        # do not slice the learning phase
                        batch_val = [x[i:i + step] for x in val_data[:-1]]
                        batch_val.append(val_data[-1])
                    else:
                        batch_val = [x[i:i + step] for x in val_data]
                    assert len(batch_val) == len(tensors)
                    feed_dict = dict(zip(tensors, batch_val))
                    result = self.sess.run([self.merged], feed_dict=feed_dict)
                    summary_str = result[0]
                    self.writer.add_summary(summary_str, epoch)
                    i += self.batch_size

        if self.embeddings_freq and self.embeddings_ckpt_path:
            if epoch % self.embeddings_freq == 0:
                self.saver.save(self.sess,
                                self.embeddings_ckpt_path,
                                epoch)

        for name, value in logs.items():
            if name in ['batch', 'size']:
                continue
            summary = tf.Summary()
            summary_value = summary.value.add()
            summary_value.simple_value = value.item()
            summary_value.tag = name
            self.writer.add_summary(summary, epoch)
        self.writer.flush()

    def on_train_end(self, _):
        self.writer.close()


class ReduceLROnPlateau(Callback):
    """Reduce learning rate when a metric has stopped improving.

    Models often benefit from reducing the learning rate by a factor
    of 2-10 once learning stagnates. This callback monitors a
    quantity and if no improvement is seen for a 'patience' number
    of epochs, the learning rate is reduced.

    # Example
        ```python
        reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2,
                                      patience=5, min_lr=0.001)
        model.fit(X_train, Y_train, callbacks=[reduce_lr])
        ```

    # Arguments
        monitor: quantity to be monitored.
        factor: factor by which the learning rate will
            be reduced. new_lr = lr * factor
        patience: number of epochs with no improvement
            after which learning rate will be reduced.
        verbose: int. 0: quiet, 1: update messages.
        mode: one of {auto, min, max}. In `min` mode,
            lr will be reduced when the quantity
            monitored has stopped decreasing; in `max`
            mode it will be reduced when the quantity
            monitored has stopped increasing; in `auto`
            mode, the direction is automatically inferred
            from the name of the monitored quantity.
        epsilon: threshold for measuring the new optimum,
            to only focus on significant changes.
        cooldown: number of epochs to wait before resuming
            normal operation after lr has been reduced.
        min_lr: lower bound on the learning rate.
    """

    def __init__(self, monitor='val_loss', factor=0.1, patience=10,
                 verbose=0, mode='auto', epsilon=1e-4, cooldown=0, min_lr=0):
        super(ReduceLROnPlateau, self).__init__()

        self.monitor = monitor
        if factor >= 1.0:
            raise ValueError('ReduceLROnPlateau '
                             'does not support a factor >= 1.0.')
        self.factor = factor
        self.min_lr = min_lr
        self.epsilon = epsilon
        self.patience = patience
        self.verbose = verbose
        self.cooldown = cooldown
        self.cooldown_counter = 0  # Cooldown counter.
        self.wait = 0
        self.best = 0
        self.mode = mode
        self.monitor_op = None
        self._reset()

    def _reset(self):
        """Resets wait counter and cooldown counter.
        """
        if self.mode not in ['auto', 'min', 'max']:
            warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
                          'fallback to auto mode.' % (self.mode),
                          RuntimeWarning)
            self.mode = 'auto'
        if (self.mode == 'min' or
           (self.mode == 'auto' and 'acc' not in self.monitor)):
            self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
            self.best = np.Inf
        else:
            self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
            self.best = -np.Inf
        self.cooldown_counter = 0
        self.wait = 0
        self.lr_epsilon = self.min_lr * 1e-4

    def on_train_begin(self, logs=None):
        self._reset()

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        logs['lr'] = K.get_value(self.model.optimizer.lr)
        current = logs.get(self.monitor)
        if current is None:
            warnings.warn(
                'Reduce LR on plateau conditioned on metric `%s` '
                'which is not available. Available metrics are: %s' %
                (self.monitor, ','.join(list(logs.keys()))), RuntimeWarning
            )

        else:
            if self.in_cooldown():
                self.cooldown_counter -= 1
                self.wait = 0

            if self.monitor_op(current, self.best):
                self.best = current
                self.wait = 0
            elif not self.in_cooldown():
                if self.wait >= self.patience:
                    old_lr = float(K.get_value(self.model.optimizer.lr))
                    if old_lr > self.min_lr + self.lr_epsilon:
                        new_lr = old_lr * self.factor
                        new_lr = max(new_lr, self.min_lr)
                        K.set_value(self.model.optimizer.lr, new_lr)
                        if self.verbose > 0:
                            print('\nEpoch %05d: reducing learning rate to %s.' % (epoch + 1, new_lr))
                        self.cooldown_counter = self.cooldown
                        self.wait = 0
                self.wait += 1

    def in_cooldown(self):
        return self.cooldown_counter > 0


class CSVLogger(Callback):
    """Callback that streams epoch results to a csv file.

    Supports all values that can be represented as a string,
    including 1D iterables such as np.ndarray.

