This file is indexed.

/usr/lib/python3/dist-packages/mapproxy/grid.py is in python3-mapproxy 1.11.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
# This file is part of the MapProxy project.
# Copyright (C) 2010 Omniscale <http://omniscale.de>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
(Meta-)Tile grids (data and calculations).
"""
from __future__ import division
import math

from mapproxy.srs import SRS, get_epsg_num, merge_bbox, bbox_equals
from mapproxy.util.collections import ImmutableDictList
from mapproxy.compat import string_type, iteritems

geodetic_epsg_codes = [4326]

class GridError(Exception):
    pass

class NoTiles(GridError):
    pass

def get_resolution(bbox, size):
    """
    Calculate the highest resolution needed to draw the bbox
    into an image with given size.

    >>> get_resolution((-180,-90,180,90), (256, 256))
    0.703125

    :returns: the resolution
    :rtype: float
    """
    w = abs(bbox[0] - bbox[2])
    h = abs(bbox[1] - bbox[3])
    return min(w/size[0], h/size[1])

def tile_grid_for_epsg(epsg, bbox=None, tile_size=(256, 256), res=None):
    """
    Create a tile grid that matches the given epsg code:

    :param epsg: the epsg code
    :type epsg: 'EPSG:0000', '0000' or 0000
    :param bbox: the bbox of the grid
    :param tile_size: the size of each tile
    :param res: a list with all resolutions
    """
    epsg = get_epsg_num(epsg)
    if epsg in geodetic_epsg_codes:
        return TileGrid(epsg, is_geodetic=True, bbox=bbox, tile_size=tile_size, res=res)
    return TileGrid(epsg, bbox=bbox, tile_size=tile_size, res=res)


# defer loading of default bbox since custom proj settings
# are not loaded on import time
class _default_bboxs(object):
    _defaults = {
        4326: (-180, -90, 180, 90),
    }
    for epsg_num in (900913, 3857, 102100, 102113):
        _defaults[epsg_num] = (-20037508.342789244,
                                -20037508.342789244,
                                20037508.342789244,
                                20037508.342789244)
    defaults = None
    def get(self, key, default=None):
        try:
            return self[key]
        except KeyError:
            return default
    def __getitem__(self, key):
        if self.defaults is None:
            defaults = {}
            for epsg, bbox in iteritems(self._defaults):
                defaults[SRS(epsg)] = bbox
            self.defaults = defaults
        return self.defaults[key]
default_bboxs = _default_bboxs()

def tile_grid(srs=None, bbox=None, bbox_srs=None, tile_size=(256, 256),
              res=None, res_factor=2.0, threshold_res=None,
              num_levels=None, min_res=None, max_res=None,
              stretch_factor=1.15, max_shrink_factor=4.0,
              align_with=None, origin='ll', name=None
              ):
    """
    This function creates a new TileGrid.
    """
    if srs is None: srs = 'EPSG:900913'
    srs = SRS(srs)

    if not bbox:
        bbox = default_bboxs.get(srs)
        if not bbox:
            raise ValueError('need a bbox for grid with %s' % srs)

    bbox = grid_bbox(bbox, srs=srs, bbox_srs=bbox_srs)

    if res:
        if isinstance(res, list):
            if isinstance(res[0], (tuple, list)):
                # named resolutions
                res = sorted(res, key=lambda x: x[1], reverse=True)
            else:
                res = sorted(res, reverse=True)
            assert min_res is None
            assert max_res is None
            assert align_with is None
        else:
            raise ValueError("res is not a list, use res_factor for float values")


    elif align_with is not None:
        res = aligned_resolutions(min_res, max_res, res_factor, num_levels, bbox, tile_size,
                                  align_with)
    else:
        res = resolutions(min_res, max_res, res_factor, num_levels, bbox, tile_size)

    origin = origin_from_string(origin)

    return TileGrid(srs, bbox=bbox, tile_size=tile_size, res=res, threshold_res=threshold_res,
                    stretch_factor=stretch_factor, max_shrink_factor=max_shrink_factor,
                    origin=origin, name=name)

ORIGIN_UL = 'ul'
ORIGIN_LL = 'll'

def origin_from_string(origin):
    if origin == None:
        origin = ORIGIN_LL
    elif origin.lower() in ('ll', 'sw'):
        origin = ORIGIN_LL
    elif origin.lower() in ('ul', 'nw'):
        origin =  ORIGIN_UL
    else:
        raise ValueError("unknown origin value '%s'" % origin)
    return origin

def aligned_resolutions(min_res=None, max_res=None, res_factor=2.0, num_levels=None,
                bbox=None, tile_size=(256, 256), align_with=None):


    alinged_res = align_with.resolutions
    res = list(alinged_res)

    if not min_res:
        width = bbox[2] - bbox[0]
        height = bbox[3] - bbox[1]
        min_res = max(width/tile_size[0], height/tile_size[1])

    res = [r for r in res if r <= min_res]

    if max_res:
        res = [r for r in res if r >= max_res]

    if num_levels:
        res = res[:num_levels]

