/usr/lib/python3/dist-packages/mypy/checker.py is in python3-mypy 0.560-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 | """Mypy type checker."""
import itertools
import fnmatch
from contextlib import contextmanager
import sys
from typing import (
Dict, Set, List, cast, Tuple, TypeVar, Union, Optional, NamedTuple, Iterator
)
from mypy.errors import Errors, report_internal_error
from mypy.nodes import (
SymbolTable, Statement, MypyFile, Var, Expression, Lvalue,
OverloadedFuncDef, FuncDef, FuncItem, FuncBase, TypeInfo,
ClassDef, GDEF, Block, AssignmentStmt, NameExpr, MemberExpr, IndexExpr,
TupleExpr, ListExpr, ExpressionStmt, ReturnStmt, IfStmt,
WhileStmt, OperatorAssignmentStmt, WithStmt, AssertStmt,
RaiseStmt, TryStmt, ForStmt, DelStmt, CallExpr, IntExpr, StrExpr,
BytesExpr, UnicodeExpr, FloatExpr, OpExpr, UnaryExpr, CastExpr, RevealTypeExpr, SuperExpr,
TypeApplication, DictExpr, SliceExpr, LambdaExpr, TempNode, SymbolTableNode,
Context, ListComprehension, ConditionalExpr, GeneratorExpr,
Decorator, SetExpr, TypeVarExpr, NewTypeExpr, PrintStmt,
LITERAL_TYPE, BreakStmt, PassStmt, ContinueStmt, ComparisonExpr, StarExpr,
YieldFromExpr, NamedTupleExpr, TypedDictExpr, SetComprehension,
DictionaryComprehension, ComplexExpr, EllipsisExpr, TypeAliasExpr,
RefExpr, YieldExpr, BackquoteExpr, Import, ImportFrom, ImportAll, ImportBase,
AwaitExpr, PromoteExpr, Node, EnumCallExpr,
ARG_POS, MDEF,
CONTRAVARIANT, COVARIANT, INVARIANT)
from mypy import nodes
from mypy.literals import literal, literal_hash
from mypy.typeanal import has_any_from_unimported_type, check_for_explicit_any
from mypy.types import (
Type, AnyType, CallableType, FunctionLike, Overloaded, TupleType, TypedDictType,
Instance, NoneTyp, strip_type, TypeType, TypeOfAny,
UnionType, TypeVarId, TypeVarType, PartialType, DeletedType, UninhabitedType, TypeVarDef,
true_only, false_only, function_type, is_named_instance, union_items
)
from mypy.sametypes import is_same_type, is_same_types
from mypy.messages import MessageBuilder, make_inferred_type_note
import mypy.checkexpr
from mypy.checkmember import map_type_from_supertype, bind_self, erase_to_bound
from mypy import messages
from mypy.subtypes import (
is_subtype, is_equivalent, is_proper_subtype, is_more_precise,
restrict_subtype_away, is_subtype_ignoring_tvars, is_callable_subtype,
unify_generic_callable, find_member
)
from mypy.maptype import map_instance_to_supertype
from mypy.typevars import fill_typevars, has_no_typevars
from mypy.semanal import set_callable_name, refers_to_fullname
from mypy.erasetype import erase_typevars
from mypy.expandtype import expand_type, expand_type_by_instance
from mypy.visitor import NodeVisitor
from mypy.join import join_types
from mypy.treetransform import TransformVisitor
from mypy.binder import ConditionalTypeBinder, get_declaration
from mypy.meet import is_overlapping_types
from mypy.options import Options
from mypy.plugin import Plugin, CheckerPluginInterface
from mypy import experiments
T = TypeVar('T')
LAST_PASS = 1 # Pass numbers start at 0
# A node which is postponed to be processed during the next pass.
# This is used for both batch mode and fine-grained incremental mode.
DeferredNode = NamedTuple(
'DeferredNode',
[
# In batch mode only FuncDef and LambdaExpr are supported
('node', Union[FuncDef, LambdaExpr, MypyFile]),
('context_type_name', Optional[str]), # Name of the surrounding class (for error messages)
('active_typeinfo', Optional[TypeInfo]), # And its TypeInfo (for semantic analysis
# self type handling)
])
class TypeChecker(NodeVisitor[None], CheckerPluginInterface):
"""Mypy type checker.
Type check mypy source files that have been semantically analyzed.
You must create a separate instance for each source file.
"""
# Are we type checking a stub?
is_stub = False
# Error message reporter
errors = None # type: Errors
# Utility for generating messages
msg = None # type: MessageBuilder
# Types of type checked nodes
type_map = None # type: Dict[Expression, Type]
# Helper for managing conditional types
binder = None # type: ConditionalTypeBinder
# Helper for type checking expressions
expr_checker = None # type: mypy.checkexpr.ExpressionChecker
scope = None # type: Scope
# Stack of function return types
return_types = None # type: List[Type]
# Flags; true for dynamically typed functions
dynamic_funcs = None # type: List[bool]
# Stack of collections of variables with partial types
partial_types = None # type: List[Dict[Var, Context]]
# Vars for which partial type errors are already reported
# (to avoid logically duplicate errors with different error context).
partial_reported = None # type: Set[Var]
globals = None # type: SymbolTable
modules = None # type: Dict[str, MypyFile]
# Nodes that couldn't be checked because some types weren't available. We'll run
# another pass and try these again.
deferred_nodes = None # type: List[DeferredNode]
# Type checking pass number (0 = first pass)
pass_num = 0
# Have we deferred the current function? If yes, don't infer additional
# types during this pass within the function.
current_node_deferred = False
# Is this file a typeshed stub?
is_typeshed_stub = False
# Should strict Optional-related errors be suppressed in this file?
suppress_none_errors = False # TODO: Get it from options instead
options = None # type: Options
# Used for collecting inferred attribute types so that they can be checked
# for consistency.
inferred_attribute_types = None # type: Optional[Dict[Var, Type]]
# Don't infer partial None types if we are processing assignment from Union
no_partial_types = False # type: bool
# The set of all dependencies (suppressed or not) that this module accesses, either
# directly or indirectly.
module_refs = None # type: Set[str]
# Plugin that provides special type checking rules for specific library
# functions such as open(), etc.
plugin = None # type: Plugin
def __init__(self, errors: Errors, modules: Dict[str, MypyFile], options: Options,
tree: MypyFile, path: str, plugin: Plugin) -> None:
"""Construct a type checker.
Use errors to report type check errors.
"""
self.errors = errors
self.modules = modules
self.options = options
self.tree = tree
self.path = path
self.msg = MessageBuilder(errors, modules)
self.plugin = plugin
self.expr_checker = mypy.checkexpr.ExpressionChecker(self, self.msg, self.plugin)
self.scope = Scope(tree)
self.binder = ConditionalTypeBinder()
self.globals = tree.names
self.return_types = []
self.dynamic_funcs = []
self.partial_types = []
self.partial_reported = set()
self.deferred_nodes = []
self.type_map = {}
self.module_refs = set()
self.pass_num = 0
self.current_node_deferred = False
self.is_stub = tree.is_stub
self.is_typeshed_stub = errors.is_typeshed_file(path)
self.inferred_attribute_types = None
if options.strict_optional_whitelist is None:
self.suppress_none_errors = not options.show_none_errors
else:
self.suppress_none_errors = not any(fnmatch.fnmatch(path, pattern)
for pattern
in options.strict_optional_whitelist)
def check_first_pass(self) -> None:
"""Type check the entire file, but defer functions with unresolved references.
Unresolved references are forward references to variables
whose types haven't been inferred yet. They may occur later
in the same file or in a different file that's being processed
later (usually due to an import cycle).
Deferred functions will be processed by check_second_pass().
"""
with experiments.strict_optional_set(self.options.strict_optional):
self.errors.set_file(self.path, self.tree.fullname())
with self.enter_partial_types():
with self.binder.top_frame_context():
for d in self.tree.defs:
self.accept(d)
assert not self.current_node_deferred
all_ = self.globals.get('__all__')
if all_ is not None and all_.type is not None:
all_node = all_.node
assert all_node is not None
seq_str = self.named_generic_type('typing.Sequence',
[self.named_type('builtins.str')])
if self.options.python_version[0] < 3:
seq_str = self.named_generic_type('typing.Sequence',
[self.named_type('builtins.unicode')])
if not is_subtype(all_.type, seq_str):
str_seq_s, all_s = self.msg.format_distinctly(seq_str, all_.type)
self.fail(messages.ALL_MUST_BE_SEQ_STR.format(str_seq_s, all_s),
all_node)
def check_second_pass(self, todo: Optional[List[DeferredNode]] = None) -> bool:
"""Run second or following pass of type checking.
This goes through deferred nodes, returning True if there were any.
"""
with experiments.strict_optional_set(self.options.strict_optional):
if not todo and not self.deferred_nodes:
return False
self.errors.set_file(self.path, self.tree.fullname())
self.pass_num += 1
if not todo:
todo = self.deferred_nodes
else:
assert not self.deferred_nodes
self.deferred_nodes = []
done = set() # type: Set[Union[FuncDef, LambdaExpr, MypyFile]]
for node, type_name, active_typeinfo in todo:
if node in done:
continue
# This is useful for debugging:
# print("XXX in pass %d, class %s, function %s" %
# (self.pass_num, type_name, node.fullname() or node.name()))
done.add(node)
with self.errors.enter_type(type_name) if type_name else nothing():
with self.scope.push_class(active_typeinfo) if active_typeinfo else nothing():
self.check_partial(node)
return True
def check_partial(self, node: Union[FuncDef, LambdaExpr, MypyFile]) -> None:
if isinstance(node, MypyFile):
self.check_top_level(node)
elif isinstance(node, LambdaExpr):
self.expr_checker.accept(node)
else:
self.accept(node)
def check_top_level(self, node: MypyFile) -> None:
"""Check only the top-level of a module, skipping function definitions."""
with self.enter_partial_types():
with self.binder.top_frame_context():
for d in node.defs:
# TODO: Type check class bodies.
if not isinstance(d, (FuncDef, ClassDef)):
d.accept(self)
assert not self.current_node_deferred
# TODO: Handle __all__
def handle_cannot_determine_type(self, name: str, context: Context) -> None:
node = self.scope.top_non_lambda_function()
if self.pass_num < LAST_PASS and isinstance(node, FuncDef):
# Don't report an error yet. Just defer. Note that we don't defer
# lambdas because they are coupled to the surrounding function
# through the binder and the inferred type of the lambda, so it
# would get messy.
if self.errors.type_name:
type_name = self.errors.type_name[-1]
else:
type_name = None
# Shouldn't we freeze the entire scope?
enclosing_class = self.scope.enclosing_class()
self.deferred_nodes.append(DeferredNode(node, type_name, enclosing_class))
# Set a marker so that we won't infer additional types in this
# function. Any inferred types could be bogus, because there's at
# least one type that we don't know.
self.current_node_deferred = True
else:
self.msg.cannot_determine_type(name, context)
def accept(self, stmt: Statement) -> None:
"""Type check a node in the given type context."""
try:
stmt.accept(self)
except Exception as err:
report_internal_error(err, self.errors.file, stmt.line, self.errors, self.options)
def accept_loop(self, body: Statement, else_body: Optional[Statement] = None, *,
exit_condition: Optional[Expression] = None) -> None:
"""Repeatedly type check a loop body until the frame doesn't change.
If exit_condition is set, assume it must be False on exit from the loop.
Then check the else_body.
"""
# The outer frame accumulates the results of all iterations
with self.binder.frame_context(can_skip=False):
while True:
with self.binder.frame_context(can_skip=True,
break_frame=2, continue_frame=1):
self.accept(body)
if not self.binder.last_pop_changed:
break
if exit_condition:
_, else_map = self.find_isinstance_check(exit_condition)
self.push_type_map(else_map)
if else_body:
self.accept(else_body)
#
# Definitions
#
def visit_overloaded_func_def(self, defn: OverloadedFuncDef) -> None:
num_abstract = 0
if not defn.items:
# In this case we have already complained about none of these being
# valid overloads.
return None
if len(defn.items) == 1:
self.fail('Single overload definition, multiple required', defn)
if defn.is_property:
# HACK: Infer the type of the property.
self.visit_decorator(cast(Decorator, defn.items[0]))
for fdef in defn.items:
assert isinstance(fdef, Decorator)
self.check_func_item(fdef.func, name=fdef.func.name())
if fdef.func.is_abstract:
num_abstract += 1
if num_abstract not in (0, len(defn.items)):
self.fail(messages.INCONSISTENT_ABSTRACT_OVERLOAD, defn)
if defn.impl:
defn.impl.accept(self)
if defn.info:
self.check_method_override(defn)
self.check_inplace_operator_method(defn)
self.check_overlapping_overloads(defn)
return None
def check_overlapping_overloads(self, defn: OverloadedFuncDef) -> None:
# At this point we should have set the impl already, and all remaining
# items are decorators
for i, item in enumerate(defn.items):
assert isinstance(item, Decorator)
sig1 = self.function_type(item.func)
for j, item2 in enumerate(defn.items[i + 1:]):
# TODO overloads involving decorators
assert isinstance(item2, Decorator)
sig2 = self.function_type(item2.func)
if is_unsafe_overlapping_signatures(sig1, sig2):
self.msg.overloaded_signatures_overlap(i + 1, i + j + 2,
item.func)
if defn.impl:
if isinstance(defn.impl, FuncDef):
impl_type = defn.impl.type
elif isinstance(defn.impl, Decorator):
impl_type = defn.impl.var.type
else:
assert False, "Impl isn't the right type"
# This can happen if we've got an overload with a different
# decorator too -- we gave up on the types.
if impl_type is None or isinstance(impl_type, AnyType) or sig1 is None:
return
assert isinstance(impl_type, CallableType)
assert isinstance(sig1, CallableType)
if not is_callable_subtype(impl_type, sig1, ignore_return=True):
self.msg.overloaded_signatures_arg_specific(i + 1, defn.impl)
impl_type_subst = impl_type
if impl_type.variables:
unified = unify_generic_callable(impl_type, sig1, ignore_return=False)
if unified is None:
self.fail("Type variable mismatch between " +
"overload signature {} and implementation".format(i + 1),
defn.impl)
return
impl_type_subst = unified
if not is_subtype(sig1.ret_type, impl_type_subst.ret_type):
self.msg.overloaded_signatures_ret_specific(i + 1, defn.impl)
# Here's the scoop about generators and coroutines.
#
# There are two kinds of generators: classic generators (functions
# with `yield` or `yield from` in the body) and coroutines
# (functions declared with `async def`). The latter are specified
# in PEP 492 and only available in Python >= 3.5.
#
# Classic generators can be parameterized with three types:
# - ty is the Yield type (the type of y in `yield y`)
# - tc is the type reCeived by yield (the type of c in `c = yield`).
# - tr is the Return type (the type of r in `return r`)
#
# A classic generator must define a return type that's either
# `Generator[ty, tc, tr]`, Iterator[ty], or Iterable[ty] (or
# object or Any). If tc/tr are not given, both are None.
#
# A coroutine must define a return type corresponding to tr; the
# other two are unconstrained. The "external" return type (seen
# by the caller) is Awaitable[tr].
#
# In addition, there's the synthetic type AwaitableGenerator: it
# inherits from both Awaitable and Generator and can be used both
# in `yield from` and in `await`. This type is set automatically
# for functions decorated with `@types.coroutine` or
# `@asyncio.coroutine`. Its single parameter corresponds to tr.
#
# PEP 525 adds a new type, the asynchronous generator, which was
# first released in Python 3.6. Async generators are `async def`
# functions that can also `yield` values. They can be parameterized
# with two types, ty and tc, because they cannot return a value.
#
# There are several useful methods, each taking a type t and a
# flag c indicating whether it's for a generator or coroutine:
#
# - is_generator_return_type(t, c) returns whether t is a Generator,
# Iterator, Iterable (if not c), or Awaitable (if c), or
# AwaitableGenerator (regardless of c).
# - is_async_generator_return_type(t) returns whether t is an
# AsyncGenerator.
# - get_generator_yield_type(t, c) returns ty.
# - get_generator_receive_type(t, c) returns tc.
# - get_generator_return_type(t, c) returns tr.
def is_generator_return_type(self, typ: Type, is_coroutine: bool) -> bool:
"""Is `typ` a valid type for a generator/coroutine?
