/usr/lib/python3/dist-packages/mapproxy/grid.py is in python3-mapproxy 1.11.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 | # This file is part of the MapProxy project.
# Copyright (C) 2010 Omniscale <http://omniscale.de>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
(Meta-)Tile grids (data and calculations).
"""
from __future__ import division
import math
from mapproxy.srs import SRS, get_epsg_num, merge_bbox, bbox_equals
from mapproxy.util.collections import ImmutableDictList
from mapproxy.compat import string_type, iteritems
geodetic_epsg_codes = [4326]
class GridError(Exception):
pass
class NoTiles(GridError):
pass
def get_resolution(bbox, size):
"""
Calculate the highest resolution needed to draw the bbox
into an image with given size.
>>> get_resolution((-180,-90,180,90), (256, 256))
0.703125
:returns: the resolution
:rtype: float
"""
w = abs(bbox[0] - bbox[2])
h = abs(bbox[1] - bbox[3])
return min(w/size[0], h/size[1])
def tile_grid_for_epsg(epsg, bbox=None, tile_size=(256, 256), res=None):
"""
Create a tile grid that matches the given epsg code:
:param epsg: the epsg code
:type epsg: 'EPSG:0000', '0000' or 0000
:param bbox: the bbox of the grid
:param tile_size: the size of each tile
:param res: a list with all resolutions
"""
epsg = get_epsg_num(epsg)
if epsg in geodetic_epsg_codes:
return TileGrid(epsg, is_geodetic=True, bbox=bbox, tile_size=tile_size, res=res)
return TileGrid(epsg, bbox=bbox, tile_size=tile_size, res=res)
# defer loading of default bbox since custom proj settings
# are not loaded on import time
class _default_bboxs(object):
_defaults = {
4326: (-180, -90, 180, 90),
}
for epsg_num in (900913, 3857, 102100, 102113):
_defaults[epsg_num] = (-20037508.342789244,
-20037508.342789244,
20037508.342789244,
20037508.342789244)
defaults = None
def get(self, key, default=None):
try:
return self[key]
except KeyError:
return default
def __getitem__(self, key):
if self.defaults is None:
defaults = {}
for epsg, bbox in iteritems(self._defaults):
defaults[SRS(epsg)] = bbox
self.defaults = defaults
return self.defaults[key]
default_bboxs = _default_bboxs()
def tile_grid(srs=None, bbox=None, bbox_srs=None, tile_size=(256, 256),
res=None, res_factor=2.0, threshold_res=None,
num_levels=None, min_res=None, max_res=None,
stretch_factor=1.15, max_shrink_factor=4.0,
align_with=None, origin='ll', name=None
):
"""
This function creates a new TileGrid.
"""
if srs is None: srs = 'EPSG:900913'
srs = SRS(srs)
if not bbox:
bbox = default_bboxs.get(srs)
if not bbox:
raise ValueError('need a bbox for grid with %s' % srs)
bbox = grid_bbox(bbox, srs=srs, bbox_srs=bbox_srs)
if res:
if isinstance(res, list):
if isinstance(res[0], (tuple, list)):
# named resolutions
res = sorted(res, key=lambda x: x[1], reverse=True)
else:
res = sorted(res, reverse=True)
assert min_res is None
assert max_res is None
assert align_with is None
else:
raise ValueError("res is not a list, use res_factor for float values")
elif align_with is not None:
res = aligned_resolutions(min_res, max_res, res_factor, num_levels, bbox, tile_size,
align_with)
else:
res = resolutions(min_res, max_res, res_factor, num_levels, bbox, tile_size)
origin = origin_from_string(origin)
return TileGrid(srs, bbox=bbox, tile_size=tile_size, res=res, threshold_res=threshold_res,
stretch_factor=stretch_factor, max_shrink_factor=max_shrink_factor,
origin=origin, name=name)
ORIGIN_UL = 'ul'
ORIGIN_LL = 'll'
def origin_from_string(origin):
if origin == None:
origin = ORIGIN_LL
elif origin.lower() in ('ll', 'sw'):
origin = ORIGIN_LL
elif origin.lower() in ('ul', 'nw'):
origin = ORIGIN_UL
else:
raise ValueError("unknown origin value '%s'" % origin)
return origin
def aligned_resolutions(min_res=None, max_res=None, res_factor=2.0, num_levels=None,
bbox=None, tile_size=(256, 256), align_with=None):
alinged_res = align_with.resolutions
res = list(alinged_res)
if not min_res:
width = bbox[2] - bbox[0]
height = bbox[3] - bbox[1]
min_res = max(width/tile_size[0], height/tile_size[1])
res = [r for r in res if r <= min_res]
if max_res:
res = [r for r in res if r >= max_res]
if num_levels:
res = res[:num_levels]
factor_calculated = res[0]/res[1]
if res_factor == 'sqrt2' and round(factor_calculated, 8) != round(math.sqrt(2), 8):
if round(factor_calculated, 8) == 2.0:
new_res = []
for r in res:
new_res.append(r)
new_res.append(r/math.sqrt(2))
res = new_res
elif res_factor == 2.0 and round(factor_calculated, 8) != round(2.0, 8):