    factor_calculated = res[0]/res[1]
    if res_factor == 'sqrt2' and round(factor_calculated, 8) != round(math.sqrt(2), 8):
        if round(factor_calculated, 8) == 2.0:
            new_res = []
            for r in res:
                new_res.append(r)
                new_res.append(r/math.sqrt(2))
            res = new_res
    elif res_factor == 2.0 and round(factor_calculated, 8) != round(2.0, 8):
        if round(factor_calculated, 8) == round(math.sqrt(2), 8):
            res = res[::2]
    return res


def resolutions(min_res=None, max_res=None, res_factor=2.0, num_levels=None,
                bbox=None, tile_size=(256, 256)):
    if res_factor == 'sqrt2':
        res_factor = math.sqrt(2)

    res = []
    if not min_res:
        width = bbox[2] - bbox[0]
        height = bbox[3] - bbox[1]
        min_res = max(width/tile_size[0], height/tile_size[1])

    if max_res:
        if num_levels:
            res_step = (math.log10(min_res) - math.log10(max_res)) / (num_levels-1)
            res = [10**(math.log10(min_res) - res_step*i) for i in range(num_levels)]
        else:
            res = [min_res]
            while True:
                next_res = res[-1]/res_factor
                if max_res >= next_res:
                    break
                res.append(next_res)
    else:
        if not num_levels:
            num_levels = 20 if res_factor != math.sqrt(2) else 40
        res = [min_res]
        while len(res) < num_levels:
            res.append(res[-1]/res_factor)

    return res

def grid_bbox(bbox, bbox_srs, srs):
    bbox = bbox_tuple(bbox)
    if bbox_srs:
        bbox = SRS(bbox_srs).transform_bbox_to(srs, bbox)
    return bbox

def bbox_tuple(bbox):
    """
    >>> bbox_tuple('20,-30,40,-10')
    (20.0, -30.0, 40.0, -10.0)
    >>> bbox_tuple([20,-30,40,-10])
    (20.0, -30.0, 40.0, -10.0)

    """
    if isinstance(bbox, string_type):
        bbox = bbox.split(',')
    bbox = tuple(map(float, bbox))
    return bbox



def bbox_width(bbox):
    return bbox[2] - bbox[0]

def bbox_height(bbox):
    return bbox[3] - bbox[1]

def bbox_size(bbox):
    return bbox_width(bbox), bbox_height(bbox)


class NamedGridList(ImmutableDictList):
    def __init__(self, items):
        tmp = []
        for i, value in enumerate(items):
            if isinstance(value, (tuple, list)):
                name, value = value
            else:
                name = str('%02d' % i)
            tmp.append((name, value))
        ImmutableDictList.__init__(self, tmp)

class TileGrid(object):
    """
    This class represents a regular tile grid. The first level (0) contains a single
    tile, the origin is bottom-left.

    :ivar levels: the number of levels
    :ivar tile_size: the size of each tile in pixel
    :type tile_size: ``int(with), int(height)``
    :ivar srs: the srs of the grid
    :type srs: `SRS`
    :ivar bbox: the bbox of the grid, tiles may overlap this bbox
    """

    spheroid_a = 6378137.0 # for 900913
    flipped_y_axis = False

    def __init__(self, srs=900913, bbox=None, tile_size=(256, 256), res=None,
                 threshold_res=None, is_geodetic=False, levels=None,
                 stretch_factor=1.15, max_shrink_factor=4.0, origin='ll',
                 name=None):
        """
        :param stretch_factor: allow images to be scaled up by this factor
            before the next level will be selected
        :param max_shrink_factor: allow images to be scaled down by this
            factor before NoTiles is raised

        >>> grid = TileGrid(srs=900913)
        >>> [round(x, 2) for x in grid.bbox]
        [-20037508.34, -20037508.34, 20037508.34, 20037508.34]
        """
        if isinstance(srs, (int, string_type)):
            srs = SRS(srs)
        self.srs = srs
        self.tile_size = tile_size
        self.origin = origin_from_string(origin)
        self.name = name

        if self.origin == 'ul':
            self.flipped_y_axis = True

        self.is_geodetic = is_geodetic

        self.stretch_factor = stretch_factor
        self.max_shrink_factor = max_shrink_factor

        if levels is None:
            self.levels = 20
        else:
            self.levels = levels

        if bbox is None:
            bbox = self._calc_bbox()
        self.bbox = bbox

        factor = None

        if res is None:
            factor = 2.0
            res = self._calc_res(factor=factor)
        elif res == 'sqrt2':
            if levels is None:
                self.levels = 40
            factor = math.sqrt(2)
            res = self._calc_res(factor=factor)
        elif is_float(res):
            factor = float(res)
            res = self._calc_res(factor=factor)

        self.levels = len(res)
        self.resolutions = NamedGridList(res)

        self.threshold_res = None
        if threshold_res:
            self.threshold_res = sorted(threshold_res)


        self.grid_sizes = self._calc_grids()