True if `typ` is a *supertype* of Generator or Awaitable.
Also true it it's *exactly* AwaitableGenerator (modulo type parameters).
"""
if is_coroutine:
# This means we're in Python 3.5 or later.
at = self.named_generic_type('typing.Awaitable', [AnyType(TypeOfAny.special_form)])
if is_subtype(at, typ):
return True
else:
any_type = AnyType(TypeOfAny.special_form)
gt = self.named_generic_type('typing.Generator', [any_type, any_type, any_type])
if is_subtype(gt, typ):
return True
return isinstance(typ, Instance) and typ.type.fullname() == 'typing.AwaitableGenerator'
def is_async_generator_return_type(self, typ: Type) -> bool:
"""Is `typ` a valid type for an async generator?
True if `typ` is a supertype of AsyncGenerator.
"""
try:
any_type = AnyType(TypeOfAny.special_form)
agt = self.named_generic_type('typing.AsyncGenerator', [any_type, any_type])
except KeyError:
# we're running on a version of typing that doesn't have AsyncGenerator yet
return False
return is_subtype(agt, typ)
def get_generator_yield_type(self, return_type: Type, is_coroutine: bool) -> Type:
"""Given the declared return type of a generator (t), return the type it yields (ty)."""
if isinstance(return_type, AnyType):
return AnyType(TypeOfAny.from_another_any, source_any=return_type)
elif (not self.is_generator_return_type(return_type, is_coroutine)
and not self.is_async_generator_return_type(return_type)):
# If the function doesn't have a proper Generator (or
# Awaitable) return type, anything is permissible.
return AnyType(TypeOfAny.from_error)
elif not isinstance(return_type, Instance):
# Same as above, but written as a separate branch so the typechecker can understand.
return AnyType(TypeOfAny.from_error)
elif return_type.type.fullname() == 'typing.Awaitable':
# Awaitable: ty is Any.
return AnyType(TypeOfAny.special_form)
elif return_type.args:
# AwaitableGenerator, Generator, AsyncGenerator, Iterator, or Iterable; ty is args[0].
ret_type = return_type.args[0]
# TODO not best fix, better have dedicated yield token
return ret_type
else:
# If the function's declared supertype of Generator has no type
# parameters (i.e. is `object`), then the yielded values can't
# be accessed so any type is acceptable. IOW, ty is Any.
# (However, see https://github.com/python/mypy/issues/1933)
return AnyType(TypeOfAny.special_form)
def get_generator_receive_type(self, return_type: Type, is_coroutine: bool) -> Type:
"""Given a declared generator return type (t), return the type its yield receives (tc)."""
if isinstance(return_type, AnyType):
return AnyType(TypeOfAny.from_another_any, source_any=return_type)
elif (not self.is_generator_return_type(return_type, is_coroutine)
and not self.is_async_generator_return_type(return_type)):
# If the function doesn't have a proper Generator (or
# Awaitable) return type, anything is permissible.
return AnyType(TypeOfAny.from_error)
elif not isinstance(return_type, Instance):
# Same as above, but written as a separate branch so the typechecker can understand.
return AnyType(TypeOfAny.from_error)
elif return_type.type.fullname() == 'typing.Awaitable':
# Awaitable, AwaitableGenerator: tc is Any.
return AnyType(TypeOfAny.special_form)
elif (return_type.type.fullname() in ('typing.Generator', 'typing.AwaitableGenerator')
and len(return_type.args) >= 3):
# Generator: tc is args[1].
return return_type.args[1]
elif return_type.type.fullname() == 'typing.AsyncGenerator' and len(return_type.args) >= 2:
return return_type.args[1]
else:
# `return_type` is a supertype of Generator, so callers won't be able to send it
# values. IOW, tc is None.
return NoneTyp()
def get_generator_return_type(self, return_type: Type, is_coroutine: bool) -> Type:
"""Given the declared return type of a generator (t), return the type it returns (tr)."""
if isinstance(return_type, AnyType):
return AnyType(TypeOfAny.from_another_any, source_any=return_type)
elif not self.is_generator_return_type(return_type, is_coroutine):
# If the function doesn't have a proper Generator (or
# Awaitable) return type, anything is permissible.
return AnyType(TypeOfAny.from_error)
elif not isinstance(return_type, Instance):
# Same as above, but written as a separate branch so the typechecker can understand.
return AnyType(TypeOfAny.from_error)
elif return_type.type.fullname() == 'typing.Awaitable' and len(return_type.args) == 1:
# Awaitable: tr is args[0].
return return_type.args[0]
elif (return_type.type.fullname() in ('typing.Generator', 'typing.AwaitableGenerator')
and len(return_type.args) >= 3):
# AwaitableGenerator, Generator: tr is args[2].
return return_type.args[2]
else:
# Supertype of Generator (Iterator, Iterable, object): tr is any.
return AnyType(TypeOfAny.special_form)
def visit_func_def(self, defn: FuncDef) -> None:
"""Type check a function definition."""
self.check_func_item(defn, name=defn.name())
if defn.info:
if not defn.is_dynamic():
self.check_method_override(defn)
self.check_inplace_operator_method(defn)
if defn.original_def:
# Override previous definition.
new_type = self.function_type(defn)
if isinstance(defn.original_def, FuncDef):
# Function definition overrides function definition.
if not is_same_type(new_type, self.function_type(defn.original_def)):
self.msg.incompatible_conditional_function_def(defn)
else:
# Function definition overrides a variable initialized via assignment or a
# decorated function.
orig_type = defn.original_def.type
if orig_type is None:
# XXX This can be None, as happens in
# test_testcheck_TypeCheckSuite.testRedefinedFunctionInTryWithElse
self.msg.note("Internal mypy error checking function redefinition", defn)
return
if isinstance(orig_type, PartialType):
if orig_type.type is None:
# Ah this is a partial type. Give it the type of the function.
orig_def = defn.original_def
if isinstance(orig_def, Decorator):
var = orig_def.var
else:
var = orig_def
partial_types = self.find_partial_types(var)
if partial_types is not None:
var.type = new_type
del partial_types[var]
else:
# Trying to redefine something like partial empty list as function.
self.fail(messages.INCOMPATIBLE_REDEFINITION, defn)
else:
# TODO: Update conditional type binder.
self.check_subtype(new_type, orig_type, defn,
messages.INCOMPATIBLE_REDEFINITION,
'redefinition with type',
'original type')
def check_func_item(self, defn: FuncItem,
type_override: Optional[CallableType] = None,
name: Optional[str] = None) -> None:
"""Type check a function.
If type_override is provided, use it as the function type.
"""
# We may be checking a function definition or an anonymous function. In
# the first case, set up another reference with the precise type.
fdef = None # type: Optional[FuncDef]
if isinstance(defn, FuncDef):
fdef = defn
self.dynamic_funcs.append(defn.is_dynamic() and not type_override)
with self.errors.enter_function(fdef.name()) if fdef else nothing():
with self.enter_partial_types():
typ = self.function_type(defn)
if type_override:
typ = type_override.copy_modified(line=typ.line, column=typ.column)
if isinstance(typ, CallableType):
with self.enter_attribute_inference_context():
self.check_func_def(defn, typ, name)
else:
raise RuntimeError('Not supported')
self.dynamic_funcs.pop()
self.current_node_deferred = False
@contextmanager
def enter_attribute_inference_context(self) -> Iterator[None]:
old_types = self.inferred_attribute_types
self.inferred_attribute_types = {}
yield None
self.inferred_attribute_types = old_types
def check_func_def(self, defn: FuncItem, typ: CallableType, name: Optional[str]) -> None:
"""Type check a function definition."""
# Expand type variables with value restrictions to ordinary types.
for item, typ in self.expand_typevars(defn, typ):
old_binder = self.binder
self.binder = ConditionalTypeBinder()
with self.binder.top_frame_context():
defn.expanded.append(item)
# We may be checking a function definition or an anonymous
# function. In the first case, set up another reference with the
# precise type.
if isinstance(item, FuncDef):
fdef = item
# Check if __init__ has an invalid, non-None return type.
if (fdef.info and fdef.name() in ('__init__', '__init_subclass__') and
not isinstance(typ.ret_type, NoneTyp) and
not self.dynamic_funcs[-1]):
self.fail(messages.MUST_HAVE_NONE_RETURN_TYPE.format(fdef.name()),
item)
self.check_for_missing_annotations(fdef)
if self.options.disallow_any_unimported:
if fdef.type and isinstance(fdef.type, CallableType):
ret_type = fdef.type.ret_type
if has_any_from_unimported_type(ret_type):
self.msg.unimported_type_becomes_any("Return type", ret_type, fdef)
for idx, arg_type in enumerate(fdef.type.arg_types):
if has_any_from_unimported_type(arg_type):
prefix = "Argument {} to \"{}\"".format(idx + 1, fdef.name())
self.msg.unimported_type_becomes_any(prefix, arg_type, fdef)
check_for_explicit_any(fdef.type, self.options, self.is_typeshed_stub,
self.msg, context=fdef)
if name: # Special method names
if name in nodes.reverse_op_method_set:
self.check_reverse_op_method(item, typ, name, defn)
elif name in ('__getattr__', '__getattribute__'):
self.check_getattr_method(typ, defn, name)
elif name == '__setattr__':
self.check_setattr_method(typ, defn)
# Refuse contravariant return type variable
if isinstance(typ.ret_type, TypeVarType):
if typ.ret_type.variance == CONTRAVARIANT:
self.fail(messages.RETURN_TYPE_CANNOT_BE_CONTRAVARIANT,
typ.ret_type)
# Check that Generator functions have the appropriate return type.
if defn.is_generator:
if defn.is_async_generator:
if not self.is_async_generator_return_type(typ.ret_type):
self.fail(messages.INVALID_RETURN_TYPE_FOR_ASYNC_GENERATOR, typ)
else:
if not self.is_generator_return_type(typ.ret_type, defn.is_coroutine):
self.fail(messages.INVALID_RETURN_TYPE_FOR_GENERATOR, typ)
# Python 2 generators aren't allowed to return values.
if (self.options.python_version[0] == 2 and
isinstance(typ.ret_type, Instance) and
typ.ret_type.type.fullname() == 'typing.Generator'):
if not isinstance(typ.ret_type.args[2], (NoneTyp, AnyType)):
self.fail(messages.INVALID_GENERATOR_RETURN_ITEM_TYPE, typ)
# Fix the type if decorated with `@types.coroutine` or `@asyncio.coroutine`.
if defn.is_awaitable_coroutine:
# Update the return type to AwaitableGenerator.
# (This doesn't exist in typing.py, only in typing.pyi.)
t = typ.ret_type
c = defn.is_coroutine
ty = self.get_generator_yield_type(t, c)
tc = self.get_generator_receive_type(t, c)
tr = self.get_generator_return_type(t, c)
ret_type = self.named_generic_type('typing.AwaitableGenerator',
[ty, tc, tr, t])
typ = typ.copy_modified(ret_type=ret_type)
defn.type = typ
# Push return type.
self.return_types.append(typ.ret_type)
# Store argument types.
for i in range(len(typ.arg_types)):
arg_type = typ.arg_types[i]
ref_type = self.scope.active_self_type() # type: Optional[Type]
if (isinstance(defn, FuncDef) and ref_type is not None and i == 0
and not defn.is_static
and typ.arg_kinds[0] not in [nodes.ARG_STAR, nodes.ARG_STAR2]):
isclass = defn.is_class or defn.name() in ('__new__', '__init_subclass__')
if isclass:
ref_type = mypy.types.TypeType.make_normalized(ref_type)
erased = erase_to_bound(arg_type)
if not is_subtype_ignoring_tvars(ref_type, erased):
note = None
if typ.arg_names[i] in ['self', 'cls']:
if (self.options.python_version[0] < 3
and is_same_type(erased, arg_type) and not isclass):
msg = ("Invalid type for self, or extra argument type "
"in function annotation")
note = '(Hint: typically annotations omit the type for self)'
else:
msg = ("The erased type of self '{}' "
"is not a supertype of its class '{}'"
).format(erased, ref_type)
else:
msg = ("Self argument missing for a non-static method "
"(or an invalid type for self)")
self.fail(msg, defn)
if note:
self.note(note, defn)
if defn.is_class and isinstance(arg_type, CallableType):
arg_type.is_classmethod_class = True
elif isinstance(arg_type, TypeVarType):
# Refuse covariant parameter type variables
# TODO: check recursively for inner type variables
if (
arg_type.variance == COVARIANT and
defn.name() not in ('__init__', '__new__')
):
ctx = arg_type # type: Context
if ctx.line < 0:
ctx = typ
self.fail(messages.FUNCTION_PARAMETER_CANNOT_BE_COVARIANT, ctx)
if typ.arg_kinds[i] == nodes.ARG_STAR:
# builtins.tuple[T] is typing.Tuple[T, ...]
arg_type = self.named_generic_type('builtins.tuple',
[arg_type])
elif typ.arg_kinds[i] == nodes.ARG_STAR2:
arg_type = self.named_generic_type('builtins.dict',
[self.str_type(),
arg_type])
item.arguments[i].variable.type = arg_type
# Type check initialization expressions.
for arg in item.arguments:
if arg.initializer is not None:
name = arg.variable.name()
msg = 'Incompatible default for '
if name.startswith('__tuple_arg_'):
msg += "tuple argument {}".format(name[12:])
else:
msg += 'argument "{}"'.format(name)
self.check_simple_assignment(arg.variable.type, arg.initializer,
context=arg, msg=msg, lvalue_name='argument', rvalue_name='default')
# Type check body in a new scope.
with self.binder.top_frame_context():
with self.scope.push_function(defn):
self.accept(item.body)
unreachable = self.binder.is_unreachable()
if (self.options.warn_no_return and not unreachable):
if (defn.is_generator or
is_named_instance(self.return_types[-1], 'typing.AwaitableGenerator')):
return_type = self.get_generator_return_type(self.return_types[-1],
defn.is_coroutine)
else:
return_type = self.return_types[-1]
if (not isinstance(return_type, (NoneTyp, AnyType))
and not self.is_trivial_body(defn.body)):
# Control flow fell off the end of a function that was
# declared to return a non-None type and is not
# entirely pass/Ellipsis.
if isinstance(return_type, UninhabitedType):
# This is a NoReturn function
self.msg.note(messages.INVALID_IMPLICIT_RETURN, defn)
else:
self.msg.fail(messages.MISSING_RETURN_STATEMENT, defn)
self.return_types.pop()
self.binder = old_binder
def check_for_missing_annotations(self, fdef: FuncItem) -> None:
# Check for functions with unspecified/not fully specified types.
def is_unannotated_any(t: Type) -> bool:
return isinstance(t, AnyType) and t.type_of_any == TypeOfAny.unannotated
has_explicit_annotation = (isinstance(fdef.type, CallableType)
and any(not is_unannotated_any(t)
for t in fdef.type.arg_types + [fdef.type.ret_type]))
show_untyped = not self.is_typeshed_stub or self.options.warn_incomplete_stub
check_incomplete_defs = self.options.disallow_incomplete_defs and has_explicit_annotation
if show_untyped and (self.options.disallow_untyped_defs or check_incomplete_defs):
if fdef.type is None and self.options.disallow_untyped_defs:
self.fail(messages.FUNCTION_TYPE_EXPECTED, fdef)
elif isinstance(fdef.type, CallableType):
ret_type = fdef.type.ret_type
if is_unannotated_any(ret_type):
self.fail(messages.RETURN_TYPE_EXPECTED, fdef)
elif (fdef.is_coroutine and isinstance(ret_type, Instance) and
is_unannotated_any(ret_type.args[0])):
self.fail(messages.RETURN_TYPE_EXPECTED, fdef)
if any(is_unannotated_any(t) for t in fdef.type.arg_types):
self.fail(messages.ARGUMENT_TYPE_EXPECTED, fdef)
def is_trivial_body(self, block: Block) -> bool:
body = block.body
# Skip a docstring
if (isinstance(body[0], ExpressionStmt) and
isinstance(body[0].expr, (StrExpr, UnicodeExpr))):
body = block.body[1:]
if len(body) == 0:
# There's only a docstring.
return True
elif len(body) > 1:
return False
stmt = body[0]
return (isinstance(stmt, PassStmt) or
(isinstance(stmt, ExpressionStmt) and
isinstance(stmt.expr, EllipsisExpr)))
def check_reverse_op_method(self, defn: FuncItem, typ: CallableType,
method: str, context: Context) -> None:
"""Check a reverse operator method such as __radd__."""