if round(factor_calculated, 8) == round(math.sqrt(2), 8):
res = res[::2]
return res
def resolutions(min_res=None, max_res=None, res_factor=2.0, num_levels=None,
bbox=None, tile_size=(256, 256)):
if res_factor == 'sqrt2':
res_factor = math.sqrt(2)
res = []
if not min_res:
width = bbox[2] - bbox[0]
height = bbox[3] - bbox[1]
min_res = max(width/tile_size[0], height/tile_size[1])
if max_res:
if num_levels:
res_step = (math.log10(min_res) - math.log10(max_res)) / (num_levels-1)
res = [10**(math.log10(min_res) - res_step*i) for i in range(num_levels)]
else:
res = [min_res]
while True:
next_res = res[-1]/res_factor
if max_res >= next_res:
break
res.append(next_res)
else:
if not num_levels:
num_levels = 20 if res_factor != math.sqrt(2) else 40
res = [min_res]
while len(res) < num_levels:
res.append(res[-1]/res_factor)
return res
def grid_bbox(bbox, bbox_srs, srs):
bbox = bbox_tuple(bbox)
if bbox_srs:
bbox = SRS(bbox_srs).transform_bbox_to(srs, bbox)
return bbox
def bbox_tuple(bbox):
"""
>>> bbox_tuple('20,-30,40,-10')
(20.0, -30.0, 40.0, -10.0)
>>> bbox_tuple([20,-30,40,-10])
(20.0, -30.0, 40.0, -10.0)
"""
if isinstance(bbox, string_type):
bbox = bbox.split(',')
bbox = tuple(map(float, bbox))
return bbox
def bbox_width(bbox):
return bbox[2] - bbox[0]
def bbox_height(bbox):
return bbox[3] - bbox[1]
def bbox_size(bbox):
return bbox_width(bbox), bbox_height(bbox)
class NamedGridList(ImmutableDictList):
def __init__(self, items):
tmp = []
for i, value in enumerate(items):
if isinstance(value, (tuple, list)):
name, value = value
else:
name = str('%02d' % i)
tmp.append((name, value))
ImmutableDictList.__init__(self, tmp)
class TileGrid(object):
"""
This class represents a regular tile grid. The first level (0) contains a single
tile, the origin is bottom-left.
:ivar levels: the number of levels
:ivar tile_size: the size of each tile in pixel
:type tile_size: ``int(with), int(height)``
:ivar srs: the srs of the grid
:type srs: `SRS`
:ivar bbox: the bbox of the grid, tiles may overlap this bbox
"""
spheroid_a = 6378137.0 # for 900913
flipped_y_axis = False
def __init__(self, srs=900913, bbox=None, tile_size=(256, 256), res=None,
threshold_res=None, is_geodetic=False, levels=None,
stretch_factor=1.15, max_shrink_factor=4.0, origin='ll',
name=None):
"""
:param stretch_factor: allow images to be scaled up by this factor
before the next level will be selected
:param max_shrink_factor: allow images to be scaled down by this
factor before NoTiles is raised
>>> grid = TileGrid(srs=900913)
>>> [round(x, 2) for x in grid.bbox]
[-20037508.34, -20037508.34, 20037508.34, 20037508.34]
"""
if isinstance(srs, (int, string_type)):
srs = SRS(srs)
self.srs = srs
self.tile_size = tile_size
self.origin = origin_from_string(origin)
self.name = name
if self.origin == 'ul':
self.flipped_y_axis = True
self.is_geodetic = is_geodetic
self.stretch_factor = stretch_factor
self.max_shrink_factor = max_shrink_factor
if levels is None:
self.levels = 20
else:
self.levels = levels
if bbox is None:
bbox = self._calc_bbox()
self.bbox = bbox
factor = None
if res is None:
factor = 2.0
res = self._calc_res(factor=factor)
elif res == 'sqrt2':
if levels is None:
self.levels = 40
factor = math.sqrt(2)
res = self._calc_res(factor=factor)
elif is_float(res):
factor = float(res)
res = self._calc_res(factor=factor)
self.levels = len(res)
self.resolutions = NamedGridList(res)
self.threshold_res = None
if threshold_res:
self.threshold_res = sorted(threshold_res)
self.grid_sizes = self._calc_grids()
def _calc_grids(self):
width = self.bbox[2] - self.bbox[0]
height = self.bbox[3] - self.bbox[1]
grids = []
for idx, res in self.resolutions.iteritems():
x = max(math.ceil(width // res / self.tile_size[0]), 1)
y = max(math.ceil(height // res / self.tile_size[1]), 1)
grids.append((idx, (int(x), int(y))))
return NamedGridList(grids)
def _calc_bbox(self):
if self.is_geodetic:
return (-180.0, -90.0, 180.0, 90.0)
else:
circum = 2 * math.pi * self.spheroid_a
offset = circum / 2.0
return (-offset, -offset, offset, offset)
def _calc_res(self, factor=None):
width = self.bbox[2] - self.bbox[0]
height = self.bbox[3] - self.bbox[1]
initial_res = max(width/self.tile_size[0], height/self.tile_size[1])
if factor is None:
return pyramid_res_level(initial_res, levels=self.levels)
else:
return pyramid_res_level(initial_res, factor, levels=self.levels)
def resolution(self, level):
"""
Returns the resolution of the `level` in units/pixel.
