This file is indexed.

/usr/lib/python3/dist-packages/mypy/checkexpr.py is in python3-mypy 0.560-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
"""Expression type checker. This file is conceptually part of TypeChecker."""

from collections import OrderedDict
from typing import cast, Dict, Set, List, Tuple, Callable, Union, Optional, Iterable, Sequence, Any

from mypy.errors import report_internal_error
from mypy.typeanal import has_any_from_unimported_type, check_for_explicit_any, set_any_tvars
from mypy.types import (
    Type, AnyType, CallableType, Overloaded, NoneTyp, TypeVarDef,
    TupleType, TypedDictType, Instance, TypeVarType, ErasedType, UnionType,
    PartialType, DeletedType, UnboundType, UninhabitedType, TypeType, TypeOfAny,
    true_only, false_only, is_named_instance, function_type, callable_type, FunctionLike,
    get_typ_args, set_typ_args,
    StarType)
from mypy.nodes import (
    NameExpr, RefExpr, Var, FuncDef, OverloadedFuncDef, TypeInfo, CallExpr,
    MemberExpr, IntExpr, StrExpr, BytesExpr, UnicodeExpr, FloatExpr,
    OpExpr, UnaryExpr, IndexExpr, CastExpr, RevealTypeExpr, TypeApplication, ListExpr,
    TupleExpr, DictExpr, LambdaExpr, SuperExpr, SliceExpr, Context, Expression,
    ListComprehension, GeneratorExpr, SetExpr, MypyFile, Decorator,
    ConditionalExpr, ComparisonExpr, TempNode, SetComprehension,
    DictionaryComprehension, ComplexExpr, EllipsisExpr, StarExpr, AwaitExpr, YieldExpr,
    YieldFromExpr, TypedDictExpr, PromoteExpr, NewTypeExpr, NamedTupleExpr, TypeVarExpr,
    TypeAliasExpr, BackquoteExpr, EnumCallExpr,
    ARG_POS, ARG_NAMED, ARG_STAR, ARG_STAR2, MODULE_REF, TVAR, LITERAL_TYPE,
)
from mypy.literals import literal
from mypy import nodes
import mypy.checker
from mypy import types
from mypy.sametypes import is_same_type
from mypy.erasetype import replace_meta_vars
from mypy.messages import MessageBuilder
from mypy import messages
from mypy.infer import infer_type_arguments, infer_function_type_arguments
from mypy import join
from mypy.meet import narrow_declared_type
from mypy.maptype import map_instance_to_supertype
from mypy.subtypes import is_subtype, is_equivalent, find_member, non_method_protocol_members
from mypy import applytype
from mypy import erasetype
from mypy.checkmember import analyze_member_access, type_object_type, bind_self
from mypy.constraints import get_actual_type
from mypy.checkstrformat import StringFormatterChecker
from mypy.expandtype import expand_type_by_instance, freshen_function_type_vars
from mypy.util import split_module_names
from mypy.typevars import fill_typevars
from mypy.visitor import ExpressionVisitor
from mypy.plugin import Plugin, MethodContext, MethodSigContext, FunctionContext
from mypy.typeanal import make_optional_type

from mypy import experiments

# Type of callback user for checking individual function arguments. See
# check_args() below for details.
ArgChecker = Callable[[Type, Type, int, Type, int, int, CallableType, Context, MessageBuilder],
                      None]


def extract_refexpr_names(expr: RefExpr) -> Set[str]:
    """Recursively extracts all module references from a reference expression.