# This used to check for some very obscure scenario. It now
# just decides whether it's worth calling
# check_overlapping_op_methods().
# First check for a valid signature
method_type = CallableType([AnyType(TypeOfAny.special_form),
AnyType(TypeOfAny.special_form)],
[nodes.ARG_POS, nodes.ARG_POS],
[None, None],
AnyType(TypeOfAny.special_form),
self.named_type('builtins.function'))
if not is_subtype(typ, method_type):
self.msg.invalid_signature(typ, context)
return
if method in ('__eq__', '__ne__'):
# These are defined for all objects => can't cause trouble.
return
# With 'Any' or 'object' return type we are happy, since any possible
# return value is valid.
ret_type = typ.ret_type
if isinstance(ret_type, AnyType):
return
if isinstance(ret_type, Instance):
if ret_type.type.fullname() == 'builtins.object':
return
if len(typ.arg_types) == 2:
# TODO check self argument kind
# Check for the issue described above.
arg_type = typ.arg_types[1]
other_method = nodes.normal_from_reverse_op[method]
if isinstance(arg_type, Instance):
if not arg_type.type.has_readable_member(other_method):
return
elif isinstance(arg_type, AnyType):
return
elif isinstance(arg_type, UnionType):
if not arg_type.has_readable_member(other_method):
return
else:
return
typ2 = self.expr_checker.analyze_external_member_access(
other_method, arg_type, defn)
self.check_overlapping_op_methods(
typ, method, defn.info,
typ2, other_method, cast(Instance, arg_type),
defn)
def check_overlapping_op_methods(self,
reverse_type: CallableType,
reverse_name: str,
reverse_class: TypeInfo,
forward_type: Type,
forward_name: str,
forward_base: Instance,
context: Context) -> None:
"""Check for overlapping method and reverse method signatures.
Assume reverse method has valid argument count and kinds.
"""
# Reverse operator method that overlaps unsafely with the
# forward operator method can result in type unsafety. This is
# similar to overlapping overload variants.
#
# This example illustrates the issue:
#
# class X: pass
# class A:
# def __add__(self, x: X) -> int:
# if isinstance(x, X):
# return 1
# return NotImplemented
# class B:
# def __radd__(self, x: A) -> str: return 'x'
# class C(X, B): pass
# def f(b: B) -> None:
# A() + b # Result is 1, even though static type seems to be str!
# f(C())
#
# The reason for the problem is that B and X are overlapping
# types, and the return types are different. Also, if the type
# of x in __radd__ would not be A, the methods could be
# non-overlapping.
for forward_item in union_items(forward_type):
if isinstance(forward_item, CallableType):
# TODO check argument kinds
if len(forward_item.arg_types) < 1:
# Not a valid operator method -- can't succeed anyway.
return
# Construct normalized function signatures corresponding to the
# operator methods. The first argument is the left operand and the
# second operand is the right argument -- we switch the order of
# the arguments of the reverse method.
forward_tweaked = CallableType(
[forward_base, forward_item.arg_types[0]],
[nodes.ARG_POS] * 2,
[None] * 2,
forward_item.ret_type,
forward_item.fallback,
name=forward_item.name)
reverse_args = reverse_type.arg_types
reverse_tweaked = CallableType(
[reverse_args[1], reverse_args[0]],
[nodes.ARG_POS] * 2,
[None] * 2,
reverse_type.ret_type,
fallback=self.named_type('builtins.function'),
name=reverse_type.name)
if is_unsafe_overlapping_signatures(forward_tweaked,
reverse_tweaked):
self.msg.operator_method_signatures_overlap(
reverse_class.name(), reverse_name,
forward_base.type.name(), forward_name, context)
elif isinstance(forward_item, Overloaded):
for item in forward_item.items():
self.check_overlapping_op_methods(
reverse_type, reverse_name, reverse_class,
item, forward_name, forward_base, context)
elif not isinstance(forward_item, AnyType):
self.msg.forward_operator_not_callable(forward_name, context)
def check_inplace_operator_method(self, defn: FuncBase) -> None:
"""Check an inplace operator method such as __iadd__.
They cannot arbitrarily overlap with __add__.
"""
method = defn.name()
if method not in nodes.inplace_operator_methods:
return
typ = bind_self(self.function_type(defn))
cls = defn.info
other_method = '__' + method[3:]
if cls.has_readable_member(other_method):
instance = fill_typevars(cls)
typ2 = self.expr_checker.analyze_external_member_access(
other_method, instance, defn)
fail = False
if isinstance(typ2, FunctionLike):
if not is_more_general_arg_prefix(typ, typ2):
fail = True
else:
# TODO overloads
fail = True
if fail:
self.msg.signatures_incompatible(method, other_method, defn)
def check_getattr_method(self, typ: CallableType, context: Context, name: str) -> None:
if len(self.scope.stack) == 1:
# module-level __getattr__
if name == '__getattribute__':
self.msg.fail('__getattribute__ is not valid at the module level', context)
return
elif name == '__getattr__' and not self.is_stub:
self.msg.fail('__getattr__ is not valid at the module level outside a stub file',
context)
return
method_type = CallableType([self.named_type('builtins.str')],
[nodes.ARG_POS],
[None],
AnyType(TypeOfAny.special_form),
self.named_type('builtins.function'))
else:
method_type = CallableType([AnyType(TypeOfAny.special_form),
self.named_type('builtins.str')],
[nodes.ARG_POS, nodes.ARG_POS],
[None, None],
AnyType(TypeOfAny.special_form),
self.named_type('builtins.function'))
if not is_subtype(typ, method_type):
self.msg.invalid_signature(typ, context)
def check_setattr_method(self, typ: CallableType, context: Context) -> None:
method_type = CallableType([AnyType(TypeOfAny.special_form),
self.named_type('builtins.str'),
AnyType(TypeOfAny.special_form)],
[nodes.ARG_POS, nodes.ARG_POS, nodes.ARG_POS],
[None, None, None],
NoneTyp(),
self.named_type('builtins.function'))
if not is_subtype(typ, method_type):
self.msg.invalid_signature(typ, context)
def expand_typevars(self, defn: FuncItem,
typ: CallableType) -> List[Tuple[FuncItem, CallableType]]:
# TODO use generator
subst = [] # type: List[List[Tuple[TypeVarId, Type]]]
tvars = typ.variables or []
tvars = tvars[:]
if defn.info:
# Class type variables
tvars += defn.info.defn.type_vars or []
for tvar in tvars:
if tvar.values:
subst.append([(tvar.id, value)
for value in tvar.values])
if subst:
result = [] # type: List[Tuple[FuncItem, CallableType]]
for substitutions in itertools.product(*subst):
mapping = dict(substitutions)
expanded = cast(CallableType, expand_type(typ, mapping))
result.append((expand_func(defn, mapping), expanded))
return result
else:
return [(defn, typ)]
def check_method_override(self, defn: Union[FuncBase, Decorator]) -> None:
"""Check if function definition is compatible with base classes."""
# Check against definitions in base classes.
for base in defn.info.mro[1:]:
self.check_method_or_accessor_override_for_base(defn, base)
def check_method_or_accessor_override_for_base(self, defn: Union[FuncBase, Decorator],
base: TypeInfo) -> None:
"""Check if method definition is compatible with a base class."""
if base:
name = defn.name()
if name not in ('__init__', '__new__', '__init_subclass__'):
# Check method override
# (__init__, __new__, __init_subclass__ are special).
self.check_method_override_for_base_with_name(defn, name, base)
if name in nodes.inplace_operator_methods:
# Figure out the name of the corresponding operator method.
method = '__' + name[3:]
# An inplace operator method such as __iadd__ might not be
# always introduced safely if a base class defined __add__.
# TODO can't come up with an example where this is
# necessary; now it's "just in case"
self.check_method_override_for_base_with_name(defn, method,
base)
def check_method_override_for_base_with_name(
self, defn: Union[FuncBase, Decorator], name: str, base: TypeInfo) -> None:
base_attr = base.names.get(name)
if base_attr:
# The name of the method is defined in the base class.
# Point errors at the 'def' line (important for backward compatibility
# of type ignores).
if not isinstance(defn, Decorator):
context = defn
else:
context = defn.func
# Construct the type of the overriding method.
if isinstance(defn, FuncBase):
typ = self.function_type(defn) # type: Type
else:
assert defn.var.is_ready
assert defn.var.type is not None
typ = defn.var.type
if isinstance(typ, FunctionLike) and not is_static(context):
typ = bind_self(typ, self.scope.active_self_type())
# Map the overridden method type to subtype context so that
# it can be checked for compatibility.
original_type = base_attr.type
if original_type is None:
if isinstance(base_attr.node, FuncDef):
original_type = self.function_type(base_attr.node)
elif isinstance(base_attr.node, Decorator):
original_type = self.function_type(base_attr.node.func)
else:
assert False, str(base_attr.node)
if isinstance(original_type, AnyType) or isinstance(typ, AnyType):
pass
elif isinstance(original_type, FunctionLike) and isinstance(typ, FunctionLike):
if (isinstance(base_attr.node, (FuncBase, Decorator))
and not is_static(base_attr.node)):
bound = bind_self(original_type, self.scope.active_self_type())
else:
bound = original_type
original = map_type_from_supertype(bound, defn.info, base)
# Check that the types are compatible.
# TODO overloaded signatures
self.check_override(typ,
cast(FunctionLike, original),
defn.name(),
name,
base.name(),
context)
elif is_equivalent(original_type, typ):
# Assume invariance for a non-callable attribute here. Note
# that this doesn't affect read-only properties which can have
# covariant overrides.
#
# TODO: Allow covariance for read-only attributes?
pass
else:
self.msg.signature_incompatible_with_supertype(
defn.name(), name, base.name(), context)
def check_override(self, override: FunctionLike, original: FunctionLike,
name: str, name_in_super: str, supertype: str,
node: Context) -> None:
"""Check a method override with given signatures.
Arguments:
override: The signature of the overriding method.
original: The signature of the original supertype method.
name: The name of the subtype. This and the next argument are
only used for generating error messages.
supertype: The name of the supertype.
"""
# Use boolean variable to clarify code.
fail = False
if not is_subtype(override, original, ignore_pos_arg_names=True):
fail = True
elif (not isinstance(original, Overloaded) and
isinstance(override, Overloaded) and
name in nodes.reverse_op_methods.keys()):
# Operator method overrides cannot introduce overloading, as
# this could be unsafe with reverse operator methods.
fail = True
if isinstance(original, CallableType) and isinstance(override, CallableType):
if (isinstance(original.definition, FuncItem) and
isinstance(override.definition, FuncItem)):
if ((original.definition.is_static or original.definition.is_class) and
not (override.definition.is_static or override.definition.is_class)):
fail = True
if fail:
emitted_msg = False
if (isinstance(override, CallableType) and
isinstance(original, CallableType) and
len(override.arg_types) == len(original.arg_types) and
override.min_args == original.min_args):
# Give more detailed messages for the common case of both
# signatures having the same number of arguments and no
# overloads.
# override might have its own generic function type
# variables. If an argument or return type of override
# does not have the correct subtyping relationship
# with the original type even after these variables
# are erased, then it is definitely an incompatibility.
override_ids = override.type_var_ids()
def erase_override(t: Type) -> Type:
return erase_typevars(t, ids_to_erase=override_ids)
for i in range(len(override.arg_types)):
if not is_subtype(original.arg_types[i],
erase_override(override.arg_types[i])):
self.msg.argument_incompatible_with_supertype(
i + 1, name, name_in_super, supertype, node)
emitted_msg = True
if not is_subtype(erase_override(override.ret_type),
original.ret_type):
self.msg.return_type_incompatible_with_supertype(
name, name_in_super, supertype, node)
emitted_msg = True
if not emitted_msg:
# Fall back to generic incompatibility message.
self.msg.signature_incompatible_with_supertype(
name, name_in_super, supertype, node)
def visit_class_def(self, defn: ClassDef) -> None:
"""Type check a class definition."""
typ = defn.info
if typ.is_protocol and typ.defn.type_vars:
self.check_protocol_variance(defn)
with self.errors.enter_type(defn.name), self.enter_partial_types():
old_binder = self.binder
self.binder = ConditionalTypeBinder()
with self.binder.top_frame_context():
with self.scope.push_class(defn.info):
self.accept(defn.defs)
self.binder = old_binder
if not defn.has_incompatible_baseclass:
# Otherwise we've already found errors; more errors are not useful
self.check_multiple_inheritance(typ)
def check_protocol_variance(self, defn: ClassDef) -> None:
"""Check that protocol definition is compatible with declared
variances of type variables.
Note that we also prohibit declaring protocol classes as invariant
if they are actually covariant/contravariant, since this may break
transitivity of subtyping, see PEP 544.
"""
info = defn.info
object_type = Instance(info.mro[-1], [])
tvars = info.defn.type_vars
for i, tvar in enumerate(tvars):
up_args = [object_type if i == j else AnyType(TypeOfAny.special_form)
for j, _ in enumerate(tvars)]
down_args = [UninhabitedType() if i == j else AnyType(TypeOfAny.special_form)
for j, _ in enumerate(tvars)]
up, down = Instance(info, up_args), Instance(info, down_args)
# TODO: add advanced variance checks for recursive protocols
if is_subtype(down, up, ignore_declared_variance=True):
expected = COVARIANT
elif is_subtype(up, down, ignore_declared_variance=True):
expected = CONTRAVARIANT
else:
expected = INVARIANT
if expected != tvar.variance:
self.msg.bad_proto_variance(tvar.variance, tvar.name, expected, defn)
def check_multiple_inheritance(self, typ: TypeInfo) -> None:
"""Check for multiple inheritance related errors."""
if len(typ.bases) <= 1:
# No multiple inheritance.
return
# Verify that inherited attributes are compatible.
mro = typ.mro[1:]
for i, base in enumerate(mro):
for name in base.names:
for base2 in mro[i + 1:]:
# We only need to check compatibility of attributes from classes not
# in a subclass relationship. For subclasses, normal (single inheritance)
# checks suffice (these are implemented elsewhere).
if name in base2.names and base2 not in base.mro:
self.check_compatibility(name, base, base2, typ)
def check_compatibility(self, name: str, base1: TypeInfo,
base2: TypeInfo, ctx: Context) -> None:
"""Check if attribute name in base1 is compatible with base2 in multiple inheritance.
Assume base1 comes before base2 in the MRO, and that base1 and base2 don't have
a direct subclass relationship (i.e., the compatibility requirement only derives from
multiple inheritance).
"""
if name == '__init__':
# __init__ can be incompatible -- it's a special case.
return
first = base1[name]
second = base2[name]
first_type = first.type
if first_type is None and isinstance(first.node, FuncDef):
first_type = self.function_type(first.node)
second_type = second.type
if second_type is None and isinstance(second.node, FuncDef):
second_type = self.function_type(second.node)
# TODO: What if some classes are generic?
if (isinstance(first_type, FunctionLike) and
isinstance(second_type, FunctionLike)):
# Method override
first_sig = bind_self(first_type)
second_sig = bind_self(second_type)
ok = is_subtype(first_sig, second_sig, ignore_pos_arg_names=True)
elif first_type and second_type:
ok = is_equivalent(first_type, second_type)
else:
if first_type is None:
self.msg.cannot_determine_type_in_base(name, base1.name(), ctx)
if second_type is None:
self.msg.cannot_determine_type_in_base(name, base2.name(), ctx)
ok = True
if not ok:
self.msg.base_class_definitions_incompatible(name, base1, base2,
ctx)
def visit_import_from(self, node: ImportFrom) -> None:
self.check_import(node)
def visit_import_all(self, node: ImportAll) -> None:
self.check_import(node)
def visit_import(self, s: Import) -> None:
pass
def check_import(self, node: ImportBase) -> None:
for assign in node.assignments:
lvalue = assign.lvalues[0]
lvalue_type, _, __ = self.check_lvalue(lvalue)
if lvalue_type is None:
# TODO: This is broken.
lvalue_type = AnyType(TypeOfAny.special_form)
message = '{} "{}"'.format(messages.INCOMPATIBLE_IMPORT_OF,
cast(NameExpr, assign.rvalue).name)
self.check_simple_assignment(lvalue_type, assign.rvalue, node,
msg=message, lvalue_name='local name',
rvalue_name='imported name')
#
# Statements
#
def visit_block(self, b: Block) -> None:
if b.is_unreachable:
self.binder.unreachable()
return
for s in b.body:
if self.binder.is_unreachable():
break
self.accept(s)
def visit_assignment_stmt(self, s: AssignmentStmt) -> None:
"""Type check an assignment statement.