:param level: the zoom level index (zero is top)
>>> grid = TileGrid(SRS(900913))
>>> '%.5f' % grid.resolution(0)
'156543.03393'
>>> '%.5f' % grid.resolution(1)
'78271.51696'
>>> '%.5f' % grid.resolution(4)
'9783.93962'
"""
return self.resolutions[level]
def closest_level(self, res):
"""
Returns the level index that offers the required resolution.
:param res: the required resolution
:returns: the level with the requested or higher resolution
>>> grid = TileGrid(SRS(900913))
>>> grid.stretch_factor = 1.1
>>> l1_res = grid.resolution(1)
>>> [grid.closest_level(x) for x in (320000.0, 160000.0, l1_res+50, l1_res, \
l1_res-50, l1_res*0.91, l1_res*0.89, 8000.0)]
[0, 0, 1, 1, 1, 1, 2, 5]
"""
prev_l_res = self.resolutions[0]
threshold = None
thresholds = []
if self.threshold_res:
thresholds = self.threshold_res[:]
threshold = thresholds.pop()
# skip thresholds above first res
while threshold > prev_l_res and thresholds:
threshold = thresholds.pop()
threshold_result = None
for level, l_res in enumerate(self.resolutions):
if threshold and prev_l_res > threshold >= l_res:
if res > threshold:
return level-1
elif res >= l_res:
return level
threshold = thresholds.pop() if thresholds else None
if threshold_result is not None:
# Use previous level that was within stretch_factor,
# but only if this level res is smaller then res.
# This fixes selection for resolutions that are closer together then stretch_factor.
#
if l_res < res:
return threshold_result
if l_res <= res*self.stretch_factor:
# l_res within stretch_factor
# remember this level, check for thresholds or better res in next loop
threshold_result = level
prev_l_res = l_res
return level
def tile(self, x, y, level):
"""
Returns the tile id for the given point.
>>> grid = TileGrid(SRS(900913))
>>> grid.tile(1000, 1000, 0)
(0, 0, 0)
>>> grid.tile(1000, 1000, 1)
(1, 1, 1)
>>> grid = TileGrid(SRS(900913), tile_size=(512, 512))
>>> grid.tile(1000, 1000, 2)
(2, 2, 2)
"""
res = self.resolution(level)
x = x - self.bbox[0]
if self.flipped_y_axis:
y = self.bbox[3] - y
else:
y = y - self.bbox[1]
tile_x = x/float(res*self.tile_size[0])
tile_y = y/float(res*self.tile_size[1])
return (int(math.floor(tile_x)), int(math.floor(tile_y)), level)
def flip_tile_coord(self, tile_coord):
"""
Flip the tile coord on the y-axis. (Switch between bottom-left and top-left
origin.)
>>> grid = TileGrid(SRS(900913))
>>> grid.flip_tile_coord((0, 1, 1))
(0, 0, 1)
>>> grid.flip_tile_coord((1, 3, 2))
(1, 0, 2)
"""
(x, y, z) = tile_coord
return (x, self.grid_sizes[z][1]-1-y, z)
def supports_access_with_origin(self, origin):
if origin_from_string(origin) == self.origin:
return True
# check for each level if the top and bottom coordinates of the tiles
# match the bbox of the grid. only in this case we can flip y-axis
# without any issues
# allow for some rounding errors in the _tiles_bbox calculations
delta = max(abs(self.bbox[1]), abs(self.bbox[3])) / 1e12
for level, grid_size in enumerate(self.grid_sizes):
level_bbox = self._tiles_bbox([(0, 0, level),
(grid_size[0] - 1, grid_size[1] - 1, level)])
if abs(self.bbox[1] - level_bbox[1]) > delta or abs(self.bbox[3] - level_bbox[3]) > delta:
return False
return True
def origin_tile(self, level, origin):
assert self.supports_access_with_origin(origin), 'tile origins are incompatible'
tile = (0, 0, level)
if origin_from_string(origin) == self.origin:
return tile
return self.flip_tile_coord(tile)
def get_affected_tiles(self, bbox, size, req_srs=None):
"""
Get a list with all affected tiles for a bbox and output size.