    Note that currently, the only two subclasses of RefExpr are NameExpr and
    MemberExpr."""
    output = set()  # type: Set[str]
    while expr.kind == MODULE_REF or expr.fullname is not None:
        if expr.kind == MODULE_REF and expr.fullname is not None:
            # If it's None, something's wrong (perhaps due to an
            # import cycle or a suppressed error).  For now we just
            # skip it.
            output.add(expr.fullname)

        if isinstance(expr, NameExpr):
            is_suppressed_import = isinstance(expr.node, Var) and expr.node.is_suppressed_import
            if isinstance(expr.node, TypeInfo):
                # Reference to a class or a nested class
                output.update(split_module_names(expr.node.module_name))
            elif expr.fullname is not None and '.' in expr.fullname and not is_suppressed_import:
                # Everything else (that is not a silenced import within a class)
                output.add(expr.fullname.rsplit('.', 1)[0])
            break
        elif isinstance(expr, MemberExpr):
            if isinstance(expr.expr, RefExpr):
                expr = expr.expr
            else:
                break
        else:
            raise AssertionError("Unknown RefExpr subclass: {}".format(type(expr)))
    return output


class Finished(Exception):
    """Raised if we can terminate overload argument check early (no match)."""


class ExpressionChecker(ExpressionVisitor[Type]):
    """Expression type checker.

    This class works closely together with checker.TypeChecker.
    """

    # Some services are provided by a TypeChecker instance.
    chk = None  # type: mypy.checker.TypeChecker
    # This is shared with TypeChecker, but stored also here for convenience.
    msg = None  # type: MessageBuilder
    # Type context for type inference
    type_context = None  # type: List[Optional[Type]]

    strfrm_checker = None  # type: StringFormatterChecker
    plugin = None  # type: Plugin

    def __init__(self,
                 chk: 'mypy.checker.TypeChecker',
                 msg: MessageBuilder,
                 plugin: Plugin) -> None:
        """Construct an expression type checker."""
        self.chk = chk
        self.msg = msg
        self.plugin = plugin
        self.type_context = [None]
        self.strfrm_checker = StringFormatterChecker(self, self.chk, self.msg)

    def visit_name_expr(self, e: NameExpr) -> Type:
        """Type check a name expression.

        It can be of any kind: local, member or global.
        """
        self.chk.module_refs.update(extract_refexpr_names(e))
        result = self.analyze_ref_expr(e)
        return self.narrow_type_from_binder(e, result)

    def analyze_ref_expr(self, e: RefExpr, lvalue: bool = False) -> Type:
        result = None  # type: Optional[Type]
        node = e.node
        if isinstance(node, Var):
            # Variable reference.
            result = self.analyze_var_ref(node, e)
            if isinstance(result, PartialType):
                if result.type is None:
                    # 'None' partial type. It has a well-defined type. In an lvalue context
                    # we want to preserve the knowledge of it being a partial type.
                    if not lvalue:
                        result = NoneTyp()
                else:
                    partial_types = self.chk.find_partial_types(node)
                    if partial_types is not None and not self.chk.current_node_deferred:
                        context = partial_types[node]
                        self.msg.fail(messages.NEED_ANNOTATION_FOR_VAR, context)
                    result = AnyType(TypeOfAny.special_form)
        elif isinstance(node, FuncDef):
            # Reference to a global function.
            result = function_type(node, self.named_type('builtins.function'))
        elif isinstance(node, OverloadedFuncDef) and node.type is not None:
            # node.type is None when there are multiple definitions of a function
            # and it's decorated by somthing that is not typing.overload
            result = node.type
        elif isinstance(node, TypeInfo):
            # Reference to a type object.
            result = type_object_type(node, self.named_type)
            if isinstance(self.type_context[-1], TypeType):
                # This is the type in a Type[] expression, so substitute type
                # variables with Any.
                result = erasetype.erase_typevars(result)
        elif isinstance(node, MypyFile):
            # Reference to a module object.
            try:
                result = self.named_type('types.ModuleType')
            except KeyError:
                # In test cases might 'types' may not be available.
                # Fall back to a dummy 'object' type instead to
                # avoid a crash.
                result = self.named_type('builtins.object')
        elif isinstance(node, Decorator):
            result = self.analyze_var_ref(node.var, e)
        else:
            # Unknown reference; use any type implicitly to avoid
            # generating extra type errors.
            result = AnyType(TypeOfAny.from_error)
        assert result is not None
        return result

    def analyze_var_ref(self, var: Var, context: Context) -> Type:
        if var.type:
            return var.type
        else:
            if not var.is_ready and self.chk.in_checked_function():
                self.chk.handle_cannot_determine_type(var.name(), context)
            # Implicit 'Any' type.
            return AnyType(TypeOfAny.special_form)