    def _calc_grids(self):
        width = self.bbox[2] - self.bbox[0]
        height = self.bbox[3] - self.bbox[1]
        grids = []
        for idx, res in self.resolutions.iteritems():
            x = max(math.ceil(width // res / self.tile_size[0]), 1)
            y = max(math.ceil(height // res / self.tile_size[1]), 1)
            grids.append((idx, (int(x), int(y))))
        return NamedGridList(grids)

    def _calc_bbox(self):
        if self.is_geodetic:
            return (-180.0, -90.0, 180.0, 90.0)
        else:
            circum = 2 * math.pi * self.spheroid_a
            offset = circum / 2.0
            return (-offset, -offset, offset, offset)

    def _calc_res(self, factor=None):
        width = self.bbox[2] - self.bbox[0]
        height = self.bbox[3] - self.bbox[1]
        initial_res = max(width/self.tile_size[0], height/self.tile_size[1])
        if factor is None:
            return pyramid_res_level(initial_res, levels=self.levels)
        else:
            return pyramid_res_level(initial_res, factor, levels=self.levels)

    def resolution(self, level):
        """
        Returns the resolution of the `level` in units/pixel.

        :param level: the zoom level index (zero is top)

        >>> grid = TileGrid(SRS(900913))
        >>> '%.5f' % grid.resolution(0)
        '156543.03393'
        >>> '%.5f' % grid.resolution(1)
        '78271.51696'
        >>> '%.5f' % grid.resolution(4)
        '9783.93962'
        """
        return self.resolutions[level]

    def closest_level(self, res):
        """
        Returns the level index that offers the required resolution.

        :param res: the required resolution
        :returns: the level with the requested or higher resolution

        >>> grid = TileGrid(SRS(900913))
        >>> grid.stretch_factor = 1.1
        >>> l1_res = grid.resolution(1)
        >>> [grid.closest_level(x) for x in (320000.0, 160000.0, l1_res+50, l1_res, \
                                             l1_res-50, l1_res*0.91, l1_res*0.89, 8000.0)]
        [0, 0, 1, 1, 1, 1, 2, 5]
        """
        prev_l_res = self.resolutions[0]
        threshold = None
        thresholds = []
        if self.threshold_res:
            thresholds = self.threshold_res[:]
            threshold = thresholds.pop()
            # skip thresholds above first res
            while threshold > prev_l_res and thresholds:
                threshold = thresholds.pop()

        threshold_result = None
        for level, l_res in enumerate(self.resolutions):
            if threshold and prev_l_res > threshold >= l_res:
                if res > threshold:
                    return level-1
                elif res >= l_res:
                    return level
                threshold = thresholds.pop() if thresholds else None

            if threshold_result is not None:
                # Use previous level that was within stretch_factor,
                # but only if this level res is smaller then res.
                # This fixes selection for resolutions that are closer together then stretch_factor.
                #
                if l_res < res:
                    return threshold_result

            if l_res <= res*self.stretch_factor:
                # l_res within stretch_factor
                # remember this level, check for thresholds or better res in next loop
                threshold_result = level
            prev_l_res = l_res
        return level

    def tile(self, x, y, level):
        """
        Returns the tile id for the given point.

        >>> grid = TileGrid(SRS(900913))
        >>> grid.tile(1000, 1000, 0)
        (0, 0, 0)
        >>> grid.tile(1000, 1000, 1)
        (1, 1, 1)
        >>> grid = TileGrid(SRS(900913), tile_size=(512, 512))
        >>> grid.tile(1000, 1000, 2)
        (2, 2, 2)
        """
        res = self.resolution(level)
        x = x - self.bbox[0]
        if self.flipped_y_axis:
            y = self.bbox[3] - y
        else:
            y = y - self.bbox[1]
        tile_x = x/float(res*self.tile_size[0])
        tile_y = y/float(res*self.tile_size[1])
        return (int(math.floor(tile_x)), int(math.floor(tile_y)), level)

    def flip_tile_coord(self, tile_coord):
        """
        Flip the tile coord on the y-axis. (Switch between bottom-left and top-left
        origin.)

        >>> grid = TileGrid(SRS(900913))
        >>> grid.flip_tile_coord((0, 1, 1))
        (0, 0, 1)
        >>> grid.flip_tile_coord((1, 3, 2))
        (1, 0, 2)
        """
        (x, y, z) = tile_coord
        return (x, self.grid_sizes[z][1]-1-y, z)

    def supports_access_with_origin(self, origin):
        if origin_from_string(origin) == self.origin:
            return True

        # check for each level if the top and bottom coordinates of the tiles
        # match the bbox of the grid. only in this case we can flip y-axis
        # without any issues

        # allow for some rounding errors in the _tiles_bbox calculations
        delta = max(abs(self.bbox[1]), abs(self.bbox[3])) / 1e12

        for level, grid_size in enumerate(self.grid_sizes):
            level_bbox = self._tiles_bbox([(0, 0, level),
                (grid_size[0] - 1, grid_size[1] - 1, level)])

            if abs(self.bbox[1] - level_bbox[1]) > delta or abs(self.bbox[3] - level_bbox[3]) > delta:
                return False
        return True

    def origin_tile(self, level, origin):
        assert self.supports_access_with_origin(origin), 'tile origins are incompatible'
        tile = (0, 0, level)

        if origin_from_string(origin) == self.origin:
            return tile

        return self.flip_tile_coord(tile)

    def get_affected_tiles(self, bbox, size, req_srs=None):
        """
        Get a list with all affected tiles for a bbox and output size.