:returns: the bbox, the size and a list with tile coordinates, sorted row-wise
:rtype: ``bbox, (xs, yz), [(x, y, z), ...]``
>>> grid = TileGrid()
>>> bbox = (-20037508.34, -20037508.34, 20037508.34, 20037508.34)
>>> tile_size = (256, 256)
>>> grid.get_affected_tiles(bbox, tile_size)
... #doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
((-20037508.342789244, -20037508.342789244,\
20037508.342789244, 20037508.342789244), (1, 1),\
<generator object ...>)
"""
src_bbox, level = self.get_affected_bbox_and_level(bbox, size, req_srs=req_srs)
return self.get_affected_level_tiles(src_bbox, level)
def get_affected_bbox_and_level(self, bbox, size, req_srs=None):
if req_srs and req_srs != self.srs:
src_bbox = req_srs.transform_bbox_to(self.srs, bbox)
else:
src_bbox = bbox
if not bbox_intersects(self.bbox, src_bbox):
raise NoTiles()
res = get_resolution(src_bbox, size)
level = self.closest_level(res)
if res > self.resolutions[0]*self.max_shrink_factor:
raise NoTiles()
return src_bbox, level
def get_affected_level_tiles(self, bbox, level):
"""
Get a list with all affected tiles for a `bbox` in the given `level`.
:returns: the bbox, the size and a list with tile coordinates, sorted row-wise
:rtype: ``bbox, (xs, yz), [(x, y, z), ...]``
>>> grid = TileGrid()
>>> bbox = (-20037508.34, -20037508.34, 20037508.34, 20037508.34)
>>> grid.get_affected_level_tiles(bbox, 0)
... #doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
((-20037508.342789244, -20037508.342789244,\
20037508.342789244, 20037508.342789244), (1, 1),\
<generator object ...>)
"""
# remove 1/10 of a pixel so we don't get a tiles we only touch
delta = self.resolutions[level] / 10.0
x0, y0, _ = self.tile(bbox[0]+delta, bbox[1]+delta, level)
x1, y1, _ = self.tile(bbox[2]-delta, bbox[3]-delta, level)
try:
return self._tile_iter(x0, y0, x1, y1, level)
except IndexError:
raise GridError('Invalid BBOX')
def _tile_iter(self, x0, y0, x1, y1, level):
xs = list(range(x0, x1+1))
if self.flipped_y_axis:
y0, y1 = y1, y0
ys = list(range(y0, y1+1))
else:
ys = list(range(y1, y0-1, -1))
ll = (xs[0], ys[-1], level)
ur = (xs[-1], ys[0], level)
abbox = self._tiles_bbox([ll, ur])
return (abbox, (len(xs), len(ys)),
_create_tile_list(xs, ys, level, self.grid_sizes[level]))
def _tiles_bbox(self, tiles):
"""
Returns the bbox of multiple tiles.
The tiles should be ordered row-wise, bottom-up.
:param tiles: ordered list of tiles
:returns: the bbox of all tiles
"""
ll_bbox = self.tile_bbox(tiles[0])
ur_bbox = self.tile_bbox(tiles[-1])
return merge_bbox(ll_bbox, ur_bbox)
def tile_bbox(self, tile_coord, limit=False):
"""
Returns the bbox of the given tile.
>>> grid = TileGrid(SRS(900913))
>>> [round(x, 2) for x in grid.tile_bbox((0, 0, 0))]
[-20037508.34, -20037508.34, 20037508.34, 20037508.34]
>>> [round(x, 2) for x in grid.tile_bbox((1, 1, 1))]
[0.0, 0.0, 20037508.34, 20037508.34]
"""
x, y, z = tile_coord
res = self.resolution(z)
x0 = self.bbox[0] + round(x * res * self.tile_size[0], 12)
x1 = x0 + round(res * self.tile_size[0], 12)
if self.flipped_y_axis:
y1 = self.bbox[3] - round(y * res * self.tile_size[1], 12)
y0 = y1 - round(res * self.tile_size[1], 12)
else:
y0 = self.bbox[1] + round(y * res * self.tile_size[1], 12)
y1 = y0 + round(res * self.tile_size[1], 12)
if limit:
return (
max(x0, self.bbox[0]),
max(y0, self.bbox[1]),
min(x1, self.bbox[2]),
min(y1, self.bbox[3])
)
return x0, y0, x1, y1
def limit_tile(self, tile_coord):
"""
Check if the `tile_coord` is in the grid.