Handle all kinds of assignment statements (simple, indexed, multiple).
"""
self.check_assignment(s.lvalues[-1], s.rvalue, s.type is None, s.new_syntax)
if (s.type is not None and
self.options.disallow_any_unimported and
has_any_from_unimported_type(s.type)):
if isinstance(s.lvalues[-1], TupleExpr):
# This is a multiple assignment. Instead of figuring out which type is problematic,
# give a generic error message.
self.msg.unimported_type_becomes_any("A type on this line",
AnyType(TypeOfAny.special_form), s)
else:
self.msg.unimported_type_becomes_any("Type of variable", s.type, s)
check_for_explicit_any(s.type, self.options, self.is_typeshed_stub, self.msg, context=s)
if len(s.lvalues) > 1:
# Chained assignment (e.g. x = y = ...).
# Make sure that rvalue type will not be reinferred.
if s.rvalue not in self.type_map:
self.expr_checker.accept(s.rvalue)
rvalue = self.temp_node(self.type_map[s.rvalue], s)
for lv in s.lvalues[:-1]:
self.check_assignment(lv, rvalue, s.type is None)
def check_assignment(self, lvalue: Lvalue, rvalue: Expression, infer_lvalue_type: bool = True,
new_syntax: bool = False) -> None:
"""Type check a single assignment: lvalue = rvalue."""
if isinstance(lvalue, TupleExpr) or isinstance(lvalue, ListExpr):
self.check_assignment_to_multiple_lvalues(lvalue.items, rvalue, lvalue,
infer_lvalue_type)
else:
lvalue_type, index_lvalue, inferred = self.check_lvalue(lvalue)
if isinstance(lvalue, NameExpr):
if self.check_compatibility_all_supers(lvalue, lvalue_type, rvalue):
# We hit an error on this line; don't check for any others
return
if lvalue_type:
if isinstance(lvalue_type, PartialType) and lvalue_type.type is None:
# Try to infer a proper type for a variable with a partial None type.
rvalue_type = self.expr_checker.accept(rvalue)
if isinstance(rvalue_type, NoneTyp):
# This doesn't actually provide any additional information -- multiple
# None initializers preserve the partial None type.
return
if is_valid_inferred_type(rvalue_type):
var = lvalue_type.var
partial_types = self.find_partial_types(var)
if partial_types is not None:
if not self.current_node_deferred:
inferred_type = UnionType.make_simplified_union(
[rvalue_type, NoneTyp()])
self.set_inferred_type(var, lvalue, inferred_type)
else:
var.type = None
del partial_types[var]
lvalue_type = var.type
else:
# Try to infer a partial type. No need to check the return value, as
# an error will be reported elsewhere.
self.infer_partial_type(lvalue_type.var, lvalue, rvalue_type)
elif (is_literal_none(rvalue) and
isinstance(lvalue, NameExpr) and
isinstance(lvalue.node, Var) and
lvalue.node.is_initialized_in_class and
not new_syntax):
# Allow None's to be assigned to class variables with non-Optional types.
rvalue_type = lvalue_type
elif (isinstance(lvalue, MemberExpr) and
lvalue.kind is None): # Ignore member access to modules
instance_type = self.expr_checker.accept(lvalue.expr)
rvalue_type, infer_lvalue_type = self.check_member_assignment(
instance_type, lvalue_type, rvalue, lvalue)
else:
rvalue_type = self.check_simple_assignment(lvalue_type, rvalue, lvalue)
# Special case: only non-abstract non-protocol classes can be assigned to
# variables with explicit type Type[A], where A is protocol or abstract.
if (isinstance(rvalue_type, CallableType) and rvalue_type.is_type_obj() and
(rvalue_type.type_object().is_abstract or
rvalue_type.type_object().is_protocol) and
isinstance(lvalue_type, TypeType) and
isinstance(lvalue_type.item, Instance) and
(lvalue_type.item.type.is_abstract or
lvalue_type.item.type.is_protocol)):
self.msg.concrete_only_assign(lvalue_type, rvalue)
return
if rvalue_type and infer_lvalue_type:
self.binder.assign_type(lvalue, rvalue_type, lvalue_type, False)
elif index_lvalue:
self.check_indexed_assignment(index_lvalue, rvalue, lvalue)
if inferred:
self.infer_variable_type(inferred, lvalue, self.expr_checker.accept(rvalue),
rvalue)
def check_compatibility_all_supers(self, lvalue: NameExpr, lvalue_type: Optional[Type],
rvalue: Expression) -> bool:
lvalue_node = lvalue.node
# Check if we are a class variable with at least one base class
if (isinstance(lvalue_node, Var) and
lvalue.kind == MDEF and
len(lvalue_node.info.bases) > 0):
for base in lvalue_node.info.mro[1:]:
tnode = base.names.get(lvalue_node.name())
if tnode is not None:
if not self.check_compatibility_classvar_super(lvalue_node,
base,
tnode.node):
# Show only one error per variable
break
for base in lvalue_node.info.mro[1:]:
# Only check __slots__ against the 'object'
# If a base class defines a Tuple of 3 elements, a child of
# this class should not be allowed to define it as a Tuple of
# anything other than 3 elements. The exception to this rule
# is __slots__, where it is allowed for any child class to
# redefine it.
if lvalue_node.name() == "__slots__" and base.fullname() != "builtins.object":
continue
base_type, base_node = self.lvalue_type_from_base(lvalue_node, base)
if base_type:
assert base_node is not None
if not self.check_compatibility_super(lvalue,
lvalue_type,
rvalue,
base,
base_type,
base_node):
# Only show one error per variable; even if other
# base classes are also incompatible
return True
break
return False
def check_compatibility_super(self, lvalue: NameExpr, lvalue_type: Optional[Type],
rvalue: Expression, base: TypeInfo, base_type: Type,
base_node: Node) -> bool:
lvalue_node = lvalue.node
assert isinstance(lvalue_node, Var)
# Do not check whether the rvalue is compatible if the
# lvalue had a type defined; this is handled by other
# parts, and all we have to worry about in that case is
# that lvalue is compatible with the base class.
compare_node = None
if lvalue_type:
compare_type = lvalue_type
compare_node = lvalue.node
else:
compare_type = self.expr_checker.accept(rvalue, base_type)
if isinstance(rvalue, NameExpr):
compare_node = rvalue.node
if isinstance(compare_node, Decorator):
compare_node = compare_node.func
if compare_type:
if (isinstance(base_type, CallableType) and
isinstance(compare_type, CallableType)):
base_static = is_node_static(base_node)
compare_static = is_node_static(compare_node)
# In case compare_static is unknown, also check
# if 'definition' is set. The most common case for
# this is with TempNode(), where we lose all
# information about the real rvalue node (but only get
# the rvalue type)
if compare_static is None and compare_type.definition:
compare_static = is_node_static(compare_type.definition)
# Compare against False, as is_node_static can return None
if base_static is False and compare_static is False:
# Class-level function objects and classmethods become bound
# methods: the former to the instance, the latter to the
# class
base_type = bind_self(base_type, self.scope.active_self_type())
compare_type = bind_self(compare_type, self.scope.active_self_type())
# If we are a static method, ensure to also tell the
# lvalue it now contains a static method
if base_static and compare_static:
lvalue_node.is_staticmethod = True
return self.check_subtype(compare_type, base_type, lvalue,
messages.INCOMPATIBLE_TYPES_IN_ASSIGNMENT,
'expression has type',
'base class "%s" defined the type as' % base.name())
return True
def lvalue_type_from_base(self, expr_node: Var,
base: TypeInfo) -> Tuple[Optional[Type], Optional[Node]]:
"""For a NameExpr that is part of a class, walk all base classes and try
to find the first class that defines a Type for the same name."""
expr_name = expr_node.name()
base_var = base.names.get(expr_name)
if base_var:
base_node = base_var.node
base_type = base_var.type
if isinstance(base_node, Decorator):
base_node = base_node.func
base_type = base_node.type
if base_type:
if not has_no_typevars(base_type):
self_type = self.scope.active_self_type()
assert self_type is not None, "Internal error: base lookup outside class"
if isinstance(self_type, TupleType):
instance = self_type.fallback
else:
instance = self_type
itype = map_instance_to_supertype(instance, base)
base_type = expand_type_by_instance(base_type, itype)
if isinstance(base_type, CallableType) and isinstance(base_node, FuncDef):
# If we are a property, return the Type of the return
# value, not the Callable
if base_node.is_property:
base_type = base_type.ret_type
return base_type, base_node
return None, None
def check_compatibility_classvar_super(self, node: Var,
base: TypeInfo, base_node: Optional[Node]) -> bool:
if not isinstance(base_node, Var):
return True
if node.is_classvar and not base_node.is_classvar:
self.fail('Cannot override instance variable '
'(previously declared on base class "%s") '
'with class variable' % base.name(), node)
return False
elif not node.is_classvar and base_node.is_classvar:
self.fail('Cannot override class variable '
'(previously declared on base class "%s") '
'with instance variable' % base.name(), node)
return False
return True
def check_assignment_to_multiple_lvalues(self, lvalues: List[Lvalue], rvalue: Expression,
context: Context,
infer_lvalue_type: bool = True) -> None:
if isinstance(rvalue, TupleExpr) or isinstance(rvalue, ListExpr):
# Recursively go into Tuple or List expression rhs instead of
# using the type of rhs, because this allowed more fine grained
# control in cases like: a, b = [int, str] where rhs would get
# type List[object]
rvalues = rvalue.items
if self.check_rvalue_count_in_assignment(lvalues, len(rvalues), context):
star_index = next((i for i, lv in enumerate(lvalues) if
isinstance(lv, StarExpr)), len(lvalues))
left_lvs = lvalues[:star_index]
star_lv = cast(StarExpr,
lvalues[star_index]) if star_index != len(lvalues) else None
right_lvs = lvalues[star_index + 1:]
left_rvs, star_rvs, right_rvs = self.split_around_star(
rvalues, star_index, len(lvalues))
lr_pairs = list(zip(left_lvs, left_rvs))
if star_lv:
rv_list = ListExpr(star_rvs)
rv_list.set_line(rvalue.get_line())
lr_pairs.append((star_lv.expr, rv_list))
lr_pairs.extend(zip(right_lvs, right_rvs))
for lv, rv in lr_pairs:
self.check_assignment(lv, rv, infer_lvalue_type)
else:
self.check_multi_assignment(lvalues, rvalue, context, infer_lvalue_type)
def check_rvalue_count_in_assignment(self, lvalues: List[Lvalue], rvalue_count: int,
context: Context) -> bool:
if any(isinstance(lvalue, StarExpr) for lvalue in lvalues):
if len(lvalues) - 1 > rvalue_count:
self.msg.wrong_number_values_to_unpack(rvalue_count,
len(lvalues) - 1, context)
return False
elif rvalue_count != len(lvalues):
self.msg.wrong_number_values_to_unpack(rvalue_count,
len(lvalues), context)
return False
return True
def check_multi_assignment(self, lvalues: List[Lvalue],
rvalue: Expression,
context: Context,
infer_lvalue_type: bool = True,
rv_type: Optional[Type] = None,
undefined_rvalue: bool = False) -> None:
"""Check the assignment of one rvalue to a number of lvalues."""
# Infer the type of an ordinary rvalue expression.
# TODO: maybe elsewhere; redundant.
rvalue_type = rv_type or self.expr_checker.accept(rvalue)
if isinstance(rvalue_type, UnionType):
# If this is an Optional type in non-strict Optional code, unwrap it.
relevant_items = rvalue_type.relevant_items()
if len(relevant_items) == 1:
rvalue_type = relevant_items[0]
if isinstance(rvalue_type, AnyType):
for lv in lvalues:
if isinstance(lv, StarExpr):
lv = lv.expr
temp_node = self.temp_node(AnyType(TypeOfAny.from_another_any,
source_any=rvalue_type), context)
self.check_assignment(lv, temp_node, infer_lvalue_type)
elif isinstance(rvalue_type, TupleType):
self.check_multi_assignment_from_tuple(lvalues, rvalue, rvalue_type,
context, undefined_rvalue, infer_lvalue_type)
elif isinstance(rvalue_type, UnionType):
self.check_multi_assignment_from_union(lvalues, rvalue, rvalue_type, context,
infer_lvalue_type)
else:
self.check_multi_assignment_from_iterable(lvalues, rvalue_type,
context, infer_lvalue_type)
def check_multi_assignment_from_union(self, lvalues: List[Expression], rvalue: Expression,
rvalue_type: UnionType, context: Context,
infer_lvalue_type: bool) -> None:
"""Check assignment to multiple lvalue targets when rvalue type is a Union[...].
For example:
t: Union[Tuple[int, int], Tuple[str, str]]
x, y = t
reveal_type(x) # Union[int, str]
The idea in this case is to process the assignment for every item of the union.
Important note: the types are collected in two places, 'union_types' contains
inferred types for first assignments, 'assignments' contains the narrowed types
for binder.
"""
self.no_partial_types = True
transposed = tuple([] for _ in
self.flatten_lvalues(lvalues)) # type: Tuple[List[Type], ...]
# Notify binder that we want to defer bindings and instead collect types.
with self.binder.accumulate_type_assignments() as assignments:
for item in rvalue_type.items:
# Type check the assignment separately for each union item and collect
# the inferred lvalue types for each union item.
self.check_multi_assignment(lvalues, rvalue, context,
infer_lvalue_type=infer_lvalue_type,
rv_type=item, undefined_rvalue=True)
for t, lv in zip(transposed, self.flatten_lvalues(lvalues)):
t.append(self.type_map.pop(lv, AnyType(TypeOfAny.special_form)))
union_types = tuple(UnionType.make_simplified_union(col) for col in transposed)
for expr, items in assignments.items():
# Bind a union of types collected in 'assignments' to every expression.
if isinstance(expr, StarExpr):
expr = expr.expr
types, declared_types = zip(*items)
self.binder.assign_type(expr,
UnionType.make_simplified_union(types),
UnionType.make_simplified_union(declared_types),
False)
for union, lv in zip(union_types, self.flatten_lvalues(lvalues)):