    # Example
        ```python
        csv_logger = CSVLogger('training.log')
        model.fit(X_train, Y_train, callbacks=[csv_logger])
        ```

    # Arguments
        filename: filename of the csv file, e.g. 'run/log.csv'.
        separator: string used to separate elements in the csv file.
        append: True: append if file exists (useful for continuing
            training). False: overwrite existing file,
    """

    def __init__(self, filename, separator=',', append=False):
        self.sep = separator
        self.filename = filename
        self.append = append
        self.writer = None
        self.keys = None
        self.append_header = True
        self.file_flags = 'b' if six.PY2 and os.name == 'nt' else ''
        super(CSVLogger, self).__init__()

    def on_train_begin(self, logs=None):
        if self.append:
            if os.path.exists(self.filename):
                with open(self.filename, 'r' + self.file_flags) as f:
                    self.append_header = not bool(len(f.readline()))
            self.csv_file = open(self.filename, 'a' + self.file_flags)
        else:
            self.csv_file = open(self.filename, 'w' + self.file_flags)

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}

        def handle_value(k):
            is_zero_dim_ndarray = isinstance(k, np.ndarray) and k.ndim == 0
            if isinstance(k, six.string_types):
                return k
            elif isinstance(k, Iterable) and not is_zero_dim_ndarray:
                return '"[%s]"' % (', '.join(map(str, k)))
            else:
                return k

        if self.model.stop_training:
            # We set NA so that csv parsers do not fail for this last epoch.
            logs = dict([(k, logs[k]) if k in logs else (k, 'NA') for k in self.keys])

        if not self.writer:
            self.keys = sorted(logs.keys())

            class CustomDialect(csv.excel):
                delimiter = self.sep

            self.writer = csv.DictWriter(self.csv_file,
                                         fieldnames=['epoch'] + self.keys, dialect=CustomDialect)
            if self.append_header:
                self.writer.writeheader()

        row_dict = OrderedDict({'epoch': epoch})
        row_dict.update((key, handle_value(logs[key])) for key in self.keys)
        self.writer.writerow(row_dict)
        self.csv_file.flush()

    def on_train_end(self, logs=None):
        self.csv_file.close()
        self.writer = None


class LambdaCallback(Callback):
    r"""Callback for creating simple, custom callbacks on-the-fly.

    This callback is constructed with anonymous functions that will be called
    at the appropriate time. Note that the callbacks expects positional
    arguments, as:

     - `on_epoch_begin` and `on_epoch_end` expect two positional arguments:
        `epoch`, `logs`
     - `on_batch_begin` and `on_batch_end` expect two positional arguments:
        `batch`, `logs`
     - `on_train_begin` and `on_train_end` expect one positional argument:
        `logs`

    # Arguments
        on_epoch_begin: called at the beginning of every epoch.
        on_epoch_end: called at the end of every epoch.
        on_batch_begin: called at the beginning of every batch.
        on_batch_end: called at the end of every batch.
        on_train_begin: called at the beginning of model training.
        on_train_end: called at the end of model training.

    # Example
        ```python
        # Print the batch number at the beginning of every batch.
        batch_print_callback = LambdaCallback(
            on_batch_begin=lambda batch,logs: print(batch))

        # Stream the epoch loss to a file in JSON format. The file content
        # is not well-formed JSON but rather has a JSON object per line.
        import json
        json_log = open('loss_log.json', mode='wt', buffering=1)
        json_logging_callback = LambdaCallback(
            on_epoch_end=lambda epoch, logs: json_log.write(
                json.dumps({'epoch': epoch, 'loss': logs['loss']}) + '\n'),
            on_train_end=lambda logs: json_log.close()
        )

        # Terminate some processes after having finished model training.
        processes = ...
        cleanup_callback = LambdaCallback(
            on_train_end=lambda logs: [
                p.terminate() for p in processes if p.is_alive()])

        model.fit(...,
                  callbacks=[batch_print_callback,
                             json_logging_callback,
                             cleanup_callback])
        ```
    """

    def __init__(self,
                 on_epoch_begin=None,
                 on_epoch_end=None,
                 on_batch_begin=None,
                 on_batch_end=None,
                 on_train_begin=None,
                 on_train_end=None,
                 **kwargs):
        super(LambdaCallback, self).__init__()
        self.__dict__.update(kwargs)
        if on_epoch_begin is not None:
            self.on_epoch_begin = on_epoch_begin
        else:
            self.on_epoch_begin = lambda epoch, logs: None
        if on_epoch_end is not None:
            self.on_epoch_end = on_epoch_end
        else:
            self.on_epoch_end = lambda epoch, logs: None
        if on_batch_begin is not None:
            self.on_batch_begin = on_batch_begin
        else:
            self.on_batch_begin = lambda batch, logs: None
        if on_batch_end is not None:
            self.on_batch_end = on_batch_end
        else:
            self.on_batch_end = lambda batch, logs: None
        if on_train_begin is not None:
            self.on_train_begin = on_train_begin
        else:
            self.on_train_begin = lambda logs: None
        if on_train_end is not None:
            self.on_train_end = on_train_end
        else:
            self.on_train_end = lambda logs: None