:returns: the `tile_coord` if it is within the ``grid``,
otherwise ``None``.
>>> grid = TileGrid(SRS(900913))
>>> grid.limit_tile((-1, 0, 2)) == None
True
>>> grid.limit_tile((1, 2, 1)) == None
True
>>> grid.limit_tile((1, 2, 2))
(1, 2, 2)
"""
x, y, z = tile_coord
if isinstance(z, string_type):
if z not in self.grid_sizes:
return None
elif z < 0 or z >= self.levels:
return None
grid = self.grid_sizes[z]
if x < 0 or y < 0 or x >= grid[0] or y >= grid[1]:
return None
return x, y, z
def __repr__(self):
return '%s(%r, (%.4f, %.4f, %.4f, %.4f),...)' % (self.__class__.__name__,
self.srs, self.bbox[0], self.bbox[1], self.bbox[2], self.bbox[3])
def is_subset_of(self, other):
"""
Returns ``True`` if every tile in `self` is present in `other`.
Tile coordinates might differ and `other` may contain more
tiles (more levels, larger bbox).
"""
if self.srs != other.srs:
return False
if self.tile_size != other.tile_size:
return False
# check if all level tiles from self align with (affected)
# tiles from other
for self_level, self_level_res in self.resolutions.iteritems():
level_size = (
self.grid_sizes[self_level][0] * self.tile_size[0],
self.grid_sizes[self_level][1] * self.tile_size[1]
)
level_bbox = self._tiles_bbox([
(0, 0, self_level),
(self.grid_sizes[self_level][0] - 1, self.grid_sizes[self_level][1] - 1, self_level)
])
try:
bbox, level = other.get_affected_bbox_and_level(level_bbox, level_size)
except NoTiles:
return False
try:
bbox, grid_size, tiles = other.get_affected_level_tiles(level_bbox, level)
except GridError:
return False
if other.resolution(level) != self_level_res:
return False
if not bbox_equals(bbox, level_bbox):
return False
return True
def _create_tile_list(xs, ys, level, grid_size):
"""
Returns an iterator tile_coords for the given tile ranges (`xs` and `ys`).
If the one tile_coord is negative or out of the `grid_size` bound,
the coord is None.
"""
x_limit = grid_size[0]
y_limit = grid_size[1]
for y in ys:
for x in xs:
if x < 0 or y < 0 or x >= x_limit or y >= y_limit:
yield None
else:
yield x, y, level
def is_float(x):
try:
float(x)
return True
except TypeError:
return False
def pyramid_res_level(initial_res, factor=2.0, levels=20):
"""
Return resolutions of an image pyramid.
:param initial_res: the resolution of the top level (0)
:param factor: the factor between each level, for tms access 2
:param levels: number of resolutions to generate
>>> list(pyramid_res_level(10000, levels=5))
[10000.0, 5000.0, 2500.0, 1250.0, 625.0]
>>> [round(x, 4) for x in
... pyramid_res_level(10000, factor=1/0.75, levels=5)]
[10000.0, 7500.0, 5625.0, 4218.75, 3164.0625]
"""
return [initial_res/factor**n for n in range(levels)]
class MetaGrid(object):
"""
This class contains methods to calculate bbox, etc. of metatiles.
:param grid: the grid to use for the metatiles
:param meta_size: the number of tiles a metatile consist
:type meta_size: ``(x_size, y_size)``
:param meta_buffer: the buffer size in pixel that is added to each metatile.
the number is added to all four borders.
this buffer may improve the handling of lables overlapping (meta)tile borders.
:type meta_buffer: pixel
"""
def __init__(self, grid, meta_size, meta_buffer=0):
self.grid = grid
self.meta_size = meta_size or 0
self.meta_buffer = meta_buffer
def _meta_bbox(self, tile_coord=None, tiles=None, limit_to_bbox=True):
"""
Returns the bbox of the metatile that contains `tile_coord`.