# Properly store the inferred types.
_1, _2, inferred = self.check_lvalue(lv)
if inferred:
self.set_inferred_type(inferred, lv, union)
else:
self.store_type(lv, union)
self.no_partial_types = False
def flatten_lvalues(self, lvalues: List[Expression]) -> List[Expression]:
res = [] # type: List[Expression]
for lv in lvalues:
if isinstance(lv, (TupleExpr, ListExpr)):
res.extend(self.flatten_lvalues(lv.items))
if isinstance(lv, StarExpr):
# Unwrap StarExpr, since it is unwrapped by other helpers.
lv = lv.expr
res.append(lv)
return res
def check_multi_assignment_from_tuple(self, lvalues: List[Lvalue], rvalue: Expression,
rvalue_type: TupleType, context: Context,
undefined_rvalue: bool,
infer_lvalue_type: bool = True) -> None:
if self.check_rvalue_count_in_assignment(lvalues, len(rvalue_type.items), context):
star_index = next((i for i, lv in enumerate(lvalues)
if isinstance(lv, StarExpr)), len(lvalues))
left_lvs = lvalues[:star_index]
star_lv = cast(StarExpr, lvalues[star_index]) if star_index != len(lvalues) else None
right_lvs = lvalues[star_index + 1:]
if not undefined_rvalue:
# Infer rvalue again, now in the correct type context.
lvalue_type = self.lvalue_type_for_inference(lvalues, rvalue_type)
reinferred_rvalue_type = self.expr_checker.accept(rvalue, lvalue_type)
if isinstance(reinferred_rvalue_type, UnionType):
# If this is an Optional type in non-strict Optional code, unwrap it.
relevant_items = reinferred_rvalue_type.relevant_items()
if len(relevant_items) == 1:
reinferred_rvalue_type = relevant_items[0]
if isinstance(reinferred_rvalue_type, UnionType):
self.check_multi_assignment_from_union(lvalues, rvalue,
reinferred_rvalue_type, context,
infer_lvalue_type)
return
assert isinstance(reinferred_rvalue_type, TupleType)
rvalue_type = reinferred_rvalue_type
left_rv_types, star_rv_types, right_rv_types = self.split_around_star(
rvalue_type.items, star_index, len(lvalues))
for lv, rv_type in zip(left_lvs, left_rv_types):
self.check_assignment(lv, self.temp_node(rv_type, context), infer_lvalue_type)
if star_lv:
list_expr = ListExpr([self.temp_node(rv_type, context)
for rv_type in star_rv_types])
list_expr.set_line(context.get_line())
self.check_assignment(star_lv.expr, list_expr, infer_lvalue_type)
for lv, rv_type in zip(right_lvs, right_rv_types):
self.check_assignment(lv, self.temp_node(rv_type, context), infer_lvalue_type)
def lvalue_type_for_inference(self, lvalues: List[Lvalue], rvalue_type: TupleType) -> Type:
star_index = next((i for i, lv in enumerate(lvalues)
if isinstance(lv, StarExpr)), len(lvalues))
left_lvs = lvalues[:star_index]
star_lv = cast(StarExpr, lvalues[star_index]) if star_index != len(lvalues) else None
right_lvs = lvalues[star_index + 1:]
left_rv_types, star_rv_types, right_rv_types = self.split_around_star(
rvalue_type.items, star_index, len(lvalues))
type_parameters = [] # type: List[Type]
def append_types_for_inference(lvs: List[Expression], rv_types: List[Type]) -> None:
for lv, rv_type in zip(lvs, rv_types):
sub_lvalue_type, index_expr, inferred = self.check_lvalue(lv)
if sub_lvalue_type and not isinstance(sub_lvalue_type, PartialType):
type_parameters.append(sub_lvalue_type)
else: # index lvalue
# TODO Figure out more precise type context, probably
# based on the type signature of the _set method.
type_parameters.append(rv_type)
append_types_for_inference(left_lvs, left_rv_types)
if star_lv:
sub_lvalue_type, index_expr, inferred = self.check_lvalue(star_lv.expr)
if sub_lvalue_type and not isinstance(sub_lvalue_type, PartialType):
type_parameters.extend([sub_lvalue_type] * len(star_rv_types))
else: # index lvalue
# TODO Figure out more precise type context, probably
# based on the type signature of the _set method.
type_parameters.extend(star_rv_types)
append_types_for_inference(right_lvs, right_rv_types)
return TupleType(type_parameters, self.named_type('builtins.tuple'))
def split_around_star(self, items: List[T], star_index: int,
length: int) -> Tuple[List[T], List[T], List[T]]:
"""Splits a list of items in three to match another list of length 'length'
that contains a starred expression at 'star_index' in the following way:
star_index = 2, length = 5 (i.e., [a,b,*,c,d]), items = [1,2,3,4,5,6,7]
returns in: ([1,2], [3,4,5], [6,7])
"""
nr_right_of_star = length - star_index - 1
right_index = -nr_right_of_star if nr_right_of_star != 0 else len(items)
left = items[:star_index]
star = items[star_index:right_index]
right = items[right_index:]
return (left, star, right)
def type_is_iterable(self, type: Type) -> bool:
if isinstance(type, CallableType) and type.is_type_obj():
type = type.fallback
return (is_subtype(type, self.named_generic_type('typing.Iterable',
[AnyType(TypeOfAny.special_form)])) and
isinstance(type, Instance))
def check_multi_assignment_from_iterable(self, lvalues: List[Lvalue], rvalue_type: Type,
context: Context,
infer_lvalue_type: bool = True) -> None:
if self.type_is_iterable(rvalue_type):
item_type = self.iterable_item_type(cast(Instance, rvalue_type))
for lv in lvalues:
if isinstance(lv, StarExpr):
self.check_assignment(lv.expr, self.temp_node(rvalue_type, context),
infer_lvalue_type)
else:
self.check_assignment(lv, self.temp_node(item_type, context),
infer_lvalue_type)
else:
self.msg.type_not_iterable(rvalue_type, context)
def check_lvalue(self, lvalue: Lvalue) -> Tuple[Optional[Type],
Optional[IndexExpr],
Optional[Var]]:
lvalue_type = None
index_lvalue = None
inferred = None
if self.is_definition(lvalue):
if isinstance(lvalue, NameExpr):
inferred = cast(Var, lvalue.node)
assert isinstance(inferred, Var)
else:
assert isinstance(lvalue, MemberExpr)
self.expr_checker.accept(lvalue.expr)
inferred = lvalue.def_var
elif isinstance(lvalue, IndexExpr):
index_lvalue = lvalue
elif isinstance(lvalue, MemberExpr):
lvalue_type = self.expr_checker.analyze_ordinary_member_access(lvalue,
True)
self.store_type(lvalue, lvalue_type)
elif isinstance(lvalue, NameExpr):
lvalue_type = self.expr_checker.analyze_ref_expr(lvalue, lvalue=True)
self.store_type(lvalue, lvalue_type)
elif isinstance(lvalue, TupleExpr) or isinstance(lvalue, ListExpr):
types = [self.check_lvalue(sub_expr)[0] or
# This type will be used as a context for further inference of rvalue,
# we put Uninhabited if there is no information available from lvalue.
UninhabitedType() for sub_expr in lvalue.items]
lvalue_type = TupleType(types, self.named_type('builtins.tuple'))
else:
lvalue_type = self.expr_checker.accept(lvalue)
return lvalue_type, index_lvalue, inferred
def is_definition(self, s: Lvalue) -> bool:
if isinstance(s, NameExpr):
if s.is_inferred_def:
return True
# If the node type is not defined, this must the first assignment
# that we process => this is a definition, even though the semantic
# analyzer did not recognize this as such. This can arise in code
# that uses isinstance checks, if type checking of the primary
# definition is skipped due to an always False type check.
node = s.node
if isinstance(node, Var):
return node.type is None
elif isinstance(s, MemberExpr):
return s.is_inferred_def
return False
def infer_variable_type(self, name: Var, lvalue: Lvalue,
init_type: Type, context: Context) -> None:
"""Infer the type of initialized variables from initializer type."""
if isinstance(init_type, DeletedType):
self.msg.deleted_as_rvalue(init_type, context)
elif not is_valid_inferred_type(init_type) and not self.no_partial_types:
# We cannot use the type of the initialization expression for full type
# inference (it's not specific enough), but we might be able to give
# partial type which will be made more specific later. A partial type
# gets generated in assignment like 'x = []' where item type is not known.
if not self.infer_partial_type(name, lvalue, init_type):
self.fail(messages.NEED_ANNOTATION_FOR_VAR, context)
self.set_inference_error_fallback_type(name, lvalue, init_type, context)
elif (isinstance(lvalue, MemberExpr) and self.inferred_attribute_types is not None
and lvalue.def_var and lvalue.def_var in self.inferred_attribute_types
and not is_same_type(self.inferred_attribute_types[lvalue.def_var], init_type)):
# Multiple, inconsistent types inferred for an attribute.
self.fail(messages.NEED_ANNOTATION_FOR_VAR, context)
name.type = AnyType(TypeOfAny.from_error)
else:
# Infer type of the target.
# Make the type more general (strip away function names etc.).
init_type = strip_type(init_type)
self.set_inferred_type(name, lvalue, init_type)
def infer_partial_type(self, name: Var, lvalue: Lvalue, init_type: Type) -> bool:
if isinstance(init_type, NoneTyp):
partial_type = PartialType(None, name, [init_type])
elif isinstance(init_type, Instance):
fullname = init_type.type.fullname()
if (isinstance(lvalue, (NameExpr, MemberExpr)) and
(fullname == 'builtins.list' or
fullname == 'builtins.set' or
fullname == 'builtins.dict') and
all(isinstance(t, (NoneTyp, UninhabitedType)) for t in init_type.args)):
partial_type = PartialType(init_type.type, name, init_type.args)
else:
return False
else:
return False
self.set_inferred_type(name, lvalue, partial_type)
self.partial_types[-1][name] = lvalue
return True
def set_inferred_type(self, var: Var, lvalue: Lvalue, type: Type) -> None:
"""Store inferred variable type.
Store the type to both the variable node and the expression node that
refers to the variable (lvalue). If var is None, do nothing.
"""
if var and not self.current_node_deferred:
var.type = type
var.is_inferred = True
if isinstance(lvalue, MemberExpr) and self.inferred_attribute_types is not None:
# Store inferred attribute type so that we can check consistency afterwards.
if lvalue.def_var is not None:
self.inferred_attribute_types[lvalue.def_var] = type
self.store_type(lvalue, type)
def set_inference_error_fallback_type(self, var: Var, lvalue: Lvalue, type: Type,
context: Context) -> None:
"""If errors on context line are ignored, store dummy type for variable.
If a program ignores error on type inference error, the variable should get some
inferred type so that if can used later on in the program. Example:
x = [] # type: ignore
x.append(1) # Should be ok!
We implement this here by giving x a valid type (Any).
"""
if context.get_line() in self.errors.ignored_lines[self.errors.file]:
self.set_inferred_type(var, lvalue, AnyType(TypeOfAny.from_error))
def check_simple_assignment(self, lvalue_type: Optional[Type], rvalue: Expression,
context: Context,
msg: str = messages.INCOMPATIBLE_TYPES_IN_ASSIGNMENT,
lvalue_name: str = 'variable',
rvalue_name: str = 'expression') -> Type:
if self.is_stub and isinstance(rvalue, EllipsisExpr):
# '...' is always a valid initializer in a stub.
return AnyType(TypeOfAny.special_form)
else:
always_allow_any = lvalue_type is not None and not isinstance(lvalue_type, AnyType)
rvalue_type = self.expr_checker.accept(rvalue, lvalue_type,
always_allow_any=always_allow_any)
if isinstance(rvalue_type, DeletedType):
self.msg.deleted_as_rvalue(rvalue_type, context)
if isinstance(lvalue_type, DeletedType):
self.msg.deleted_as_lvalue(lvalue_type, context)
elif lvalue_type:
self.check_subtype(rvalue_type, lvalue_type, context, msg,
'{} has type'.format(rvalue_name),
'{} has type'.format(lvalue_name))
return rvalue_type
def check_member_assignment(self, instance_type: Type, attribute_type: Type,
rvalue: Expression, context: Context) -> Tuple[Type, bool]:
"""Type member assigment.
This defers to check_simple_assignment, unless the member expression
is a descriptor, in which case this checks descriptor semantics as well.
Return the inferred rvalue_type and whether to infer anything about the attribute type
"""
# Descriptors don't participate in class-attribute access
if ((isinstance(instance_type, FunctionLike) and instance_type.is_type_obj()) or
isinstance(instance_type, TypeType)):
rvalue_type = self.check_simple_assignment(attribute_type, rvalue, context)
return rvalue_type, True
if not isinstance(attribute_type, Instance):
rvalue_type = self.check_simple_assignment(attribute_type, rvalue, context)
return rvalue_type, True
if not attribute_type.type.has_readable_member('__set__'):
# If there is no __set__, we type-check that the assigned value matches
# the return type of __get__. This doesn't match the python semantics,
# (which allow you to override the descriptor with any value), but preserves
# the type of accessing the attribute (even after the override).
if attribute_type.type.has_readable_member('__get__'):
attribute_type = self.expr_checker.analyze_descriptor_access(
instance_type, attribute_type, context)
rvalue_type = self.check_simple_assignment(attribute_type, rvalue, context)
return rvalue_type, True
dunder_set = attribute_type.type.get_method('__set__')
if dunder_set is None:
self.msg.fail("{}.__set__ is not callable".format(attribute_type), context)
return AnyType(TypeOfAny.from_error), False
function = function_type(dunder_set, self.named_type('builtins.function'))
bound_method = bind_self(function, attribute_type)
typ = map_instance_to_supertype(attribute_type, dunder_set.info)
dunder_set_type = expand_type_by_instance(bound_method, typ)
_, inferred_dunder_set_type = self.expr_checker.check_call(
dunder_set_type, [TempNode(instance_type), rvalue],
[nodes.ARG_POS, nodes.ARG_POS], context)
if not isinstance(inferred_dunder_set_type, CallableType):
self.fail("__set__ is not callable", context)
return AnyType(TypeOfAny.from_error), True
if len(inferred_dunder_set_type.arg_types) < 2:
# A message already will have been recorded in check_call
return AnyType(TypeOfAny.from_error), False
return inferred_dunder_set_type.arg_types[1], False
def check_indexed_assignment(self, lvalue: IndexExpr,
rvalue: Expression, context: Context) -> None:
"""Type check indexed assignment base[index] = rvalue.
The lvalue argument is the base[index] expression.
"""
self.try_infer_partial_type_from_indexed_assignment(lvalue, rvalue)
basetype = self.expr_checker.accept(lvalue.base)
if isinstance(basetype, TypedDictType):
item_type = self.expr_checker.visit_typeddict_index_expr(basetype, lvalue.index)
method_type = CallableType(
arg_types=[self.named_type('builtins.str'), item_type],
arg_kinds=[ARG_POS, ARG_POS],
arg_names=[None, None],
ret_type=NoneTyp(),
fallback=self.named_type('builtins.function')
) # type: Type
else:
method_type = self.expr_checker.analyze_external_member_access(
'__setitem__', basetype, context)
lvalue.method_type = method_type
self.expr_checker.check_call(method_type, [lvalue.index, rvalue],
[nodes.ARG_POS, nodes.ARG_POS],
context)
def try_infer_partial_type_from_indexed_assignment(
self, lvalue: IndexExpr, rvalue: Expression) -> None:
# TODO: Should we share some of this with try_infer_partial_type?
if isinstance(lvalue.base, RefExpr) and isinstance(lvalue.base.node, Var):
var = lvalue.base.node
if isinstance(var.type, PartialType):
type_type = var.type.type
if type_type is None:
return # The partial type is None.
partial_types = self.find_partial_types(var)
if partial_types is None:
return
typename = type_type.fullname()
if typename == 'builtins.dict':
# TODO: Don't infer things twice.
key_type = self.expr_checker.accept(lvalue.index)
value_type = self.expr_checker.accept(rvalue)
full_key_type = UnionType.make_simplified_union(
[key_type, var.type.inner_types[0]])
full_value_type = UnionType.make_simplified_union(
[value_type, var.type.inner_types[1]])
if (is_valid_inferred_type(full_key_type) and
is_valid_inferred_type(full_value_type)):
if not self.current_node_deferred:
var.type = self.named_generic_type('builtins.dict',
[full_key_type, full_value_type])
del partial_types[var]
def visit_expression_stmt(self, s: ExpressionStmt) -> None:
self.expr_checker.accept(s.expr, allow_none_return=True, always_allow_any=True)
def visit_return_stmt(self, s: ReturnStmt) -> None:
"""Type check a return statement."""
self.check_return_stmt(s)
self.binder.unreachable()
def check_return_stmt(self, s: ReturnStmt) -> None:
defn = self.scope.top_function()
if defn is not None:
if defn.is_generator:
return_type = self.get_generator_return_type(self.return_types[-1],
defn.is_coroutine)
else:
return_type = self.return_types[-1]
if isinstance(return_type, UninhabitedType):
self.fail(messages.NO_RETURN_EXPECTED, s)
return
if s.expr:
is_lambda = isinstance(self.scope.top_function(), LambdaExpr)
declared_none_return = isinstance(return_type, NoneTyp)
declared_any_return = isinstance(return_type, AnyType)
# This controls whether or not we allow a function call that
# returns None as the expression of this return statement.
# E.g. `return f()` for some `f` that returns None. We allow
# this only if we're in a lambda or in a function that returns
# `None` or `Any`.
allow_none_func_call = is_lambda or declared_none_return or declared_any_return
# Return with a value.
typ = self.expr_checker.accept(s.expr,
return_type,
allow_none_return=allow_none_func_call)
if defn.is_async_generator:
self.fail("'return' with value in async generator is not allowed", s)
return
# Returning a value of type Any is always fine.
if isinstance(typ, AnyType):
# (Unless you asked to be warned in that case, and the
# function is not declared to return Any)
if (self.options.warn_return_any and not self.current_node_deferred and
not is_proper_subtype(AnyType(TypeOfAny.special_form), return_type)):
self.msg.incorrectly_returning_any(return_type, s)
return
# Disallow return expressions in functions declared to return
# None, subject to two exceptions below.
if declared_none_return:
# Lambdas are allowed to have None returns.
# Functions returning a value of type None are allowed to have a None return.
if is_lambda or isinstance(typ, NoneTyp):
return
self.fail(messages.NO_RETURN_VALUE_EXPECTED, s)
else:
self.check_subtype(
subtype_label='got',
subtype=typ,
supertype_label='expected',
supertype=return_type,
context=s,
msg=messages.INCOMPATIBLE_RETURN_VALUE_TYPE)
else:
# Empty returns are valid in Generators with Any typed returns, but not in
# coroutines.
if (defn.is_generator and not defn.is_coroutine and
isinstance(return_type, AnyType)):
return
if isinstance(return_type, (NoneTyp, AnyType)):
return
if self.in_checked_function():
self.fail(messages.RETURN_VALUE_EXPECTED, s)
def visit_if_stmt(self, s: IfStmt) -> None:
"""Type check an if statement."""