    def visit_call_expr(self, e: CallExpr, allow_none_return: bool = False) -> Type:
        """Type check a call expression."""
        if e.analyzed:
            # It's really a special form that only looks like a call.
            return self.accept(e.analyzed, self.type_context[-1])
        if isinstance(e.callee, NameExpr) and isinstance(e.callee.node, TypeInfo) and \
                e.callee.node.typeddict_type is not None:
            # Use named fallback for better error messages.
            typeddict_type = e.callee.node.typeddict_type.copy_modified(
                fallback=Instance(e.callee.node, []))
            return self.check_typeddict_call(typeddict_type, e.arg_kinds, e.arg_names, e.args, e)
        if (isinstance(e.callee, NameExpr) and e.callee.name in ('isinstance', 'issubclass')
                and len(e.args) == 2):
            for typ in mypy.checker.flatten(e.args[1]):
                if isinstance(typ, NameExpr):
                    node = None
                    try:
                        node = self.chk.lookup_qualified(typ.name)
                    except KeyError:
                        # Undefined names should already be reported in semantic analysis.
                        pass
                if ((isinstance(typ, IndexExpr)
                        and isinstance(typ.analyzed, (TypeApplication, TypeAliasExpr)))
                        # node.kind == TYPE_ALIAS only for aliases like It = Iterable[int].
                        or (isinstance(typ, NameExpr) and node and node.kind == nodes.TYPE_ALIAS)):
                    self.msg.type_arguments_not_allowed(e)
                if isinstance(typ, RefExpr) and isinstance(typ.node, TypeInfo):
                    if typ.node.typeddict_type:
                        self.msg.fail(messages.CANNOT_ISINSTANCE_TYPEDDICT, e)
                    elif typ.node.is_newtype:
                        self.msg.fail(messages.CANNOT_ISINSTANCE_NEWTYPE, e)
        self.try_infer_partial_type(e)
        type_context = None
        if isinstance(e.callee, LambdaExpr):
            formal_to_actual = map_actuals_to_formals(
                e.arg_kinds, e.arg_names,
                e.callee.arg_kinds, e.callee.arg_names,
                lambda i: self.accept(e.args[i]))

            arg_types = [join.join_type_list([self.accept(e.args[j]) for j in formal_to_actual[i]])
                         for i in range(len(e.callee.arg_kinds))]
            type_context = CallableType(arg_types, e.callee.arg_kinds, e.callee.arg_names,
                                        ret_type=self.object_type(),
                                        fallback=self.named_type('builtins.function'))
        callee_type = self.accept(e.callee, type_context, always_allow_any=True)
        if (self.chk.options.disallow_untyped_calls and
                self.chk.in_checked_function() and
                isinstance(callee_type, CallableType)
                and callee_type.implicit):
            return self.msg.untyped_function_call(callee_type, e)
        # Figure out the full name of the callee for plugin lookup.
        object_type = None
        if not isinstance(e.callee, RefExpr):
            fullname = None
        else:
            fullname = e.callee.fullname
            if (fullname is None
                    and isinstance(e.callee, MemberExpr)
                    and isinstance(callee_type, FunctionLike)):
                # For method calls we include the defining class for the method
                # in the full name (example: 'typing.Mapping.get').
                callee_expr_type = self.chk.type_map.get(e.callee.expr)
                info = None
                # TODO: Support fallbacks of other kinds of types as well?
                if isinstance(callee_expr_type, Instance):
                    info = callee_expr_type.type
                elif isinstance(callee_expr_type, TypedDictType):
                    info = callee_expr_type.fallback.type.get_containing_type_info(e.callee.name)
                if info:
                    fullname = '{}.{}'.format(info.fullname(), e.callee.name)
                    object_type = callee_expr_type
                    # Apply plugin signature hook that may generate a better signature.
                    signature_hook = self.plugin.get_method_signature_hook(fullname)
                    if signature_hook:
                        assert object_type is not None
                        callee_type = self.apply_method_signature_hook(
                            e, callee_type, object_type, signature_hook)
        ret_type = self.check_call_expr_with_callee_type(callee_type, e, fullname, object_type)
        if isinstance(e.callee, RefExpr) and len(e.args) == 2:
            if e.callee.fullname in ('builtins.isinstance', 'builtins.issubclass'):
                self.check_runtime_protocol_test(e)
            if e.callee.fullname == 'builtins.issubclass':
                self.check_protocol_issubclass(e)
        if isinstance(ret_type, UninhabitedType) and not ret_type.ambiguous:
            self.chk.binder.unreachable()
        if not allow_none_return and isinstance(ret_type, NoneTyp):
            self.chk.msg.does_not_return_value(callee_type, e)
            return AnyType(TypeOfAny.from_error)
        return ret_type