        :returns: the bbox, the size and a list with tile coordinates, sorted row-wise
        :rtype: ``bbox, (xs, yz), [(x, y, z), ...]``

        >>> grid = TileGrid()
        >>> bbox = (-20037508.34, -20037508.34, 20037508.34, 20037508.34)
        >>> tile_size = (256, 256)
        >>> grid.get_affected_tiles(bbox, tile_size)
        ... #doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
        ((-20037508.342789244, -20037508.342789244,\
          20037508.342789244, 20037508.342789244), (1, 1),\
          <generator object ...>)
        """
        src_bbox, level = self.get_affected_bbox_and_level(bbox, size, req_srs=req_srs)
        return self.get_affected_level_tiles(src_bbox, level)

    def get_affected_bbox_and_level(self, bbox, size, req_srs=None):
        if req_srs and req_srs != self.srs:
            src_bbox = req_srs.transform_bbox_to(self.srs, bbox)
        else:
            src_bbox = bbox

        if not bbox_intersects(self.bbox, src_bbox):
            raise NoTiles()

        res = get_resolution(src_bbox, size)
        level = self.closest_level(res)

        if res > self.resolutions[0]*self.max_shrink_factor:
            raise NoTiles()

        return src_bbox, level

    def get_affected_level_tiles(self, bbox, level):
        """
        Get a list with all affected tiles for a `bbox` in the given `level`.
        :returns: the bbox, the size and a list with tile coordinates, sorted row-wise
        :rtype: ``bbox, (xs, yz), [(x, y, z), ...]``

        >>> grid = TileGrid()
        >>> bbox = (-20037508.34, -20037508.34, 20037508.34, 20037508.34)
        >>> grid.get_affected_level_tiles(bbox, 0)
        ... #doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
        ((-20037508.342789244, -20037508.342789244,\
          20037508.342789244, 20037508.342789244), (1, 1),\
          <generator object ...>)
        """
        # remove 1/10 of a pixel so we don't get a tiles we only touch
        delta = self.resolutions[level] / 10.0
        x0, y0, _ = self.tile(bbox[0]+delta, bbox[1]+delta, level)
        x1, y1, _ = self.tile(bbox[2]-delta, bbox[3]-delta, level)
        try:
            return self._tile_iter(x0, y0, x1, y1, level)
        except IndexError:
            raise GridError('Invalid BBOX')

    def _tile_iter(self, x0, y0, x1, y1, level):
        xs = list(range(x0, x1+1))
        if self.flipped_y_axis:
            y0, y1 = y1, y0
            ys = list(range(y0, y1+1))
        else:
            ys = list(range(y1, y0-1, -1))

        ll = (xs[0], ys[-1], level)
        ur = (xs[-1], ys[0], level)

        abbox = self._tiles_bbox([ll, ur])
        return (abbox, (len(xs), len(ys)),
                _create_tile_list(xs, ys, level, self.grid_sizes[level]))

    def _tiles_bbox(self, tiles):
        """
        Returns the bbox of multiple tiles.
        The tiles should be ordered row-wise, bottom-up.

        :param tiles: ordered list of tiles
        :returns: the bbox of all tiles
        """
        ll_bbox = self.tile_bbox(tiles[0])
        ur_bbox = self.tile_bbox(tiles[-1])
        return merge_bbox(ll_bbox, ur_bbox)

    def tile_bbox(self, tile_coord, limit=False):
        """
        Returns the bbox of the given tile.

        >>> grid = TileGrid(SRS(900913))
        >>> [round(x, 2) for x in grid.tile_bbox((0, 0, 0))]
        [-20037508.34, -20037508.34, 20037508.34, 20037508.34]
        >>> [round(x, 2) for x in grid.tile_bbox((1, 1, 1))]
        [0.0, 0.0, 20037508.34, 20037508.34]
        """
        x, y, z = tile_coord
        res = self.resolution(z)

        x0 = self.bbox[0] + round(x * res * self.tile_size[0], 12)
        x1 = x0 + round(res * self.tile_size[0], 12)

        if self.flipped_y_axis:
            y1 = self.bbox[3] - round(y * res * self.tile_size[1], 12)
            y0 = y1 - round(res * self.tile_size[1], 12)
        else:
            y0 = self.bbox[1] + round(y * res * self.tile_size[1], 12)
            y1 = y0 + round(res * self.tile_size[1], 12)

        if limit:
            return (
                max(x0, self.bbox[0]),
                max(y0, self.bbox[1]),
                min(x1, self.bbox[2]),
                min(y1, self.bbox[3])
            )

        return x0, y0, x1, y1

    def limit_tile(self, tile_coord):
        """
        Check if the `tile_coord` is in the grid.