# This frame records the knowledge from previous if/elif clauses not being taken.
# Fall-through to the original frame is handled explicitly in each block.
with self.binder.frame_context(can_skip=False, fall_through=0):
for e, b in zip(s.expr, s.body):
t = self.expr_checker.accept(e)
if isinstance(t, DeletedType):
self.msg.deleted_as_rvalue(t, s)
if self.options.strict_boolean:
is_bool = isinstance(t, Instance) and t.type.fullname() == 'builtins.bool'
if not (is_bool or isinstance(t, AnyType)):
self.fail(messages.NON_BOOLEAN_IN_CONDITIONAL, e)
if_map, else_map = self.find_isinstance_check(e)
# XXX Issue a warning if condition is always False?
with self.binder.frame_context(can_skip=True, fall_through=2):
self.push_type_map(if_map)
self.accept(b)
# XXX Issue a warning if condition is always True?
self.push_type_map(else_map)
with self.binder.frame_context(can_skip=False, fall_through=2):
if s.else_body:
self.accept(s.else_body)
def visit_while_stmt(self, s: WhileStmt) -> None:
"""Type check a while statement."""
if_stmt = IfStmt([s.expr], [s.body], None)
if_stmt.set_line(s.get_line(), s.get_column())
self.accept_loop(if_stmt, s.else_body,
exit_condition=s.expr)
def visit_operator_assignment_stmt(self,
s: OperatorAssignmentStmt) -> None:
"""Type check an operator assignment statement, e.g. x += 1."""
lvalue_type = self.expr_checker.accept(s.lvalue)
inplace, method = infer_operator_assignment_method(lvalue_type, s.op)
if inplace:
# There is __ifoo__, treat as x = x.__ifoo__(y)
rvalue_type, method_type = self.expr_checker.check_op(
method, lvalue_type, s.rvalue, s)
if not is_subtype(rvalue_type, lvalue_type):
self.msg.incompatible_operator_assignment(s.op, s)
else:
# There is no __ifoo__, treat as x = x <foo> y
expr = OpExpr(s.op, s.lvalue, s.rvalue)
expr.set_line(s)
self.check_assignment(lvalue=s.lvalue, rvalue=expr,
infer_lvalue_type=True, new_syntax=False)
def visit_assert_stmt(self, s: AssertStmt) -> None:
self.expr_checker.accept(s.expr)
if s.msg is not None:
self.expr_checker.accept(s.msg)
if isinstance(s.expr, TupleExpr) and len(s.expr.items) > 0:
self.warn(messages.MALFORMED_ASSERT, s)
# If this is asserting some isinstance check, bind that type in the following code
true_map, _ = self.find_isinstance_check(s.expr)
self.push_type_map(true_map)
def visit_raise_stmt(self, s: RaiseStmt) -> None:
"""Type check a raise statement."""
if s.expr:
self.type_check_raise(s.expr, s)
if s.from_expr:
self.type_check_raise(s.from_expr, s, True)
self.binder.unreachable()
def type_check_raise(self, e: Expression, s: RaiseStmt,
optional: bool = False) -> None:
typ = self.expr_checker.accept(e)
if isinstance(typ, FunctionLike):
if typ.is_type_obj():
# Cases like "raise/from ExceptionClass".
typeinfo = typ.type_object()
base = self.lookup_typeinfo('builtins.BaseException')
if base in typeinfo.mro or typeinfo.fallback_to_any:
# Good!
return
# Else fall back to the checks below (which will fail).
if isinstance(typ, TupleType) and self.options.python_version[0] == 2:
# allow `raise type, value, traceback`
# https://docs.python.org/2/reference/simple_stmts.html#the-raise-statement
# TODO: Also check tuple item types.
if len(typ.items) in (2, 3):
return
if isinstance(typ, Instance) and typ.type.fallback_to_any:
# OK!
return
expected_type = self.named_type('builtins.BaseException') # type: Type
if optional:
expected_type = UnionType([expected_type, NoneTyp()])
self.check_subtype(typ, expected_type, s, messages.INVALID_EXCEPTION)
def visit_try_stmt(self, s: TryStmt) -> None:
"""Type check a try statement."""
# Our enclosing frame will get the result if the try/except falls through.
# This one gets all possible states after the try block exited abnormally
# (by exception, return, break, etc.)
with self.binder.frame_context(can_skip=False, fall_through=0):
# Not only might the body of the try statement exit
# abnormally, but so might an exception handler or else
# clause. The finally clause runs in *all* cases, so we
# need an outer try frame to catch all intermediate states
# in case an exception is raised during an except or else
# clause. As an optimization, only create the outer try
# frame when there actually is a finally clause.
self.visit_try_without_finally(s, try_frame=bool(s.finally_body))
if s.finally_body:
# First we check finally_body is type safe on all abnormal exit paths
self.accept(s.finally_body)
if s.finally_body:
# Then we try again for the more restricted set of options
# that can fall through. (Why do we need to check the
# finally clause twice? Depending on whether the finally
# clause was reached by the try clause falling off the end
# or exiting abnormally, after completing the finally clause
# either flow will continue to after the entire try statement
# or the exception/return/etc. will be processed and control
# flow will escape. We need to check that the finally clause
# type checks in both contexts, but only the resulting types
# from the latter context affect the type state in the code
# that follows the try statement.)
self.accept(s.finally_body)
def visit_try_without_finally(self, s: TryStmt, try_frame: bool) -> None:
"""Type check a try statement, ignoring the finally block.
On entry, the top frame should receive all flow that exits the
try block abnormally (i.e., such that the else block does not
execute), and its parent should receive all flow that exits
the try block normally.
"""
# This frame will run the else block if the try fell through.
# In that case, control flow continues to the parent of what
# was the top frame on entry.
with self.binder.frame_context(can_skip=False, fall_through=2, try_frame=try_frame):
# This frame receives exit via exception, and runs exception handlers
with self.binder.frame_context(can_skip=False, fall_through=2):
# Finally, the body of the try statement
with self.binder.frame_context(can_skip=False, fall_through=2, try_frame=True):
self.accept(s.body)
for i in range(len(s.handlers)):
with self.binder.frame_context(can_skip=True, fall_through=4):
typ = s.types[i]
if typ:
t = self.check_except_handler_test(typ)
var = s.vars[i]
if var:
# To support local variables, we make this a definition line,
# causing assignment to set the variable's type.
var.is_inferred_def = True
# We also temporarily set current_node_deferred to False to
# make sure the inference happens.
# TODO: Use a better solution, e.g. a
# separate Var for each except block.
am_deferring = self.current_node_deferred
self.current_node_deferred = False
self.check_assignment(var, self.temp_node(t, var))
self.current_node_deferred = am_deferring
self.accept(s.handlers[i])
var = s.vars[i]
if var:
# Exception variables are deleted in python 3 but not python 2.
# But, since it's bad form in python 2 and the type checking
# wouldn't work very well, we delete it anyway.
# Unfortunately, this doesn't let us detect usage before the
# try/except block.
if self.options.python_version[0] >= 3:
source = var.name
else:
source = ('(exception variable "{}", which we do not '
'accept outside except: blocks even in '
'python 2)'.format(var.name))
cast(Var, var.node).type = DeletedType(source=source)
self.binder.cleanse(var)
if s.else_body:
self.accept(s.else_body)
def check_except_handler_test(self, n: Expression) -> Type:
"""Type check an exception handler test clause."""
typ = self.expr_checker.accept(n)
all_types = [] # type: List[Type]
test_types = self.get_types_from_except_handler(typ, n)
for ttype in test_types:
if isinstance(ttype, AnyType):
all_types.append(ttype)
continue
if isinstance(ttype, FunctionLike):
item = ttype.items()[0]
if not item.is_type_obj():
self.fail(messages.INVALID_EXCEPTION_TYPE, n)
return AnyType(TypeOfAny.from_error)
exc_type = item.ret_type
elif isinstance(ttype, TypeType):
exc_type = ttype.item
else:
self.fail(messages.INVALID_EXCEPTION_TYPE, n)
return AnyType(TypeOfAny.from_error)
if not is_subtype(exc_type, self.named_type('builtins.BaseException')):
self.fail(messages.INVALID_EXCEPTION_TYPE, n)
return AnyType(TypeOfAny.from_error)
all_types.append(exc_type)
return UnionType.make_simplified_union(all_types)
def get_types_from_except_handler(self, typ: Type, n: Expression) -> List[Type]:
"""Helper for check_except_handler_test to retrieve handler types."""
if isinstance(typ, TupleType):
return typ.items
elif isinstance(typ, UnionType):
return [
union_typ
for item in typ.relevant_items()
for union_typ in self.get_types_from_except_handler(item, n)
]
elif isinstance(typ, Instance) and is_named_instance(typ, 'builtins.tuple'):
# variadic tuple
return [typ.args[0]]
else:
return [typ]
def visit_for_stmt(self, s: ForStmt) -> None:
"""Type check a for statement."""
if s.is_async:
item_type = self.analyze_async_iterable_item_type(s.expr)
else:
item_type = self.analyze_iterable_item_type(s.expr)
s.inferred_item_type = item_type
self.analyze_index_variables(s.index, item_type, s.index_type is None, s)
self.accept_loop(s.body, s.else_body)
def analyze_async_iterable_item_type(self, expr: Expression) -> Type:
"""Analyse async iterable expression and return iterator item type."""
echk = self.expr_checker
iterable = echk.accept(expr)
self.check_subtype(iterable,
self.named_generic_type('typing.AsyncIterable',
[AnyType(TypeOfAny.special_form)]),
expr, messages.ASYNC_ITERABLE_EXPECTED)
method = echk.analyze_external_member_access('__aiter__', iterable, expr)
iterator = echk.check_call(method, [], [], expr)[0]
method = echk.analyze_external_member_access('__anext__', iterator, expr)
awaitable = echk.check_call(method, [], [], expr)[0]
return echk.check_awaitable_expr(awaitable, expr,
messages.INCOMPATIBLE_TYPES_IN_ASYNC_FOR)
def analyze_iterable_item_type(self, expr: Expression) -> Type:
"""Analyse iterable expression and return iterator item type."""
echk = self.expr_checker
iterable = echk.accept(expr)
if isinstance(iterable, TupleType):
joined = UninhabitedType() # type: Type
for item in iterable.items:
joined = join_types(joined, item)
return joined
else:
# Non-tuple iterable.
self.check_subtype(iterable,
self.named_generic_type('typing.Iterable',
[AnyType(TypeOfAny.special_form)]),
expr, messages.ITERABLE_EXPECTED)
method = echk.analyze_external_member_access('__iter__', iterable,
expr)
iterator = echk.check_call(method, [], [], expr)[0]
if self.options.python_version[0] >= 3:
nextmethod = '__next__'
else:
nextmethod = 'next'
method = echk.analyze_external_member_access(nextmethod, iterator,
expr)
return echk.check_call(method, [], [], expr)[0]
def analyze_index_variables(self, index: Expression, item_type: Type,
infer_lvalue_type: bool, context: Context) -> None:
"""Type check or infer for loop or list comprehension index vars."""
self.check_assignment(index, self.temp_node(item_type, context), infer_lvalue_type)
def visit_del_stmt(self, s: DelStmt) -> None:
if isinstance(s.expr, IndexExpr):
e = s.expr
m = MemberExpr(e.base, '__delitem__')
m.line = s.line
c = CallExpr(m, [e.index], [nodes.ARG_POS], [None])
c.line = s.line
self.expr_checker.accept(c, allow_none_return=True)
else:
s.expr.accept(self.expr_checker)
for elt in flatten(s.expr):
if isinstance(elt, NameExpr):
self.binder.assign_type(elt, DeletedType(source=elt.name),
get_declaration(elt), False)
def visit_decorator(self, e: Decorator) -> None:
for d in e.decorators:
if isinstance(d, RefExpr):
if d.fullname == 'typing.no_type_check':
e.var.type = AnyType(TypeOfAny.special_form)
e.var.is_ready = True
return
self.check_func_item(e.func, name=e.func.name())
# Process decorators from the inside out to determine decorated signature, which
# may be different from the declared signature.
sig = self.function_type(e.func) # type: Type
for d in reversed(e.decorators):
if refers_to_fullname(d, 'typing.overload'):
self.fail('Single overload definition, multiple required', e)
continue
dec = self.expr_checker.accept(d)
temp = self.temp_node(sig)
fullname = None
if isinstance(d, RefExpr):
fullname = d.fullname
self.check_for_untyped_decorator(e.func, dec, d)
sig, t2 = self.expr_checker.check_call(dec, [temp],
[nodes.ARG_POS], e,
callable_name=fullname)
self.check_untyped_after_decorator(sig, e.func)
sig = cast(FunctionLike, sig)
sig = set_callable_name(sig, e.func)
e.var.type = sig
e.var.is_ready = True
if e.func.is_property:
self.check_incompatible_property_override(e)
if e.func.info and not e.func.is_dynamic():
self.check_method_override(e)
def check_for_untyped_decorator(self,
func: FuncDef,
dec_type: Type,
dec_expr: Expression) -> None:
if (self.options.disallow_untyped_decorators and
is_typed_callable(func.type) and
is_untyped_decorator(dec_type)):
self.msg.typed_function_untyped_decorator(func.name(), dec_expr)
def check_incompatible_property_override(self, e: Decorator) -> None:
if not e.var.is_settable_property and e.func.info is not None:
name = e.func.name()
for base in e.func.info.mro[1:]:
base_attr = base.names.get(name)
if not base_attr:
continue
if (isinstance(base_attr.node, OverloadedFuncDef) and
base_attr.node.is_property and
cast(Decorator,
base_attr.node.items[0]).var.is_settable_property):
self.fail(messages.READ_ONLY_PROPERTY_OVERRIDES_READ_WRITE, e)
def visit_with_stmt(self, s: WithStmt) -> None:
for expr, target in zip(s.expr, s.target):
if s.is_async:
self.check_async_with_item(expr, target, s.target_type is None)
else:
self.check_with_item(expr, target, s.target_type is None)
self.accept(s.body)
def check_untyped_after_decorator(self, typ: Type, func: FuncDef) -> None:
if not self.options.disallow_any_decorated or self.is_stub:
return
if mypy.checkexpr.has_any_type(typ):
self.msg.untyped_decorated_function(typ, func)
def check_async_with_item(self, expr: Expression, target: Optional[Expression],
infer_lvalue_type: bool) -> None:
echk = self.expr_checker
ctx = echk.accept(expr)
enter = echk.analyze_external_member_access('__aenter__', ctx, expr)
obj = echk.check_call(enter, [], [], expr)[0]
obj = echk.check_awaitable_expr(
obj, expr, messages.INCOMPATIBLE_TYPES_IN_ASYNC_WITH_AENTER)
if target:
self.check_assignment(target, self.temp_node(obj, expr), infer_lvalue_type)
exit = echk.analyze_external_member_access('__aexit__', ctx, expr)
arg = self.temp_node(AnyType(TypeOfAny.special_form), expr)
res = echk.check_call(exit, [arg] * 3, [nodes.ARG_POS] * 3, expr)[0]
echk.check_awaitable_expr(
res, expr, messages.INCOMPATIBLE_TYPES_IN_ASYNC_WITH_AEXIT)
def check_with_item(self, expr: Expression, target: Optional[Expression],
infer_lvalue_type: bool) -> None:
echk = self.expr_checker
ctx = echk.accept(expr)
enter = echk.analyze_external_member_access('__enter__', ctx, expr)
obj = echk.check_call(enter, [], [], expr)[0]
if target:
self.check_assignment(target, self.temp_node(obj, expr), infer_lvalue_type)
exit = echk.analyze_external_member_access('__exit__', ctx, expr)
arg = self.temp_node(AnyType(TypeOfAny.special_form), expr)
echk.check_call(exit, [arg] * 3, [nodes.ARG_POS] * 3, expr)
def visit_print_stmt(self, s: PrintStmt) -> None:
for arg in s.args:
self.expr_checker.accept(arg)
if s.target:
target_type = self.expr_checker.accept(s.target)
if not isinstance(target_type, NoneTyp):
# TODO: Also verify the type of 'write'.
self.expr_checker.analyze_external_member_access('write', target_type, s.target)
def visit_break_stmt(self, s: BreakStmt) -> None:
self.binder.handle_break()
def visit_continue_stmt(self, s: ContinueStmt) -> None:
self.binder.handle_continue()
return None
#
# Helpers
#
def check_subtype(self, subtype: Type, supertype: Type, context: Context,
msg: str = messages.INCOMPATIBLE_TYPES,
subtype_label: Optional[str] = None,
supertype_label: Optional[str] = None) -> bool:
"""Generate an error if the subtype is not compatible with
supertype."""