:type tile_coord: ``(x, y, z)``
>>> mgrid = MetaGrid(grid=TileGrid(), meta_size=(2, 2))
>>> [round(x, 2) for x in mgrid._meta_bbox((0, 0, 2))[0]]
[-20037508.34, -20037508.34, 0.0, 0.0]
>>> mgrid = MetaGrid(grid=TileGrid(), meta_size=(2, 2))
>>> [round(x, 2) for x in mgrid._meta_bbox((0, 0, 0))[0]]
[-20037508.34, -20037508.34, 20037508.34, 20037508.34]
"""
if tiles:
assert tile_coord is None
level = tiles[0][2]
bbox = self.grid._tiles_bbox(tiles)
else:
level = tile_coord[2]
bbox = self.unbuffered_meta_bbox(tile_coord)
return self._buffered_bbox(bbox, level, limit_to_bbox)
def unbuffered_meta_bbox(self, tile_coord):
x, y, z = tile_coord
meta_size = self._meta_size(z)
return self.grid._tiles_bbox([(tile_coord),
(x+meta_size[0]-1, y+meta_size[1]-1, z)])
def _buffered_bbox(self, bbox, level, limit_to_grid_bbox=True):
minx, miny, maxx, maxy = bbox
buffers = (0, 0, 0, 0)
if self.meta_buffer > 0:
res = self.grid.resolution(level)
minx -= self.meta_buffer * res
miny -= self.meta_buffer * res
maxx += self.meta_buffer * res
maxy += self.meta_buffer * res
buffers = [self.meta_buffer, self.meta_buffer, self.meta_buffer, self.meta_buffer]
if limit_to_grid_bbox:
if self.grid.bbox[0] > minx:
delta = self.grid.bbox[0] - minx
buffers[0] = buffers[0] - int(round(delta / res, 5))
minx = self.grid.bbox[0]
if self.grid.bbox[1] > miny:
delta = self.grid.bbox[1] - miny
buffers[1] = buffers[1] - int(round(delta / res, 5))
miny = self.grid.bbox[1]
if self.grid.bbox[2] < maxx:
delta = maxx - self.grid.bbox[2]
buffers[2] = buffers[2] - int(round(delta / res, 5))
maxx = self.grid.bbox[2]
if self.grid.bbox[3] < maxy:
delta = maxy - self.grid.bbox[3]
buffers[3] = buffers[3] - int(round(delta / res, 5))
maxy = self.grid.bbox[3]
return (minx, miny, maxx, maxy), tuple(buffers)
def meta_tile(self, tile_coord):
"""
Returns the meta tile for `tile_coord`.
"""
tile_coord = self.main_tile(tile_coord)
level = tile_coord[2]
bbox, buffers = self._meta_bbox(tile_coord)
grid_size = self._meta_size(level)
size = self._size_from_buffered_bbox(bbox, level)
tile_patterns = self._tiles_pattern(tile=tile_coord, grid_size=grid_size, buffers=buffers)
return MetaTile(bbox=bbox, size=size, tile_patterns=tile_patterns,
grid_size=grid_size
)
def minimal_meta_tile(self, tiles):
"""
Returns a MetaTile that contains all `tiles` plus ``meta_buffer``,
but nothing more.
"""
tiles, grid_size, bounds = self._full_tile_list(tiles)
tiles = list(tiles)
bbox, buffers = self._meta_bbox(tiles=bounds)
level = tiles[0][2]
size = self._size_from_buffered_bbox(bbox, level)
tile_pattern = self._tiles_pattern(tiles=tiles, grid_size=grid_size, buffers=buffers)
return MetaTile(
bbox=bbox,
size=size,
tile_patterns=tile_pattern,
grid_size=grid_size,
)
def _size_from_buffered_bbox(self, bbox, level):
# meta_size * tile_size + 2*buffer does not work,
# since the buffer can get truncated at the grid border
res = self.grid.resolution(level)
width = int(round((bbox[2] - bbox[0]) / res))
height = int(round((bbox[3] - bbox[1]) / res))
return width, height
def _full_tile_list(self, tiles):
"""
Return a complete list of all tiles that a minimal meta tile with `tiles` contains.
>>> mgrid = MetaGrid(grid=TileGrid(), meta_size=(2, 2))
>>> mgrid._full_tile_list([(0, 0, 2), (1, 1, 2)])
([(0, 1, 2), (1, 1, 2), (0, 0, 2), (1, 0, 2)], (2, 2), ((0, 0, 2), (1, 1, 2)))
"""
tile = tiles.pop()
z = tile[2]
minx = maxx = tile[0]
miny = maxy = tile[1]
for tile in tiles:
x, y = tile[:2]
minx = min(minx, x)
maxx = max(maxx, x)
miny = min(miny, y)
maxy = max(maxy, y)
grid_size = 1+maxx-minx, 1+maxy-miny
if self.grid.flipped_y_axis:
ys = range(miny, maxy+1)
else:
ys = range(maxy, miny-1, -1)
xs = range(minx, maxx+1)
bounds = (minx, miny, z), (maxx, maxy, z)
return list(_create_tile_list(xs, ys, z, (maxx+1, maxy+1))), grid_size, bounds
def main_tile(self, tile_coord):
x, y, z = tile_coord
meta_size = self._meta_size(z)
x0 = x//meta_size[0] * meta_size[0]
y0 = y//meta_size[1] * meta_size[1]
return x0, y0, z
def tile_list(self, main_tile):
tile_grid = self._meta_size(main_tile[2])
return self._meta_tile_list(main_tile, tile_grid)
def _meta_tile_list(self, main_tile, tile_grid):
"""
>>> mgrid = MetaGrid(grid=TileGrid(), meta_size=(2, 2))
>>> mgrid._meta_tile_list((0, 1, 3), (2, 2))
[(0, 1, 3), (1, 1, 3), (0, 0, 3), (1, 0, 3)]
"""
minx, miny, z = self.main_tile(main_tile)
maxx = minx + tile_grid[0] - 1
maxy = miny + tile_grid[1] - 1
if self.grid.flipped_y_axis:
ys = range(miny, maxy+1)
else:
ys = range(maxy, miny-1, -1)
xs = range(minx, maxx+1)
return list(_create_tile_list(xs, ys, z, self.grid.grid_sizes[z]))
def _tiles_pattern(self, grid_size, buffers, tile=None, tiles=None):
"""
Returns the tile pattern for the given list of tiles.