        :returns: the `tile_coord` if it is within the ``grid``,
                  otherwise ``None``.

        >>> grid = TileGrid(SRS(900913))
        >>> grid.limit_tile((-1, 0, 2)) == None
        True
        >>> grid.limit_tile((1, 2, 1)) == None
        True
        >>> grid.limit_tile((1, 2, 2))
        (1, 2, 2)
        """
        x, y, z = tile_coord
        if isinstance(z, string_type):
            if z not in self.grid_sizes:
                return None
        elif z < 0 or z >= self.levels:
            return None
        grid = self.grid_sizes[z]
        if x < 0 or y < 0 or x >= grid[0] or y >= grid[1]:
            return None
        return x, y, z

    def __repr__(self):
        return '%s(%r, (%.4f, %.4f, %.4f, %.4f),...)' % (self.__class__.__name__,
            self.srs, self.bbox[0], self.bbox[1], self.bbox[2], self.bbox[3])

    def is_subset_of(self, other):
        """
        Returns ``True`` if every tile in `self` is present in `other`.
        Tile coordinates might differ and `other` may contain more
        tiles (more levels, larger bbox).
        """
        if self.srs != other.srs:
            return False

        if self.tile_size != other.tile_size:
            return False

        # check if all level tiles from self align with (affected)
        # tiles from other
        for self_level, self_level_res in self.resolutions.iteritems():
            level_size = (
                self.grid_sizes[self_level][0] * self.tile_size[0],
                self.grid_sizes[self_level][1] * self.tile_size[1]
            )
            level_bbox = self._tiles_bbox([
                (0, 0, self_level),
                (self.grid_sizes[self_level][0] - 1, self.grid_sizes[self_level][1] - 1, self_level)
            ])

            try:
                bbox, level = other.get_affected_bbox_and_level(level_bbox, level_size)
            except NoTiles:
                return False
            try:
                bbox, grid_size, tiles = other.get_affected_level_tiles(level_bbox, level)
            except GridError:
                return False

            if other.resolution(level) != self_level_res:
                return False
            if not bbox_equals(bbox, level_bbox):
                return False

        return True

def _create_tile_list(xs, ys, level, grid_size):
    """
    Returns an iterator tile_coords for the given tile ranges (`xs` and `ys`).
    If the one tile_coord is negative or out of the `grid_size` bound,
    the coord is None.
    """
    x_limit = grid_size[0]
    y_limit = grid_size[1]
    for y in ys:
        for x in xs:
            if x < 0 or y < 0 or x >= x_limit or y >= y_limit:
                yield None
            else:
                yield x, y, level

def is_float(x):
    try:
        float(x)
        return True
    except TypeError:
        return False

def pyramid_res_level(initial_res, factor=2.0, levels=20):
    """
    Return resolutions of an image pyramid.

    :param initial_res: the resolution of the top level (0)
    :param factor: the factor between each level, for tms access 2
    :param levels: number of resolutions to generate

    >>> list(pyramid_res_level(10000, levels=5))
    [10000.0, 5000.0, 2500.0, 1250.0, 625.0]
    >>> [round(x, 4) for x in
    ...     pyramid_res_level(10000, factor=1/0.75, levels=5)]
    [10000.0, 7500.0, 5625.0, 4218.75, 3164.0625]
    """
    return [initial_res/factor**n for n in range(levels)]

class MetaGrid(object):
    """
    This class contains methods to calculate bbox, etc. of metatiles.

    :param grid: the grid to use for the metatiles
    :param meta_size: the number of tiles a metatile consist
    :type meta_size: ``(x_size, y_size)``
    :param meta_buffer: the buffer size in pixel that is added to each metatile.
        the number is added to all four borders.
        this buffer may improve the handling of lables overlapping (meta)tile borders.
    :type meta_buffer: pixel
    """
    def __init__(self, grid, meta_size, meta_buffer=0):
        self.grid = grid
        self.meta_size = meta_size or 0
        self.meta_buffer = meta_buffer

    def _meta_bbox(self, tile_coord=None, tiles=None, limit_to_bbox=True):
        """
        Returns the bbox of the metatile that contains `tile_coord`.

        :type tile_coord: ``(x, y, z)``

        >>> mgrid = MetaGrid(grid=TileGrid(), meta_size=(2, 2))
        >>> [round(x, 2) for x in mgrid._meta_bbox((0, 0, 2))[0]]
        [-20037508.34, -20037508.34, 0.0, 0.0]
        >>> mgrid = MetaGrid(grid=TileGrid(), meta_size=(2, 2))
        >>> [round(x, 2) for x in mgrid._meta_bbox((0, 0, 0))[0]]
        [-20037508.34, -20037508.34, 20037508.34, 20037508.34]
        """
        if tiles:
            assert tile_coord is None
            level = tiles[0][2]
            bbox = self.grid._tiles_bbox(tiles)
        else:
            level = tile_coord[2]
            bbox = self.unbuffered_meta_bbox(tile_coord)
        return self._buffered_bbox(bbox, level, limit_to_bbox)