if is_subtype(subtype, supertype):
return True
else:
if self.should_suppress_optional_error([subtype]):
return False
extra_info = [] # type: List[str]
note_msg = ''
if subtype_label is not None or supertype_label is not None:
subtype_str, supertype_str = self.msg.format_distinctly(subtype, supertype)
if subtype_label is not None:
extra_info.append(subtype_label + ' ' + subtype_str)
if supertype_label is not None:
extra_info.append(supertype_label + ' ' + supertype_str)
note_msg = make_inferred_type_note(context, subtype,
supertype, supertype_str)
if extra_info:
msg += ' (' + ', '.join(extra_info) + ')'
self.fail(msg, context)
if note_msg:
self.note(note_msg, context)
if (isinstance(supertype, Instance) and supertype.type.is_protocol and
isinstance(subtype, (Instance, TupleType, TypedDictType))):
self.msg.report_protocol_problems(subtype, supertype, context)
if isinstance(supertype, CallableType) and isinstance(subtype, Instance):
call = find_member('__call__', subtype, subtype)
if call:
self.msg.note_call(subtype, call, context)
return False
def contains_none(self, t: Type) -> bool:
return (
isinstance(t, NoneTyp) or
(isinstance(t, UnionType) and any(self.contains_none(ut) for ut in t.items)) or
(isinstance(t, TupleType) and any(self.contains_none(tt) for tt in t.items)) or
(isinstance(t, Instance) and bool(t.args)
and any(self.contains_none(it) for it in t.args))
)
def should_suppress_optional_error(self, related_types: List[Type]) -> bool:
return self.suppress_none_errors and any(self.contains_none(t) for t in related_types)
def named_type(self, name: str) -> Instance:
"""Return an instance type with type given by the name and no
type arguments. For example, named_type('builtins.object')
produces the object type.
"""
# Assume that the name refers to a type.
sym = self.lookup_qualified(name)
node = sym.node
assert isinstance(node, TypeInfo)
any_type = AnyType(TypeOfAny.from_omitted_generics)
return Instance(node, [any_type] * len(node.defn.type_vars))
def named_generic_type(self, name: str, args: List[Type]) -> Instance:
"""Return an instance with the given name and type arguments.
Assume that the number of arguments is correct. Assume that
the name refers to a compatible generic type.
"""
info = self.lookup_typeinfo(name)
# TODO: assert len(args) == len(info.defn.type_vars)
return Instance(info, args)
def lookup_typeinfo(self, fullname: str) -> TypeInfo:
# Assume that the name refers to a class.
sym = self.lookup_qualified(fullname)
node = sym.node
assert isinstance(node, TypeInfo)
return node
def type_type(self) -> Instance:
"""Return instance type 'type'."""
return self.named_type('builtins.type')
def str_type(self) -> Instance:
"""Return instance type 'str'."""
return self.named_type('builtins.str')
def store_type(self, node: Expression, typ: Type) -> None:
"""Store the type of a node in the type map."""
self.type_map[node] = typ
def in_checked_function(self) -> bool:
"""Should we type-check the current function?
- Yes if --check-untyped-defs is set.
- Yes outside functions.
- Yes in annotated functions.
- No otherwise.
"""
return (self.options.check_untyped_defs
or not self.dynamic_funcs
or not self.dynamic_funcs[-1])
def lookup(self, name: str, kind: int) -> SymbolTableNode:
"""Look up a definition from the symbol table with the given name.
TODO remove kind argument
"""
if name in self.globals:
return self.globals[name]
else:
b = self.globals.get('__builtins__', None)
if b:
table = cast(MypyFile, b.node).names
if name in table:
return table[name]
raise KeyError('Failed lookup: {}'.format(name))
def lookup_qualified(self, name: str) -> SymbolTableNode:
if '.' not in name:
return self.lookup(name, GDEF) # FIX kind
else:
parts = name.split('.')
n = self.modules[parts[0]]
for i in range(1, len(parts) - 1):
sym = n.names.get(parts[i])
assert sym is not None, "Internal error: attempted lookup of unknown name"
n = cast(MypyFile, sym.node)
last = parts[-1]
if last in n.names:
return n.names[last]
elif len(parts) == 2 and parts[0] == 'builtins':
raise KeyError("Could not find builtin symbol '{}'. (Are you running a "
"test case? If so, make sure to include a fixture that "
"defines this symbol.)".format(last))
else:
msg = "Failed qualified lookup: '{}' (fullname = '{}')."
raise KeyError(msg.format(last, name))
@contextmanager
def enter_partial_types(self) -> Iterator[None]:
"""Enter a new scope for collecting partial types.
Also report errors for variables which still have partial
types, i.e. we couldn't infer a complete type.
"""
self.partial_types.append({})
yield
partial_types = self.partial_types.pop()
if not self.current_node_deferred:
for var, context in partial_types.items():
if isinstance(var.type, PartialType) and var.type.type is None:
# None partial type: assume variable is intended to have type None
var.type = NoneTyp()
else:
if var not in self.partial_reported:
self.msg.fail(messages.NEED_ANNOTATION_FOR_VAR, context)
self.partial_reported.add(var)
var.type = AnyType(TypeOfAny.from_error)
def find_partial_types(self, var: Var) -> Optional[Dict[Var, Context]]:
for partial_types in reversed(self.partial_types):
if var in partial_types:
return partial_types
return None
def temp_node(self, t: Type, context: Optional[Context] = None) -> TempNode:
"""Create a temporary node with the given, fixed type."""
temp = TempNode(t)
if context:
temp.set_line(context.get_line())
return temp
def fail(self, msg: str, context: Context) -> None:
"""Produce an error message."""
self.msg.fail(msg, context)
def warn(self, msg: str, context: Context) -> None:
"""Produce a warning message."""
self.msg.warn(msg, context)
def note(self, msg: str, context: Context, offset: int = 0) -> None:
"""Produce a note."""
self.msg.note(msg, context, offset=offset)
def iterable_item_type(self, instance: Instance) -> Type:
iterable = map_instance_to_supertype(
instance,
self.lookup_typeinfo('typing.Iterable'))
item_type = iterable.args[0]
if not isinstance(item_type, AnyType):
# This relies on 'map_instance_to_supertype' returning 'Iterable[Any]'
# in case there is no explicit base class.
return item_type
# Try also structural typing.
iter_type = find_member('__iter__', instance, instance)
if (iter_type and isinstance(iter_type, CallableType) and
isinstance(iter_type.ret_type, Instance)):
iterator = map_instance_to_supertype(iter_type.ret_type,
self.lookup_typeinfo('typing.Iterator'))
item_type = iterator.args[0]
return item_type
def function_type(self, func: FuncBase) -> FunctionLike:
return function_type(func, self.named_type('builtins.function'))
def find_isinstance_check(self, n: Expression) -> 'Tuple[TypeMap, TypeMap]':
return find_isinstance_check(n, self.type_map)
def push_type_map(self, type_map: 'TypeMap') -> None:
if type_map is None:
self.binder.unreachable()
else:
for expr, type in type_map.items():
self.binder.put(expr, type)
# Data structure returned by find_isinstance_check representing
# information learned from the truth or falsehood of a condition. The
# dict maps nodes representing expressions like 'a[0].x' to their
# refined types under the assumption that the condition has a
# particular truth value. A value of None means that the condition can
# never have that truth value.
# NB: The keys of this dict are nodes in the original source program,
# which are compared by reference equality--effectively, being *the
# same* expression of the program, not just two identical expressions
# (such as two references to the same variable). TODO: it would
# probably be better to have the dict keyed by the nodes' literal_hash
# field instead.
TypeMap = Optional[Dict[Expression, Type]]
# An object that represents either a precise type or a type with an upper bound;
# it is important for correct type inference with isinstance.
TypeRange = NamedTuple(
'TypeRange',
[
('item', Type),
('is_upper_bound', bool), # False => precise type
])
def conditional_type_map(expr: Expression,
current_type: Optional[Type],
proposed_type_ranges: Optional[List[TypeRange]],
) -> Tuple[TypeMap, TypeMap]:
"""Takes in an expression, the current type of the expression, and a
proposed type of that expression.
Returns a 2-tuple: The first element is a map from the expression to
the proposed type, if the expression can be the proposed type. The
second element is a map from the expression to the type it would hold
if it was not the proposed type, if any. None means bot, {} means top"""
if proposed_type_ranges:
if len(proposed_type_ranges) == 1:
proposed_type = proposed_type_ranges[0].item # Union with a single type breaks tests
else:
proposed_type = UnionType([type_range.item for type_range in proposed_type_ranges])
if current_type:
if (not any(type_range.is_upper_bound for type_range in proposed_type_ranges)
and is_proper_subtype(current_type, proposed_type)):
# Expression is always of one of the types in proposed_type_ranges
return {}, None
elif not is_overlapping_types(current_type, proposed_type):
# Expression is never of any type in proposed_type_ranges
return None, {}
else:
# we can only restrict when the type is precise, not bounded
proposed_precise_type = UnionType([type_range.item
for type_range in proposed_type_ranges
if not type_range.is_upper_bound])
remaining_type = restrict_subtype_away(current_type, proposed_precise_type)
return {expr: proposed_type}, {expr: remaining_type}
else:
return {expr: proposed_type}, {}
else:
# An isinstance check, but we don't understand the type
return {}, {}
def partition_by_callable(type: Type) -> Tuple[List[Type], List[Type]]:
"""Takes in a type and partitions that type into callable subtypes and
uncallable subtypes.
Thus, given:
`callables, uncallables = partition_by_callable(type)`
If we assert `callable(type)` then `type` has type Union[*callables], and
If we assert `not callable(type)` then `type` has type Union[*uncallables]
Guaranteed to not return [], []"""
if isinstance(type, FunctionLike) or isinstance(type, TypeType):
return [type], []
if isinstance(type, AnyType):
return [type], [type]
if isinstance(type, UnionType):
callables = []
uncallables = []
for subtype in type.relevant_items():
subcallables, subuncallables = partition_by_callable(subtype)
callables.extend(subcallables)
uncallables.extend(subuncallables)
return callables, uncallables
if isinstance(type, TypeVarType):
return partition_by_callable(type.erase_to_union_or_bound())
if isinstance(type, Instance):
method = type.type.get_method('__call__')
if method and method.type:
callables, uncallables = partition_by_callable(method.type)
if len(callables) and not len(uncallables):
# Only consider the type callable if its __call__ method is
# definitely callable.
return [type], []
return [], [type]
return [], [type]
def conditional_callable_type_map(expr: Expression,
current_type: Optional[Type],
) -> Tuple[TypeMap, TypeMap]:
"""Takes in an expression and the current type of the expression.
Returns a 2-tuple: The first element is a map from the expression to
the restricted type if it were callable. The second element is a
map from the expression to the type it would hold if it weren't
callable."""
if not current_type:
return {}, {}
if isinstance(current_type, AnyType):
return {}, {}
callables, uncallables = partition_by_callable(current_type)
if len(callables) and len(uncallables):
callable_map = {expr: UnionType.make_union(callables)} if len(callables) else None
uncallable_map = {expr: UnionType.make_union(uncallables)} if len(uncallables) else None
return callable_map, uncallable_map
elif len(callables):
return {}, None
return None, {}
def is_true_literal(n: Expression) -> bool:
return (refers_to_fullname(n, 'builtins.True')
or isinstance(n, IntExpr) and n.value == 1)
def is_false_literal(n: Expression) -> bool:
return (refers_to_fullname(n, 'builtins.False')
or isinstance(n, IntExpr) and n.value == 0)
def is_literal_none(n: Expression) -> bool:
return isinstance(n, NameExpr) and n.fullname == 'builtins.None'
def is_optional(t: Type) -> bool:
return isinstance(t, UnionType) and any(isinstance(e, NoneTyp) for e in t.items)
def remove_optional(typ: Type) -> Type:
if isinstance(typ, UnionType):
return UnionType.make_union([t for t in typ.items if not isinstance(t, NoneTyp)])
else:
return typ
def builtin_item_type(tp: Type) -> Optional[Type]:
"""Get the item type of a builtin container.
If 'tp' is not one of the built containers (these includes NamedTuple and TypedDict)
or if the container is not parameterized (like List or List[Any])
return None. This function is used to narrow optional types in situations like this:
x: Optional[int]
if x in (1, 2, 3):
x + 42 # OK
Note: this is only OK for built-in containers, where we know the behavior
of __contains__.
"""
if isinstance(tp, Instance):
if tp.type.fullname() in ['builtins.list', 'builtins.tuple', 'builtins.dict',
'builtins.set', 'builtins.frozenset']:
if not tp.args:
# TODO: fix tuple in lib-stub/builtins.pyi (it should be generic).
return None
if not isinstance(tp.args[0], AnyType):
return tp.args[0]
elif isinstance(tp, TupleType) and all(not isinstance(it, AnyType) for it in tp.items):
return UnionType.make_simplified_union(tp.items) # this type is not externally visible
elif isinstance(tp, TypedDictType):
# TypedDict always has non-optional string keys.
if tp.fallback.type.fullname() == 'typing.Mapping':
return tp.fallback.args[0]
elif tp.fallback.type.bases[0].type.fullname() == 'typing.Mapping':
return tp.fallback.type.bases[0].args[0]
return None
def and_conditional_maps(m1: TypeMap, m2: TypeMap) -> TypeMap:
"""Calculate what information we can learn from the truth of (e1 and e2)
in terms of the information that we can learn from the truth of e1 and
the truth of e2.
"""
if m1 is None or m2 is None:
# One of the conditions can never be true.
return None
# Both conditions can be true; combine the information. Anything
# we learn from either conditions's truth is valid. If the same
# expression's type is refined by both conditions, we somewhat
# arbitrarily give precedence to m2. (In the future, we could use
# an intersection type.)
result = m2.copy()
m2_keys = set(literal_hash(n2) for n2 in m2)
for n1 in m1:
if literal_hash(n1) not in m2_keys:
result[n1] = m1[n1]
return result
def or_conditional_maps(m1: TypeMap, m2: TypeMap) -> TypeMap:
"""Calculate what information we can learn from the truth of (e1 or e2)
in terms of the information that we can learn from the truth of e1 and
the truth of e2.
"""
if m1 is None:
return m2
if m2 is None:
return m1
# Both conditions can be true. Combine information about
# expressions whose type is refined by both conditions. (We do not
# learn anything about expressions whose type is refined by only
# one condition.)
result = {}
for n1 in m1:
for n2 in m2:
if literal_hash(n1) == literal_hash(n2):
result[n1] = UnionType.make_simplified_union([m1[n1], m2[n2]])
return result
def convert_to_typetype(type_map: TypeMap) -> TypeMap:
converted_type_map = {} # type: Dict[Expression, Type]
if type_map is None:
return None
for expr, typ in type_map.items():
if not isinstance(typ, (UnionType, Instance)):
# unknown type; error was likely reported earlier
return {}
converted_type_map[expr] = TypeType.make_normalized(typ)
return converted_type_map
def find_isinstance_check(node: Expression,
type_map: Dict[Expression, Type],
) -> Tuple[TypeMap, TypeMap]:
"""Find any isinstance checks (within a chain of ands). Includes
implicit and explicit checks for None and calls to callable.