The result contains for each tile the ``tile_coord`` and the upper-left
pixel coordinate of the tile in the meta tile image.
>>> mgrid = MetaGrid(grid=TileGrid(), meta_size=(2, 2))
>>> tiles = list(mgrid._tiles_pattern(tiles=[(0, 1, 2), (1, 1, 2)],
... grid_size=(2, 1),
... buffers=(0, 0, 10, 10)))
>>> tiles[0], tiles[-1]
(((0, 1, 2), (0, 10)), ((1, 1, 2), (256, 10)))
>>> tiles = list(mgrid._tiles_pattern(tile=(1, 1, 2),
... grid_size=(2, 2),
... buffers=(10, 20, 30, 40)))
>>> tiles[0], tiles[-1]
(((0, 1, 2), (10, 40)), ((1, 0, 2), (266, 296)))
"""
if tile:
tiles = self._meta_tile_list(tile, grid_size)
for i in range(grid_size[1]):
for j in range(grid_size[0]):
yield tiles[j+i*grid_size[0]], (
j*self.grid.tile_size[0] + buffers[0],
i*self.grid.tile_size[1] + buffers[3])
def _meta_size(self, level):
grid_size = self.grid.grid_sizes[level]
return min(self.meta_size[0], grid_size[0]), min(self.meta_size[1], grid_size[1])
def get_affected_level_tiles(self, bbox, level):
"""
Get a list with all affected tiles for a `bbox` in the given `level`.
:returns: the bbox, the size and a list with tile coordinates, sorted row-wise
:rtype: ``bbox, (xs, yz), [(x, y, z), ...]``
>>> grid = MetaGrid(TileGrid(), (2, 2))
>>> bbox = (-20037508.34, -20037508.34, 20037508.34, 20037508.34)
>>> grid.get_affected_level_tiles(bbox, 0)
... #doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
((-20037508.342789244, -20037508.342789244,\
20037508.342789244, 20037508.342789244), (1, 1),\
<generator object ...>)
"""
# remove 1/10 of a pixel so we don't get a tiles we only touch
delta = self.grid.resolutions[level] / 10.0
x0, y0, _ = self.grid.tile(bbox[0]+delta, bbox[1]+delta, level)
x1, y1, _ = self.grid.tile(bbox[2]-delta, bbox[3]-delta, level)
meta_size = self._meta_size(level)
x0 = x0//meta_size[0] * meta_size[0]
x1 = x1//meta_size[0] * meta_size[0]
y0 = y0//meta_size[1] * meta_size[1]
y1 = y1//meta_size[1] * meta_size[1]
try:
return self._tile_iter(x0, y0, x1, y1, level)
except IndexError:
raise GridError('Invalid BBOX')
def _tile_iter(self, x0, y0, x1, y1, level):
meta_size = self._meta_size(level)
xs = list(range(x0, x1+1, meta_size[0]))
if self.grid.flipped_y_axis:
y0, y1 = y1, y0
ys = list(range(y0, y1+1, meta_size[1]))
else:
ys = list(range(y1, y0-1, -meta_size[1]))
ll = (xs[0], ys[-1], level)
ur = (xs[-1], ys[0], level)
# add meta_size to get full affected bbox
ur = ur[0]+meta_size[0]-1, ur[1]+meta_size[1]-1, ur[2]
abbox = self.grid._tiles_bbox([ll, ur])
return (abbox, (len(xs), len(ys)),
_create_tile_list(xs, ys, level, self.grid.grid_sizes[level]))
class MetaTile(object):
def __init__(self, bbox, size, tile_patterns, grid_size):
self.bbox = bbox
self.size = size
self.tile_patterns = list(tile_patterns)
self.grid_size = grid_size
@property
def tiles(self):
return [t[0] for t in self.tile_patterns]
@property
def main_tile_coord(self):
"""
Returns the "main" tile of the meta tile. This tile(coord) can be used
for locking.
