This file is indexed.

/usr/lib/python3/dist-packages/mdp/test/test_ISFANode.py is in python3-mdp 3.5-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from __future__ import division
from builtins import range
from past.utils import old_div
from ._tools import *

def _std(x):
    return x.std(axis=0)
    # standard deviation without bias
    mx = mean(x, axis=0)
    mx2 = mean(x*x, axis=0)
    return numx.sqrt(old_div((mx2-mx),(x.shape[0]-1)))

def _cov(x,y=None):
    #return covariance matrix for x and y
    if y is None:
        y = x.copy()
    x = x - mean(x,0)
    x = old_div(x, _std(x))
    y = y - mean(y,0)
    y = old_div(y, _std(y))
    #return mult(numx.transpose(x),y)/(x.shape[0]-1)
    return old_div(mult(numx.transpose(x),y),(x.shape[0]))

def testISFANodeGivensRotations():
    ncovs = 5
    dim = 7
    ratio = uniform(2).tolist()
    covs = [uniform((dim,dim)) for j in range(ncovs)]
    covs= mdp.utils.MultipleCovarianceMatrices(covs)
    covs.symmetrize()
    i = mdp.nodes.ISFANode(list(range(1, ncovs+1)),sfa_ica_coeff=ratio,
                           icaweights=uniform(ncovs),
                           sfaweights=uniform(ncovs),
                           output_dim = dim-1, dtype="d")
    i._adjust_ica_sfa_coeff()
    ratio = i._bica_bsfa
    # case 2: only one axis within output space
    # get contrast using internal function
    phi, cont1, min_, dummy =\
               i._givens_angle_case2(dim-2,dim-1,covs,ratio,complete=1)
    # get contrast using explicit rotations
    cont2 = []
    for angle in phi:
        cp = covs.copy()
        cp.rotate(angle,[dim-2,dim-1])
        cont2.append(numx.sum(i._get_contrast(cp,ratio)))
    assert_array_almost_equal(cont1,cont2,decimal)
    # case 1: both axes within output space
    # get contrast using internal function
    phi,cont1, min_ , dummy =\
               i._givens_angle_case1(0,1,covs,ratio,complete = 1)
    # get contrast using explicit rotations
    cont2 = []
    for angle in phi:
        cp = covs.copy()
        cp.rotate(angle,[0,1])
        cont2.append(numx.sum(i._get_contrast(cp,ratio)))
    assert abs(min_) < old_div(numx.pi,4), 'Estimated Minimum out of bounds'
    assert_array_almost_equal(cont1,cont2,decimal)

def testISFANode_SFAPart():
    # create independent sources
    mat = uniform((100000,3))*2-1
    fmat = numx_fft.rfft(mat,axis=0)
    # enforce different speeds
    for i in range(3):
        fmat[(i+1)*5000:,i] = 0.
    mat = numx_fft.irfft(fmat,axis=0)
    _sfanode = mdp.nodes.SFANode()
    _sfanode.train(mat)
    src = _sfanode.execute(mat)
    # test with unmixed signals (i.e. the node should make nothing at all)
    out = mdp.nodes.ISFANode(lags=1,
                             whitened=True,
                             sfa_ica_coeff=[1.,0.])(src)
    max_cv = numx.diag(abs(_cov(out,src)))
    assert_array_almost_equal(max_cv, numx.ones((3,)),5)
    # mix linearly the signals
    mix = mult(src,uniform((3,3))*2-1)
    out = mdp.nodes.ISFANode(lags=1,
                             whitened=False,
                             sfa_ica_coeff=[1.,0.])(mix)
    max_cv = numx.diag(abs(_cov(out,src)))
    assert_array_almost_equal(max_cv, numx.ones((3,)),5)

def testISFANode_ICAPart():
    # create independent sources
    src = uniform((100000,3))*2-1
    fsrc = numx_fft.rfft(src,axis=0)
    # enforce different speeds
    for i in range(3):
        fsrc[(i+1)*5000:,i] = 0.
    src = numx_fft.irfft(fsrc,axis=0)
    # enforce time-lag-1-independence
    src = mdp.nodes.ISFANode(lags=1, sfa_ica_coeff=[1.,0.])(src)
    out = mdp.nodes.ISFANode(lags=1,
                             whitened=True,
                             sfa_ica_coeff=[0.,1.])(src)
    max_cv = numx.diag(abs(_cov(out,src)))
    assert_array_almost_equal(max_cv, numx.ones((3,)),5)
    # mix linearly the signals
    mix = mult(src,uniform((3,3))*2-1)
    out = mdp.nodes.ISFANode(lags=1,
                             whitened=False,
                             sfa_ica_coeff=[0.,1.])(mix)
    max_cv = numx.diag(abs(_cov(out,src)))
    assert_array_almost_equal(max_cv, numx.ones((3,)),5)

