This file is indexed.

/usr/lib/python3/dist-packages/keras/initializers.py is in python3-keras 2.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
from __future__ import absolute_import
import numpy as np
import six
from . import backend as K
from .utils.generic_utils import serialize_keras_object
from .utils.generic_utils import deserialize_keras_object


class Initializer(object):
    """Initializer base class: all initializers inherit from this class.
    """

    def __call__(self, shape, dtype=None):
        raise NotImplementedError

    def get_config(self):
        return {}

    @classmethod
    def from_config(cls, config):
        if 'dtype' in config:
            # Initializers saved from `tf.keras`
            # may contain an unused `dtype` argument.
            config.pop('dtype')
        return cls(**config)


class Zeros(Initializer):
    """Initializer that generates tensors initialized to 0.
    """

    def __call__(self, shape, dtype=None):
        return K.constant(0, shape=shape, dtype=dtype)


class Ones(Initializer):
    """Initializer that generates tensors initialized to 1.
    """

    def __call__(self, shape, dtype=None):
        return K.constant(1, shape=shape, dtype=dtype)


class Constant(Initializer):
    """Initializer that generates tensors initialized to a constant value.

    # Arguments
        value: float; the value of the generator tensors.
    """

    def __init__(self, value=0):
        self.value = value

    def __call__(self, shape, dtype=None):
        return K.constant(self.value, shape=shape, dtype=dtype)

    def get_config(self):
        return {'value': self.value}


class RandomNormal(Initializer):
    """Initializer that generates tensors with a normal distribution.

    # Arguments
        mean: a python scalar or a scalar tensor. Mean of the random values
          to generate.
        stddev: a python scalar or a scalar tensor. Standard deviation of the
          random values to generate.
        seed: A Python integer. Used to seed the random generator.
    """

    def __init__(self, mean=0., stddev=0.05, seed=None):
        self.mean = mean
        self.stddev = stddev
        self.seed = seed

    def __call__(self, shape, dtype=None):
        return K.random_normal(shape, self.mean, self.stddev,
                               dtype=dtype, seed=self.seed)

    def get_config(self):
        return {
            'mean': self.mean,
            'stddev': self.stddev,
            'seed': self.seed
        }


class RandomUniform(Initializer):
    """Initializer that generates tensors with a uniform distribution.

    # Arguments
        minval: A python scalar or a scalar tensor. Lower bound of the range
          of random values to generate.
        maxval: A python scalar or a scalar tensor. Upper bound of the range
          of random values to generate.  Defaults to 1 for float types.
        seed: A Python integer. Used to seed the random generator.
    """

    def __init__(self, minval=-0.05, maxval=0.05, seed=None):
        self.minval = minval
        self.maxval = maxval
        self.seed = seed

    def __call__(self, shape, dtype=None):
        return K.random_uniform(shape, self.minval, self.maxval,
                                dtype=dtype, seed=self.seed)

    def get_config(self):
        return {
            'minval': self.minval,
            'maxval': self.maxval,
            'seed': self.seed,
        }


class TruncatedNormal(Initializer):
    """Initializer that generates a truncated normal distribution.

    These values are similar to values from a `RandomNormal`
    except that values more than two standard deviations from the mean
    are discarded and re-drawn. This is the recommended initializer for
    neural network weights and filters.

    # Arguments
        mean: a python scalar or a scalar tensor. Mean of the random values
          to generate.
        stddev: a python scalar or a scalar tensor. Standard deviation of the
          random values to generate.
        seed: A Python integer. Used to seed the random generator.
    """

    def __init__(self, mean=0., stddev=0.05, seed=None):
        self.mean = mean
        self.stddev = stddev
        self.seed = seed

    def __call__(self, shape, dtype=None):
        return K.truncated_normal(shape, self.mean, self.stddev,
                                  dtype=dtype, seed=self.seed)

    def get_config(self):
        return {
            'mean': self.mean,
            'stddev': self.stddev,
            'seed': self.seed
        }


class VarianceScaling(Initializer):
    """Initializer capable of adapting its scale to the shape of weights.

    With `distribution="normal"`, samples are drawn from a truncated normal
    distribution centered on zero, with `stddev = sqrt(scale / n)` where n is:

        - number of input units in the weight tensor, if mode = "fan_in"
        - number of output units, if mode = "fan_out"
        - average of the numbers of input and output units, if mode = "fan_avg"

    With `distribution="uniform"`,
    samples are drawn from a uniform distribution
    within [-limit, limit], with `limit = sqrt(3 * scale / n)`.

