/usr/lib/python3/dist-packages/keras/metrics.py is in python3-keras 2.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | from __future__ import absolute_import
import six
from . import backend as K
from .losses import mean_squared_error
from .losses import mean_absolute_error
from .losses import mean_absolute_percentage_error
from .losses import mean_squared_logarithmic_error
from .losses import hinge
from .losses import logcosh
from .losses import squared_hinge
from .losses import categorical_crossentropy
from .losses import sparse_categorical_crossentropy
from .losses import binary_crossentropy
from .losses import kullback_leibler_divergence
from .losses import poisson
from .losses import cosine_proximity
from .utils.generic_utils import deserialize_keras_object
def binary_accuracy(y_true, y_pred):
return K.mean(K.equal(y_true, K.round(y_pred)), axis=-1)
def categorical_accuracy(y_true, y_pred):
return K.cast(K.equal(K.argmax(y_true, axis=-1),
K.argmax(y_pred, axis=-1)),
K.floatx())
def sparse_categorical_accuracy(y_true, y_pred):
return K.cast(K.equal(K.max(y_true, axis=-1),
K.cast(K.argmax(y_pred, axis=-1), K.floatx())),
K.floatx())
def top_k_categorical_accuracy(y_true, y_pred, k=5):
return K.mean(K.in_top_k(y_pred, K.argmax(y_true, axis=-1), k), axis=-1)
def sparse_top_k_categorical_accuracy(y_true, y_pred, k=5):
return K.mean(K.in_top_k(y_pred, K.cast(K.max(y_true, axis=-1), 'int32'), k), axis=-1)
# Aliases
mse = MSE = mean_squared_error
mae = MAE = mean_absolute_error
mape = MAPE = mean_absolute_percentage_error
msle = MSLE = mean_squared_logarithmic_error
cosine = cosine_proximity
def serialize(metric):
return metric.__name__
def deserialize(name, custom_objects=None):
return deserialize_keras_object(name,
module_objects=globals(),
custom_objects=custom_objects,
printable_module_name='metric function')
def get(identifier):
if isinstance(identifier, six.string_types):
identifier = str(identifier)
return deserialize(identifier)
elif callable(identifier):
return identifier
else:
raise ValueError('Could not interpret '
'metric function identifier:', identifier)
|