>>> t = MetaTile(None, None, [((0, 0, 0), (0, 0)), ((1, 0, 0), (100, 0))], (2, 1))
>>> t.main_tile_coord
(0, 0, 0)
>>> t = MetaTile(None, None, [(None, None), ((1, 0, 0), (100, 0))], (2, 1))
>>> t.main_tile_coord
(1, 0, 0)
"""
for t in self.tiles:
if t is not None:
return t
def __repr__(self):
return "MetaTile(%r, %r, %r, %r)" % (self.bbox, self.size, self.grid_size,
self.tile_patterns)
def bbox_intersects(one, two):
a_x0, a_y0, a_x1, a_y1 = one
b_x0, b_y0, b_x1, b_y1 = two
if (
a_x0 < b_x1 and
a_x1 > b_x0 and
a_y0 < b_y1 and
a_y1 > b_y0
): return True
return False
def bbox_contains(one, two):
"""
Returns ``True`` if `one` contains `two`.
>>> bbox_contains([0, 0, 10, 10], [2, 2, 4, 4])
True
>>> bbox_contains([0, 0, 10, 10], [0, 0, 11, 10])
False
Allow tiny rounding errors:
>>> bbox_contains([0, 0, 10, 10], [0.000001, 0.0000001, 10.000001, 10.000001])
False
>>> bbox_contains([0, 0, 10, 10], [0.0000000000001, 0.0000000000001, 10.0000000000001, 10.0000000000001])
True
"""
a_x0, a_y0, a_x1, a_y1 = one
b_x0, b_y0, b_x1, b_y1 = two
x_delta = abs(a_x1 - a_x0) / 10e12
y_delta = abs(a_y1 - a_y0) / 10e12
if (
a_x0 <= b_x0 + x_delta and
a_x1 >= b_x1 - x_delta and
a_y0 <= b_y0 + y_delta and
a_y1 >= b_y1 - y_delta
): return True
return False
def deg_to_m(deg):
return deg * (6378137 * 2 * math.pi) / 360
OGC_PIXEL_SIZE = 0.00028 #m/px
def ogc_scale_to_res(scale):
return scale * OGC_PIXEL_SIZE
def res_to_ogc_scale(res):
return res / OGC_PIXEL_SIZE
def resolution_range(min_res=None, max_res=None, max_scale=None, min_scale=None):
if min_scale == max_scale == min_res == max_res == None:
return None
if min_res or max_res:
if not max_scale and not min_scale:
return ResolutionRange(min_res, max_res)
elif max_scale or min_scale:
if not min_res and not max_res:
min_res = ogc_scale_to_res(max_scale)
max_res = ogc_scale_to_res(min_scale)
return ResolutionRange(min_res, max_res)
raise ValueError('requires either min_res/max_res or max_scale/min_scale')
class ResolutionRange(object):
def __init__(self, min_res, max_res):
self.min_res = min_res
self.max_res = max_res
if min_res and max_res:
assert min_res > max_res
def scale_denominator(self):
min_scale = res_to_ogc_scale(self.max_res) if self.max_res else None
max_scale = res_to_ogc_scale(self.min_res) if self.min_res else None
return min_scale, max_scale
def scale_hint(self):
"""
Returns the min and max diagonal resolution.
"""
min_res = self.min_res
max_res = self.max_res
if min_res:
min_res = math.sqrt(2*min_res**2)
if max_res:
max_res = math.sqrt(2*max_res**2)
return min_res, max_res
def contains(self, bbox, size, srs):
width, height = bbox_size(bbox)
if srs.is_latlong:
width = deg_to_m(width)
height = deg_to_m(height)
x_res = width/size[0]
y_res = height/size[1]
if self.min_res:
min_res = self.min_res + 1e-6
if min_res <= x_res or min_res <= y_res:
return False
if self.max_res:
max_res = self.max_res
if max_res > x_res or max_res > y_res:
return False
return True
def __eq__(self, other):
if not isinstance(other, ResolutionRange):
return NotImplemented
return (self.min_res == other.min_res
and self.max_res == other.max_res)
def __ne__(self, other):
if not isinstance(other, ResolutionRange):
return NotImplemented
return not self == other
def __repr__(self):
return '<ResolutionRange(min_res=%.3f, max_res=%.3f)>' % (
self.min_res or 9e99, self.max_res or 0)
def max_with_none(a, b):
if a is None or b is None:
return None
else:
return max(a, b)
def min_with_none(a, b):
if a is None or b is None:
return None
else:
return min(a, b)
def merge_resolution_range(a, b):
if a and b:
return resolution_range(min_res=max_with_none(a.min_res, b.min_res),
max_res=min_with_none(a.max_res, b.max_res))
return None
|