    def unbuffered_meta_bbox(self, tile_coord):
        x, y, z = tile_coord

        meta_size = self._meta_size(z)

        return self.grid._tiles_bbox([(tile_coord),
            (x+meta_size[0]-1, y+meta_size[1]-1, z)])

    def _buffered_bbox(self, bbox, level, limit_to_grid_bbox=True):
        minx, miny, maxx, maxy = bbox

        buffers = (0, 0, 0, 0)
        if self.meta_buffer > 0:
            res = self.grid.resolution(level)
            minx -= self.meta_buffer * res
            miny -= self.meta_buffer * res
            maxx += self.meta_buffer * res
            maxy += self.meta_buffer * res
            buffers = [self.meta_buffer, self.meta_buffer, self.meta_buffer, self.meta_buffer]

            if limit_to_grid_bbox:
                if self.grid.bbox[0] > minx:
                    delta = self.grid.bbox[0] - minx
                    buffers[0] = buffers[0] - int(round(delta / res, 5))
                    minx = self.grid.bbox[0]
                if self.grid.bbox[1] > miny:
                    delta = self.grid.bbox[1] - miny
                    buffers[1] = buffers[1] - int(round(delta / res, 5))
                    miny = self.grid.bbox[1]
                if self.grid.bbox[2] < maxx:
                    delta = maxx - self.grid.bbox[2]
                    buffers[2] = buffers[2] - int(round(delta / res, 5))
                    maxx = self.grid.bbox[2]
                if self.grid.bbox[3] < maxy:
                    delta = maxy - self.grid.bbox[3]
                    buffers[3] = buffers[3] - int(round(delta / res, 5))
                    maxy = self.grid.bbox[3]
        return (minx, miny, maxx, maxy), tuple(buffers)

    def meta_tile(self, tile_coord):
        """
        Returns the meta tile for `tile_coord`.
        """
        tile_coord = self.main_tile(tile_coord)
        level = tile_coord[2]
        bbox, buffers = self._meta_bbox(tile_coord)
        grid_size = self._meta_size(level)
        size = self._size_from_buffered_bbox(bbox, level)

        tile_patterns = self._tiles_pattern(tile=tile_coord, grid_size=grid_size, buffers=buffers)

        return MetaTile(bbox=bbox, size=size, tile_patterns=tile_patterns,
            grid_size=grid_size
        )

    def minimal_meta_tile(self, tiles):
        """
        Returns a MetaTile that contains all `tiles` plus ``meta_buffer``,
        but nothing more.
        """

        tiles, grid_size, bounds = self._full_tile_list(tiles)
        tiles = list(tiles)
        bbox, buffers = self._meta_bbox(tiles=bounds)

        level = tiles[0][2]
        size = self._size_from_buffered_bbox(bbox, level)

        tile_pattern = self._tiles_pattern(tiles=tiles, grid_size=grid_size, buffers=buffers)

        return MetaTile(
            bbox=bbox,
            size=size,
            tile_patterns=tile_pattern,
            grid_size=grid_size,
        )

    def _size_from_buffered_bbox(self, bbox, level):
        # meta_size * tile_size + 2*buffer does not work,
        # since the buffer can get truncated at the grid border
        res = self.grid.resolution(level)
        width = int(round((bbox[2] - bbox[0]) / res))
        height = int(round((bbox[3] - bbox[1]) / res))
        return width, height

    def _full_tile_list(self, tiles):
        """
        Return a complete list of all tiles that a minimal meta tile with `tiles` contains.

        >>> mgrid = MetaGrid(grid=TileGrid(), meta_size=(2, 2))
        >>> mgrid._full_tile_list([(0, 0, 2), (1, 1, 2)])
        ([(0, 1, 2), (1, 1, 2), (0, 0, 2), (1, 0, 2)], (2, 2), ((0, 0, 2), (1, 1, 2)))
        """
        tile = tiles.pop()
        z = tile[2]
        minx = maxx = tile[0]
        miny = maxy = tile[1]

        for tile in tiles:
            x, y = tile[:2]
            minx = min(minx, x)
            maxx = max(maxx, x)
            miny = min(miny, y)
            maxy = max(maxy, y)

        grid_size = 1+maxx-minx, 1+maxy-miny

        if self.grid.flipped_y_axis:
            ys = range(miny, maxy+1)
        else:
            ys = range(maxy, miny-1, -1)
        xs = range(minx, maxx+1)

        bounds = (minx, miny, z), (maxx, maxy, z)

        return list(_create_tile_list(xs, ys, z, (maxx+1, maxy+1))), grid_size, bounds

    def main_tile(self, tile_coord):
        x, y, z = tile_coord

        meta_size = self._meta_size(z)

        x0 = x//meta_size[0] * meta_size[0]
        y0 = y//meta_size[1] * meta_size[1]

        return x0, y0, z

    def tile_list(self, main_tile):
        tile_grid = self._meta_size(main_tile[2])
        return self._meta_tile_list(main_tile, tile_grid)