    # Arguments
        scale: Scaling factor (positive float).
        mode: One of "fan_in", "fan_out", "fan_avg".
        distribution: Random distribution to use. One of "normal", "uniform".
        seed: A Python integer. Used to seed the random generator.

    # Raises
        ValueError: In case of an invalid value for the "scale", mode" or
          "distribution" arguments.
    """

    def __init__(self, scale=1.0,
                 mode='fan_in',
                 distribution='normal',
                 seed=None):
        if scale <= 0.:
            raise ValueError('`scale` must be a positive float. Got:', scale)
        mode = mode.lower()
        if mode not in {'fan_in', 'fan_out', 'fan_avg'}:
            raise ValueError('Invalid `mode` argument: '
                             'expected on of {"fan_in", "fan_out", "fan_avg"} '
                             'but got', mode)
        distribution = distribution.lower()
        if distribution not in {'normal', 'uniform'}:
            raise ValueError('Invalid `distribution` argument: '
                             'expected one of {"normal", "uniform"} '
                             'but got', distribution)
        self.scale = scale
        self.mode = mode
        self.distribution = distribution
        self.seed = seed

    def __call__(self, shape, dtype=None):
        fan_in, fan_out = _compute_fans(shape)
        scale = self.scale
        if self.mode == 'fan_in':
            scale /= max(1., fan_in)
        elif self.mode == 'fan_out':
            scale /= max(1., fan_out)
        else:
            scale /= max(1., float(fan_in + fan_out) / 2)
        if self.distribution == 'normal':
            stddev = np.sqrt(scale)
            return K.truncated_normal(shape, 0., stddev,
                                      dtype=dtype, seed=self.seed)
        else:
            limit = np.sqrt(3. * scale)
            return K.random_uniform(shape, -limit, limit,
                                    dtype=dtype, seed=self.seed)

    def get_config(self):
        return {
            'scale': self.scale,
            'mode': self.mode,
            'distribution': self.distribution,
            'seed': self.seed
        }


class Orthogonal(Initializer):
    """Initializer that generates a random orthogonal matrix.

    # Arguments
        gain: Multiplicative factor to apply to the orthogonal matrix.
        seed: A Python integer. Used to seed the random generator.

    # References
        Saxe et al., http://arxiv.org/abs/1312.6120
    """

    def __init__(self, gain=1., seed=None):
        self.gain = gain
        self.seed = seed

    def __call__(self, shape, dtype=None):
        num_rows = 1
        for dim in shape[:-1]:
            num_rows *= dim
        num_cols = shape[-1]
        flat_shape = (num_rows, num_cols)
        if self.seed is not None:
            np.random.seed(self.seed)
        a = np.random.normal(0.0, 1.0, flat_shape)
        u, _, v = np.linalg.svd(a, full_matrices=False)
        # Pick the one with the correct shape.
        q = u if u.shape == flat_shape else v
        q = q.reshape(shape)
        return self.gain * q[:shape[0], :shape[1]]

    def get_config(self):
        return {
            'gain': self.gain,
            'seed': self.seed
        }


class Identity(Initializer):
    """Initializer that generates the identity matrix.

    Only use for square 2D matrices.

    # Arguments
        gain: Multiplicative factor to apply to the identity matrix.
    """

    def __init__(self, gain=1.):
        self.gain = gain

    def __call__(self, shape, dtype=None):
        if len(shape) != 2 or shape[0] != shape[1]:
            raise ValueError('Identity matrix initializer can only be used '
                             'for 2D square matrices.')
        else:
            return self.gain * np.identity(shape[0])

    def get_config(self):
        return {
            'gain': self.gain
        }


def lecun_uniform(seed=None):
    """LeCun uniform initializer.

    It draws samples from a uniform distribution within [-limit, limit]
    where `limit` is `sqrt(3 / fan_in)`
    where `fan_in` is the number of input units in the weight tensor.

    # Arguments
        seed: A Python integer. Used to seed the random generator.

    # Returns
        An initializer.

    # References
        LeCun 98, Efficient Backprop,
        http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
    """
    return VarianceScaling(scale=1.,
                           mode='fan_in',
                           distribution='uniform',
                           seed=seed)


def glorot_normal(seed=None):
    """Glorot normal initializer, also called Xavier normal initializer.

    It draws samples from a truncated normal distribution centered on 0
    with `stddev = sqrt(2 / (fan_in + fan_out))`
    where `fan_in` is the number of input units in the weight tensor
    and `fan_out` is the number of output units in the weight tensor.