Return value is a map of variables to their types if the condition
is true and a map of variables to their types if the condition is false.
If either of the values in the tuple is None, then that particular
branch can never occur.
Guaranteed to not return None, None. (But may return {}, {})
"""
if is_true_literal(node):
return {}, None
elif is_false_literal(node):
return None, {}
elif isinstance(node, CallExpr):
if refers_to_fullname(node.callee, 'builtins.isinstance'):
if len(node.args) != 2: # the error will be reported later
return {}, {}
expr = node.args[0]
if literal(expr) == LITERAL_TYPE:
vartype = type_map[expr]
type = get_isinstance_type(node.args[1], type_map)
return conditional_type_map(expr, vartype, type)
elif refers_to_fullname(node.callee, 'builtins.issubclass'):
expr = node.args[0]
if literal(expr) == LITERAL_TYPE:
vartype = type_map[expr]
type = get_isinstance_type(node.args[1], type_map)
if isinstance(vartype, UnionType):
union_list = []
for t in vartype.items:
if isinstance(t, TypeType):
union_list.append(t.item)
else:
# this is an error that should be reported earlier
# if we reach here, we refuse to do any type inference
return {}, {}
vartype = UnionType(union_list)
elif isinstance(vartype, TypeType):
vartype = vartype.item
else:
# any other object whose type we don't know precisely
# for example, Any or Instance of type type
return {}, {} # unknown type
yes_map, no_map = conditional_type_map(expr, vartype, type)
yes_map, no_map = map(convert_to_typetype, (yes_map, no_map))
return yes_map, no_map
elif refers_to_fullname(node.callee, 'builtins.callable'):
expr = node.args[0]
if literal(expr) == LITERAL_TYPE:
vartype = type_map[expr]
return conditional_callable_type_map(expr, vartype)
elif isinstance(node, ComparisonExpr) and experiments.STRICT_OPTIONAL:
# Check for `x is None` and `x is not None`.
is_not = node.operators == ['is not']
if any(is_literal_none(n) for n in node.operands) and (is_not or node.operators == ['is']):
if_vars = {} # type: TypeMap
else_vars = {} # type: TypeMap
for expr in node.operands:
if (literal(expr) == LITERAL_TYPE and not is_literal_none(expr)
and expr in type_map):
# This should only be true at most once: there should be
# two elements in node.operands, and at least one of them
# should represent a None.
vartype = type_map[expr]
none_typ = [TypeRange(NoneTyp(), is_upper_bound=False)]
if_vars, else_vars = conditional_type_map(expr, vartype, none_typ)
break
if is_not:
if_vars, else_vars = else_vars, if_vars
return if_vars, else_vars
# Check for `x == y` where x is of type Optional[T] and y is of type T
# or a type that overlaps with T (or vice versa).
elif node.operators == ['==']:
first_type = type_map[node.operands[0]]
second_type = type_map[node.operands[1]]
if is_optional(first_type) != is_optional(second_type):
if is_optional(first_type):
optional_type, comp_type = first_type, second_type
optional_expr = node.operands[0]
else:
optional_type, comp_type = second_type, first_type
optional_expr = node.operands[1]
if is_overlapping_types(optional_type, comp_type):
return {optional_expr: remove_optional(optional_type)}, {}
elif node.operators in [['in'], ['not in']]:
expr = node.operands[0]
left_type = type_map[expr]
right_type = builtin_item_type(type_map[node.operands[1]])
right_ok = right_type and (not is_optional(right_type) and
(not isinstance(right_type, Instance) or
right_type.type.fullname() != 'builtins.object'))
if (right_type and right_ok and is_optional(left_type) and
literal(expr) == LITERAL_TYPE and not is_literal_none(expr) and
is_overlapping_types(left_type, right_type)):
if node.operators == ['in']:
return {expr: remove_optional(left_type)}, {}
if node.operators == ['not in']:
return {}, {expr: remove_optional(left_type)}
elif isinstance(node, RefExpr):
# Restrict the type of the variable to True-ish/False-ish in the if and else branches
# respectively
vartype = type_map[node]
if_type = true_only(vartype)
else_type = false_only(vartype)
ref = node # type: Expression
if_map = {ref: if_type} if not isinstance(if_type, UninhabitedType) else None
else_map = {ref: else_type} if not isinstance(else_type, UninhabitedType) else None
return if_map, else_map
elif isinstance(node, OpExpr) and node.op == 'and':
left_if_vars, left_else_vars = find_isinstance_check(node.left, type_map)
right_if_vars, right_else_vars = find_isinstance_check(node.right, type_map)
# (e1 and e2) is true if both e1 and e2 are true,
# and false if at least one of e1 and e2 is false.
return (and_conditional_maps(left_if_vars, right_if_vars),
or_conditional_maps(left_else_vars, right_else_vars))
elif isinstance(node, OpExpr) and node.op == 'or':
left_if_vars, left_else_vars = find_isinstance_check(node.left, type_map)
right_if_vars, right_else_vars = find_isinstance_check(node.right, type_map)
# (e1 or e2) is true if at least one of e1 or e2 is true,
# and false if both e1 and e2 are false.
return (or_conditional_maps(left_if_vars, right_if_vars),
and_conditional_maps(left_else_vars, right_else_vars))
elif isinstance(node, UnaryExpr) and node.op == 'not':
left, right = find_isinstance_check(node.expr, type_map)
return right, left
# Not a supported isinstance check
return {}, {}
def flatten(t: Expression) -> List[Expression]:
"""Flatten a nested sequence of tuples/lists into one list of nodes."""
if isinstance(t, TupleExpr) or isinstance(t, ListExpr):
return [b for a in t.items for b in flatten(a)]
else:
return [t]
def flatten_types(t: Type) -> List[Type]:
"""Flatten a nested sequence of tuples into one list of nodes."""
if isinstance(t, TupleType):
return [b for a in t.items for b in flatten_types(a)]
else:
return [t]
def get_isinstance_type(expr: Expression,
type_map: Dict[Expression, Type]) -> Optional[List[TypeRange]]:
all_types = flatten_types(type_map[expr])
types = [] # type: List[TypeRange]
for typ in all_types:
if isinstance(typ, FunctionLike) and typ.is_type_obj():
# Type variables may be present -- erase them, which is the best
# we can do (outside disallowing them here).
typ = erase_typevars(typ.items()[0].ret_type)
types.append(TypeRange(typ, is_upper_bound=False))
elif isinstance(typ, TypeType):
# Type[A] means "any type that is a subtype of A" rather than "precisely type A"
# we indicate this by setting is_upper_bound flag
types.append(TypeRange(typ.item, is_upper_bound=True))
elif isinstance(typ, Instance) and typ.type.fullname() == 'builtins.type':
object_type = Instance(typ.type.mro[-1], [])
types.append(TypeRange(object_type, is_upper_bound=True))
elif isinstance(typ, AnyType):
types.append(TypeRange(typ, is_upper_bound=False))
else: # we didn't see an actual type, but rather a variable whose value is unknown to us
return None
if not types:
# this can happen if someone has empty tuple as 2nd argument to isinstance
# strictly speaking, we should return UninhabitedType but for simplicity we will simply
# refuse to do any type inference for now
return None
return types
def expand_func(defn: FuncItem, map: Dict[TypeVarId, Type]) -> FuncItem:
visitor = TypeTransformVisitor(map)
ret = defn.accept(visitor)
assert isinstance(ret, FuncItem)
return ret
class TypeTransformVisitor(TransformVisitor):
def __init__(self, map: Dict[TypeVarId, Type]) -> None:
super().__init__()
self.map = map
def type(self, type: Type) -> Type:
return expand_type(type, self.map)
def is_unsafe_overlapping_signatures(signature: Type, other: Type) -> bool:
"""Check if two signatures may be unsafely overlapping.
Two signatures s and t are overlapping if both can be valid for the same
statically typed values and the return types are incompatible.
Assume calls are first checked against 'signature', then against 'other'.
Thus if 'signature' is more general than 'other', there is no unsafe
overlapping.
TODO If argument types vary covariantly, the return type may vary
covariantly as well.
"""
if isinstance(signature, CallableType):
if isinstance(other, CallableType):
# TODO varargs
# TODO keyword args
# TODO erasure
# TODO allow to vary covariantly
# Check if the argument counts are overlapping.
min_args = max(signature.min_args, other.min_args)
max_args = min(len(signature.arg_types), len(other.arg_types))
if min_args > max_args:
# Argument counts are not overlapping.
return False
# Signatures are overlapping iff if they are overlapping for the
# smallest common argument count.
for i in range(min_args):
t1 = signature.arg_types[i]
t2 = other.arg_types[i]
if not is_overlapping_types(t1, t2):
return False
# All arguments types for the smallest common argument count are
# overlapping => the signature is overlapping. The overlapping is
# safe if the return types are identical.
if is_same_type(signature.ret_type, other.ret_type):
return False
# If the first signature has more general argument types, the
# latter will never be called
if is_more_general_arg_prefix(signature, other):
return False
# Special case: all args are subtypes, and returns are subtypes
if (all(is_proper_subtype(s, o)
for (s, o) in zip(signature.arg_types, other.arg_types)) and
is_proper_subtype(signature.ret_type, other.ret_type)):
return False
return not is_more_precise_signature(signature, other)
return True
def is_more_general_arg_prefix(t: FunctionLike, s: FunctionLike) -> bool:
"""Does t have wider arguments than s?"""
# TODO should an overload with additional items be allowed to be more
# general than one with fewer items (or just one item)?
# TODO check argument kinds and otherwise make more general
if isinstance(t, CallableType):
if isinstance(s, CallableType):
t, s = unify_generic_callables(t, s)
return all(is_proper_subtype(args, argt)
for argt, args in zip(t.arg_types, s.arg_types))
elif isinstance(t, FunctionLike):
if isinstance(s, FunctionLike):
if len(t.items()) == len(s.items()):
return all(is_same_arg_prefix(items, itemt)
for items, itemt in zip(t.items(), s.items()))
return False
def unify_generic_callables(t: CallableType,
s: CallableType) -> Tuple[CallableType,
CallableType]:
"""Make type variables in generic callables the same if possible.
Return updated callables. If we can't unify the type variables,
return the unmodified arguments.
"""
# TODO: Use this elsewhere when comparing generic callables.
if t.is_generic() and s.is_generic():
t_substitutions = {}
s_substitutions = {}
for tv1, tv2 in zip(t.variables, s.variables):
# Are these something we can unify?
if tv1.id != tv2.id and is_equivalent_type_var_def(tv1, tv2):
newdef = TypeVarDef.new_unification_variable(tv2)
t_substitutions[tv1.id] = TypeVarType(newdef)
s_substitutions[tv2.id] = TypeVarType(newdef)
return (cast(CallableType, expand_type(t, t_substitutions)),
cast(CallableType, expand_type(s, s_substitutions)))
return t, s
def is_equivalent_type_var_def(tv1: TypeVarDef, tv2: TypeVarDef) -> bool:
"""Are type variable definitions equivalent?
Ignore ids, locations in source file and names.
"""
return (
tv1.variance == tv2.variance
and is_same_types(tv1.values, tv2.values)
and ((tv1.upper_bound is None and tv2.upper_bound is None)
or (tv1.upper_bound is not None
and tv2.upper_bound is not None
and is_same_type(tv1.upper_bound, tv2.upper_bound))))
def is_same_arg_prefix(t: CallableType, s: CallableType) -> bool:
# TODO check argument kinds
return all(is_same_type(argt, args)
for argt, args in zip(t.arg_types, s.arg_types))
def is_more_precise_signature(t: CallableType, s: CallableType) -> bool:
"""Is t more precise than s?
A signature t is more precise than s if all argument types and the return
type of t are more precise than the corresponding types in s.
Assume that the argument kinds and names are compatible, and that the
argument counts are overlapping.
"""
# TODO generic function types
# Only consider the common prefix of argument types.
for argt, args in zip(t.arg_types, s.arg_types):
if not is_more_precise(argt, args):
return False
return is_more_precise(t.ret_type, s.ret_type)
def infer_operator_assignment_method(typ: Type, operator: str) -> Tuple[bool, str]:
"""Determine if operator assignment on given value type is in-place, and the method name.
For example, if operator is '+', return (True, '__iadd__') or (False, '__add__')
depending on which method is supported by the type.
"""
method = nodes.op_methods[operator]
if isinstance(typ, Instance):
if operator in nodes.ops_with_inplace_method:
inplace_method = '__i' + method[2:]
if typ.type.has_readable_member(inplace_method):
return True, inplace_method
return False, method
def is_valid_inferred_type(typ: Type) -> bool:
"""Is an inferred type valid?
Examples of invalid types include the None type or List[<uninhabited>].
When not doing strict Optional checking, all types containing None are
invalid. When doing strict Optional checking, only None and types that are
incompletely defined (i.e. contain UninhabitedType) are invalid.
"""
if isinstance(typ, (NoneTyp, UninhabitedType)):
# With strict Optional checking, we *may* eventually infer NoneTyp when
# the initializer is None, but we only do that if we can't infer a
# specific Optional type. This resolution happens in
# leave_partial_types when we pop a partial types scope.
return False
return is_valid_inferred_type_component(typ)
def is_valid_inferred_type_component(typ: Type) -> bool:
"""Is this part of a type a valid inferred type?
In strict Optional mode this excludes bare None types, as otherwise every
type containing None would be invalid.
"""
if is_same_type(typ, UninhabitedType()):
return False
elif isinstance(typ, Instance):
for arg in typ.args:
if not is_valid_inferred_type_component(arg):
return False
elif isinstance(typ, TupleType):
for item in typ.items:
if not is_valid_inferred_type_component(item):
return False
return True
def is_node_static(node: Optional[Node]) -> Optional[bool]:
"""Find out if a node describes a static function method."""
if isinstance(node, FuncDef):
return node.is_static
if isinstance(node, Var):
return node.is_staticmethod
return None
class Scope:
# We keep two stacks combined, to maintain the relative order
stack = None # type: List[Union[TypeInfo, FuncItem, MypyFile]]
def __init__(self, module: MypyFile) -> None:
self.stack = [module]
def top_function(self) -> Optional[FuncItem]:
for e in reversed(self.stack):
if isinstance(e, FuncItem):
return e
return None
def top_non_lambda_function(self) -> Optional[FuncItem]:
for e in reversed(self.stack):
if isinstance(e, FuncItem) and not isinstance(e, LambdaExpr):
return e
return None
def active_class(self) -> Optional[TypeInfo]:
if isinstance(self.stack[-1], TypeInfo):
return self.stack[-1]
return None
def enclosing_class(self) -> Optional[TypeInfo]:
top = self.top_function()
assert top, "This method must be called from inside a function"
index = self.stack.index(top)
assert index, "Scope stack must always start with a module"
enclosing = self.stack[index - 1]
if isinstance(enclosing, TypeInfo):
return enclosing
return None
def active_self_type(self) -> Optional[Union[Instance, TupleType]]:
info = self.active_class()
if info:
return fill_typevars(info)
return None
@contextmanager
def push_function(self, item: FuncItem) -> Iterator[None]:
self.stack.append(item)
yield
self.stack.pop()
@contextmanager
def push_class(self, info: TypeInfo) -> Iterator[None]:
self.stack.append(info)
yield
self.stack.pop()
@contextmanager
def nothing() -> Iterator[None]:
yield
def is_typed_callable(c: Optional[Type]) -> bool:
if not c or not isinstance(c, CallableType):
return False
return not all(isinstance(t, AnyType) and t.type_of_any == TypeOfAny.unannotated
for t in c.arg_types + [c.ret_type])
def is_untyped_decorator(typ: Optional[Type]) -> bool:
if not typ or not isinstance(typ, CallableType):
return True
return typ.implicit
def is_static(func: Union[FuncBase, Decorator]) -> bool:
if isinstance(func, Decorator):
return is_static(func.func)
elif isinstance(func, OverloadedFuncDef):
return any(is_static(item) for item in func.items)
elif isinstance(func, FuncItem):
return func.is_static
return False
|