    def _meta_tile_list(self, main_tile, tile_grid):
        """
        >>> mgrid = MetaGrid(grid=TileGrid(), meta_size=(2, 2))
        >>> mgrid._meta_tile_list((0, 1, 3), (2, 2))
        [(0, 1, 3), (1, 1, 3), (0, 0, 3), (1, 0, 3)]
        """
        minx, miny, z = self.main_tile(main_tile)
        maxx = minx + tile_grid[0] - 1
        maxy = miny + tile_grid[1] - 1
        if self.grid.flipped_y_axis:
            ys = range(miny, maxy+1)
        else:
            ys = range(maxy, miny-1, -1)
        xs = range(minx, maxx+1)

        return list(_create_tile_list(xs, ys, z, self.grid.grid_sizes[z]))

    def _tiles_pattern(self, grid_size, buffers, tile=None, tiles=None):
        """
        Returns the tile pattern for the given list of tiles.
        The result contains for each tile the ``tile_coord`` and the upper-left
        pixel coordinate of the tile in the meta tile image.

        >>> mgrid = MetaGrid(grid=TileGrid(), meta_size=(2, 2))
        >>> tiles = list(mgrid._tiles_pattern(tiles=[(0, 1, 2), (1, 1, 2)],
        ...                                   grid_size=(2, 1),
        ...                                   buffers=(0, 0, 10, 10)))
        >>> tiles[0], tiles[-1]
        (((0, 1, 2), (0, 10)), ((1, 1, 2), (256, 10)))

        >>> tiles = list(mgrid._tiles_pattern(tile=(1, 1, 2),
        ...                                   grid_size=(2, 2),
        ...                                   buffers=(10, 20, 30, 40)))
        >>> tiles[0], tiles[-1]
        (((0, 1, 2), (10, 40)), ((1, 0, 2), (266, 296)))

        """
        if tile:
            tiles = self._meta_tile_list(tile, grid_size)

        for i in range(grid_size[1]):
            for j in range(grid_size[0]):
                yield tiles[j+i*grid_size[0]], (
                            j*self.grid.tile_size[0] + buffers[0],
                            i*self.grid.tile_size[1] + buffers[3])

    def _meta_size(self, level):
        grid_size = self.grid.grid_sizes[level]
        return min(self.meta_size[0], grid_size[0]), min(self.meta_size[1], grid_size[1])

    def get_affected_level_tiles(self, bbox, level):
        """
        Get a list with all affected tiles for a `bbox` in the given `level`.

        :returns: the bbox, the size and a list with tile coordinates, sorted row-wise
        :rtype: ``bbox, (xs, yz), [(x, y, z), ...]``

        >>> grid = MetaGrid(TileGrid(), (2, 2))
        >>> bbox = (-20037508.34, -20037508.34, 20037508.34, 20037508.34)
        >>> grid.get_affected_level_tiles(bbox, 0)
        ... #doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
        ((-20037508.342789244, -20037508.342789244,\
          20037508.342789244, 20037508.342789244), (1, 1),\
          <generator object ...>)
        """

        # remove 1/10 of a pixel so we don't get a tiles we only touch
        delta = self.grid.resolutions[level] / 10.0
        x0, y0, _ = self.grid.tile(bbox[0]+delta, bbox[1]+delta, level)
        x1, y1, _ = self.grid.tile(bbox[2]-delta, bbox[3]-delta, level)

        meta_size = self._meta_size(level)

        x0 = x0//meta_size[0] * meta_size[0]
        x1 = x1//meta_size[0] * meta_size[0]
        y0 = y0//meta_size[1] * meta_size[1]
        y1 = y1//meta_size[1] * meta_size[1]

        try:
            return self._tile_iter(x0, y0, x1, y1, level)
        except IndexError:
            raise GridError('Invalid BBOX')

    def _tile_iter(self, x0, y0, x1, y1, level):
        meta_size = self._meta_size(level)

        xs = list(range(x0, x1+1, meta_size[0]))
        if self.grid.flipped_y_axis:
            y0, y1 = y1, y0
            ys = list(range(y0, y1+1, meta_size[1]))
        else:
            ys = list(range(y1, y0-1, -meta_size[1]))

        ll = (xs[0], ys[-1], level)
        ur = (xs[-1], ys[0], level)
        # add meta_size to get full affected bbox
        ur = ur[0]+meta_size[0]-1, ur[1]+meta_size[1]-1, ur[2]
        abbox = self.grid._tiles_bbox([ll, ur])
        return (abbox, (len(xs), len(ys)),
                _create_tile_list(xs, ys, level, self.grid.grid_sizes[level]))


class MetaTile(object):
    def __init__(self, bbox, size, tile_patterns, grid_size):
        self.bbox = bbox
        self.size = size
        self.tile_patterns = list(tile_patterns)
        self.grid_size = grid_size

    @property
    def tiles(self):
        return [t[0] for t in self.tile_patterns]

    @property
    def main_tile_coord(self):
        """
        Returns the "main" tile of the meta tile. This tile(coord) can be used
        for locking.