    # Arguments
        seed: A Python integer. Used to seed the random generator.

    # Returns
        An initializer.

    # References
        Glorot & Bengio, AISTATS 2010
        http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
    """
    return VarianceScaling(scale=1.,
                           mode='fan_avg',
                           distribution='normal',
                           seed=seed)


def glorot_uniform(seed=None):
    """Glorot uniform initializer, also called Xavier uniform initializer.

    It draws samples from a uniform distribution within [-limit, limit]
    where `limit` is `sqrt(6 / (fan_in + fan_out))`
    where `fan_in` is the number of input units in the weight tensor
    and `fan_out` is the number of output units in the weight tensor.

    # Arguments
        seed: A Python integer. Used to seed the random generator.

    # Returns
        An initializer.

    # References
        Glorot & Bengio, AISTATS 2010
        http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
    """
    return VarianceScaling(scale=1.,
                           mode='fan_avg',
                           distribution='uniform',
                           seed=seed)


def he_normal(seed=None):
    """He normal initializer.

    It draws samples from a truncated normal distribution centered on 0
    with `stddev = sqrt(2 / fan_in)`
    where `fan_in` is the number of input units in the weight tensor.

    # Arguments
        seed: A Python integer. Used to seed the random generator.

    # Returns
        An initializer.

    # References
        He et al., http://arxiv.org/abs/1502.01852
    """
    return VarianceScaling(scale=2.,
                           mode='fan_in',
                           distribution='normal',
                           seed=seed)


def lecun_normal(seed=None):
    """LeCun normal initializer.

    It draws samples from a truncated normal distribution centered on 0
    with `stddev = sqrt(1 / fan_in)`
    where `fan_in` is the number of input units in the weight tensor.

    # Arguments
        seed: A Python integer. Used to seed the random generator.

    # Returns
        An initializer.

    # References
        - [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515)
        - [Efficient Backprop](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf)
    """
    return VarianceScaling(scale=1.,
                           mode='fan_in',
                           distribution='normal',
                           seed=seed)


def he_uniform(seed=None):
    """He uniform variance scaling initializer.

    It draws samples from a uniform distribution within [-limit, limit]
    where `limit` is `sqrt(6 / fan_in)`
    where `fan_in` is the number of input units in the weight tensor.

    # Arguments
        seed: A Python integer. Used to seed the random generator.

    # Returns
        An initializer.

    # References
        He et al., http://arxiv.org/abs/1502.01852
    """
    return VarianceScaling(scale=2.,
                           mode='fan_in',
                           distribution='uniform',
                           seed=seed)


# Compatibility aliases

zero = zeros = Zeros
one = ones = Ones
constant = Constant
uniform = random_uniform = RandomUniform
normal = random_normal = RandomNormal
truncated_normal = TruncatedNormal
identity = Identity
orthogonal = Orthogonal

# Utility functions


def _compute_fans(shape, data_format='channels_last'):
    """Computes the number of input and output units for a weight shape.

    # Arguments
        shape: Integer shape tuple.
        data_format: Image data format to use for convolution kernels.
            Note that all kernels in Keras are standardized on the
            `channels_last` ordering (even when inputs are set
            to `channels_first`).

    # Returns
        A tuple of scalars, `(fan_in, fan_out)`.

    # Raises
        ValueError: in case of invalid `data_format` argument.
    """
    if len(shape) == 2:
        fan_in = shape[0]
        fan_out = shape[1]
    elif len(shape) in {3, 4, 5}:
        # Assuming convolution kernels (1D, 2D or 3D).
        # TH kernel shape: (depth, input_depth, ...)
        # TF kernel shape: (..., input_depth, depth)
        if data_format == 'channels_first':
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size
        elif data_format == 'channels_last':
            receptive_field_size = np.prod(shape[:-2])
            fan_in = shape[-2] * receptive_field_size
            fan_out = shape[-1] * receptive_field_size
        else:
            raise ValueError('Invalid data_format: ' + data_format)
    else:
        # No specific assumptions.
        fan_in = np.sqrt(np.prod(shape))
        fan_out = np.sqrt(np.prod(shape))
    return fan_in, fan_out


def serialize(initializer):
    return serialize_keras_object(initializer)


def deserialize(config, custom_objects=None):
    return deserialize_keras_object(config,
                                    module_objects=globals(),
                                    custom_objects=custom_objects,
                                    printable_module_name='initializer')


def get(identifier):
    if isinstance(identifier, dict):
        return deserialize(identifier)
    elif isinstance(identifier, six.string_types):
        config = {'class_name': str(identifier), 'config': {}}
        return deserialize(config)
    elif callable(identifier):
        return identifier
    else:
        raise ValueError('Could not interpret initializer identifier:',
                         identifier)