def testISFANode_3Complete():
    # test transition from ica to sfa behavior of isfa
    # use ad hoc sources
    lag = 25
    src = numx.zeros((1001,3),"d")
    idx = [(2,4),(80,1),(2+lag,6)]
    for i in range(len(idx)):
        i0, il = idx[i]
        src[i0:i0+il,i] = 1.
        src[i0+il:i0+2*il,i] = -1.
        src[:,i] -= mean(src[:,i])
        src[:,i] /= std(src[:,i])
    # test extreme cases
    # case 1: ICA
    out = mdp.nodes.ISFANode(lags=[1,lag],
                             icaweights=[1.,1.],
                             sfaweights=[1.,0.],
                             output_dim=2,
                             whitened=True,
                             sfa_ica_coeff=[1E-4,1.])(src)
    cv = abs(_cov(src,out))
    idx_cv = numx.argmax(cv,axis=0)
    assert_array_equal(idx_cv,[2,1])
    max_cv = numx.amax(cv,axis=0)
    assert_array_almost_equal(max_cv, numx.ones((2,)),5)
    # case 2: SFA
    out = mdp.nodes.ISFANode(lags=[1,lag],
                             icaweights=[1.,1.],
                             sfaweights=[1.,0.],
                             output_dim=2,
                             whitened=True,
                             sfa_ica_coeff=[1.,0.])(src)
    cv = abs(_cov(src,out))
    idx_cv = numx.argmax(cv,axis=0)
    assert_array_equal(idx_cv,[2,0])
    max_cv = numx.amax(cv,axis=0)
    assert_array_almost_equal(max_cv, numx.ones((2,)),5)

def _ISFA_analytical_solution( nsources, nmat, dim, ica_ambiguity):
    # build a sequence of random diagonal matrices
    matrices = [numx.eye(dim, dtype='d')]*nmat
    # build first matrix:
    #   - create random diagonal with elements
    #     in [0, 1]
    diag = uniform(dim)
    #   - sort it in descending order (in absolute value)
    #     [large first]
    diag = numx.take(diag, numx.argsort(abs(diag)))[::-1]
    #   - save larger elements [sfa solution]
    sfa_solution = diag[:nsources].copy()
    #   - modify diagonal elements order to allow for a
    #     different solution for isfa:
    #     create index array
    idx = list(range(0,dim))
    #     take the second slowest element and put it at the end
    idx = [idx[0]]+idx[2:]+[idx[1]]
    diag = numx.take(diag, idx)
    #   - save isfa solution
    isfa_solution = diag[:nsources]
    #   - set the first matrix
    matrices[0] = matrices[0]*diag
    # build other matrices
    diag_dim = nsources+ica_ambiguity
    for i in range(1,nmat):
        # get a random symmetric matrix
        matrices[i] = mdp.utils.symrand(dim)
        # diagonalize the subspace diag_dim
        tmp_diag = (uniform(diag_dim)-0.5)*2
        matrices[i][:diag_dim,:diag_dim] = numx.diag(tmp_diag)
    # put everything in MultCovMat
    matrices = mdp.utils.MultipleCovarianceMatrices(matrices)
    return matrices, sfa_solution, isfa_solution

def _ISFA_unmixing_error( nsources, goal, estimate):
    check = mult(goal[:nsources,:], estimate[:,:nsources])
    error = (abs(numx.sum(numx.sum(abs(check),axis=1)-1))+
             abs(numx.sum(numx.sum(abs(check),axis=0)-1)))
    error /= nsources*nsources
    return error

def testISFANode_AnalyticalSolution():
    nsources = 2
    # number of time lags
    nmat = 20
    # degree of polynomial expansion
    deg = 3
    # sfa_ica coefficient
    sfa_ica_coeff = [1., 1.]
    # how many independent subspaces in addition to the sources
    ica_ambiguity = 2
    # dimensions of expanded space
    dim = mdp.nodes._expanded_dim(deg, nsources)
    assert (nsources+ica_ambiguity) < dim, 'Too much ica ambiguity.'
    trials = 20
    for trial in range(trials):
        # get analytical solution:
        # prepared matrices, solution for sfa, solution for isf
        covs,sfa_solution,isfa_solution=_ISFA_analytical_solution(
            nsources,nmat,dim,ica_ambiguity)
        # get contrast of analytical solution
        # sfasrc, icasrc = _get_matrices_contrast(covs, nsources, dim,
        #                                         sfa_ica_coeff)
        # set rotation matrix
        R = mdp.utils.random_rot(dim)
        covs_rot = covs.copy()
        # rotate the analytical solution
        covs_rot.transform(R)
        # find the SFA solution to initialize ISFA
        eigval, SFARP = mdp.utils.symeig(covs_rot.covs[:,:,0])
        # order SFA solution by slowness
        SFARP = SFARP[:,-1::-1]
        # run ISFA
        isfa = mdp.nodes.ISFANode(lags = covs_rot.ncovs, whitened=True,
                                  sfa_ica_coeff = sfa_ica_coeff,
                                  eps_contrast = 1e-7,
                                  output_dim = nsources,
                                  max_iter = 500,
                                  verbose = False,
                                  RP = SFARP)
        isfa.train(uniform((100,dim)))
        isfa.stop_training(covs = covs_rot.copy())
        # check that the rotation matrix found by ISFA is R
        # up to a permutation matrix.
        # Unmixing error as in Tobias paper
        error = _ISFA_unmixing_error(nsources, R, isfa.RPC)
        if error < 1E-4:
            break
    assert error < 1E-4, 'None out of the %d trials succeded.' % trials