        >>> t = MetaTile(None, None, [((0, 0, 0), (0, 0)), ((1, 0, 0), (100, 0))], (2, 1))
        >>> t.main_tile_coord
        (0, 0, 0)
        >>> t = MetaTile(None, None, [(None, None), ((1, 0, 0), (100, 0))], (2, 1))
        >>> t.main_tile_coord
        (1, 0, 0)
        """
        for t in self.tiles:
            if t is not None:
                return t

    def __repr__(self):
        return "MetaTile(%r, %r, %r, %r)" % (self.bbox, self.size, self.grid_size,
                                             self.tile_patterns)

def bbox_intersects(one, two):
    a_x0, a_y0, a_x1, a_y1 = one
    b_x0, b_y0, b_x1, b_y1 = two

    if (
        a_x0 < b_x1 and
        a_x1 > b_x0 and
        a_y0 < b_y1 and
        a_y1 > b_y0
        ): return True

    return False

def bbox_contains(one, two):
    """
    Returns ``True`` if `one` contains `two`.

    >>> bbox_contains([0, 0, 10, 10], [2, 2, 4, 4])
    True
    >>> bbox_contains([0, 0, 10, 10], [0, 0, 11, 10])
    False

    Allow tiny rounding errors:

    >>> bbox_contains([0, 0, 10, 10], [0.000001, 0.0000001, 10.000001, 10.000001])
    False
    >>> bbox_contains([0, 0, 10, 10], [0.0000000000001, 0.0000000000001, 10.0000000000001, 10.0000000000001])
    True
    """
    a_x0, a_y0, a_x1, a_y1 = one
    b_x0, b_y0, b_x1, b_y1 = two

    x_delta = abs(a_x1 - a_x0) / 10e12
    y_delta = abs(a_y1 - a_y0) / 10e12

    if (
        a_x0 <= b_x0 + x_delta and
        a_x1 >= b_x1 - x_delta and
        a_y0 <= b_y0 + y_delta and
        a_y1 >= b_y1 - y_delta
        ): return True

    return False

def deg_to_m(deg):
    return deg * (6378137 * 2 * math.pi) / 360

OGC_PIXEL_SIZE = 0.00028 #m/px

def ogc_scale_to_res(scale):
    return scale * OGC_PIXEL_SIZE
def res_to_ogc_scale(res):
    return res / OGC_PIXEL_SIZE

def resolution_range(min_res=None, max_res=None, max_scale=None, min_scale=None):
    if min_scale == max_scale == min_res == max_res == None:
        return None
    if min_res or max_res:
        if not max_scale and not min_scale:
            return ResolutionRange(min_res, max_res)
    elif max_scale or min_scale:
        if not min_res and not max_res:
            min_res = ogc_scale_to_res(max_scale)
            max_res = ogc_scale_to_res(min_scale)
            return ResolutionRange(min_res, max_res)

    raise ValueError('requires either min_res/max_res or max_scale/min_scale')

class ResolutionRange(object):
    def __init__(self, min_res, max_res):
        self.min_res = min_res
        self.max_res = max_res

        if min_res and max_res:
            assert min_res > max_res

    def scale_denominator(self):
        min_scale = res_to_ogc_scale(self.max_res) if self.max_res else None
        max_scale = res_to_ogc_scale(self.min_res) if self.min_res else None
        return min_scale, max_scale

    def scale_hint(self):
        """
        Returns the min and max diagonal resolution.
        """
        min_res = self.min_res
        max_res = self.max_res
        if min_res:
            min_res = math.sqrt(2*min_res**2)
        if max_res:
            max_res = math.sqrt(2*max_res**2)
        return min_res, max_res

    def contains(self, bbox, size, srs):
        width, height = bbox_size(bbox)
        if srs.is_latlong:
            width = deg_to_m(width)
            height = deg_to_m(height)

        x_res = width/size[0]
        y_res = height/size[1]

        if self.min_res:
            min_res = self.min_res + 1e-6
            if min_res <= x_res or min_res <= y_res:
                return False
        if self.max_res:
            max_res = self.max_res
            if max_res > x_res or max_res > y_res:
                return False

        return True

    def __eq__(self, other):
        if not isinstance(other, ResolutionRange):
            return NotImplemented

        return (self.min_res == other.min_res
            and self.max_res == other.max_res)

    def __ne__(self, other):
        if not isinstance(other, ResolutionRange):
            return NotImplemented
        return not self == other

    def __repr__(self):
        return '<ResolutionRange(min_res=%.3f, max_res=%.3f)>' % (
            self.min_res or 9e99, self.max_res or 0)


def max_with_none(a, b):
    if a is None or b is None:
        return None
    else:
        return max(a, b)

def min_with_none(a, b):
    if a is None or b is None:
        return None
    else:
        return min(a, b)


def merge_resolution_range(a, b):
    if a and b:
        return resolution_range(min_res=max_with_none(a.min_res, b.min_res),
            max_res=min_with_none(a.max_res, b.max_res))
    return None