    def check_runtime_protocol_test(self, e: CallExpr) -> None:
        for expr in mypy.checker.flatten(e.args[1]):
            tp = self.chk.type_map[expr]
            if (isinstance(tp, CallableType) and tp.is_type_obj() and
                    tp.type_object().is_protocol and
                    not tp.type_object().runtime_protocol):
                self.chk.fail('Only @runtime protocols can be used with'
                              ' instance and class checks', e)

    def check_protocol_issubclass(self, e: CallExpr) -> None:
        for expr in mypy.checker.flatten(e.args[1]):
            tp = self.chk.type_map[expr]
            if (isinstance(tp, CallableType) and tp.is_type_obj() and
                    tp.type_object().is_protocol):
                attr_members = non_method_protocol_members(tp.type_object())
                if attr_members:
                    self.chk.msg.report_non_method_protocol(tp.type_object(),
                                                            attr_members, e)

    def check_typeddict_call(self, callee: TypedDictType,
                             arg_kinds: List[int],
                             arg_names: Sequence[Optional[str]],
                             args: List[Expression],
                             context: Context) -> Type:
        if len(args) >= 1 and all([ak == ARG_NAMED for ak in arg_kinds]):
            # ex: Point(x=42, y=1337)
            assert all(arg_name is not None for arg_name in arg_names)
            item_names = cast(List[str], arg_names)
            item_args = args
            return self.check_typeddict_call_with_kwargs(
                callee, OrderedDict(zip(item_names, item_args)), context)

        if len(args) == 1 and arg_kinds[0] == ARG_POS:
            unique_arg = args[0]
            if isinstance(unique_arg, DictExpr):
                # ex: Point({'x': 42, 'y': 1337})
                return self.check_typeddict_call_with_dict(callee, unique_arg, context)
            if isinstance(unique_arg, CallExpr) and isinstance(unique_arg.analyzed, DictExpr):
                # ex: Point(dict(x=42, y=1337))
                return self.check_typeddict_call_with_dict(callee, unique_arg.analyzed, context)

        if len(args) == 0:
            # ex: EmptyDict()
            return self.check_typeddict_call_with_kwargs(
                callee, OrderedDict(), context)

        self.chk.fail(messages.INVALID_TYPEDDICT_ARGS, context)
        return AnyType(TypeOfAny.from_error)

    def check_typeddict_call_with_dict(self, callee: TypedDictType,
                                       kwargs: DictExpr,
                                       context: Context) -> Type:
        item_name_exprs = [item[0] for item in kwargs.items]
        item_args = [item[1] for item in kwargs.items]

        item_names = []  # List[str]
        for item_name_expr in item_name_exprs:
            if not isinstance(item_name_expr, StrExpr):
                self.chk.fail(messages.TYPEDDICT_KEY_MUST_BE_STRING_LITERAL, item_name_expr)
                return AnyType(TypeOfAny.from_error)
            item_names.append(item_name_expr.value)

        return self.check_typeddict_call_with_kwargs(
            callee, OrderedDict(zip(item_names, item_args)), context)

    def check_typeddict_call_with_kwargs(self, callee: TypedDictType,
                                         kwargs: 'OrderedDict[str, Expression]',
                                         context: Context) -> Type:
        if not (callee.required_keys <= set(kwargs.keys()) <= set(callee.items.keys())):
            expected_keys = [key for key in callee.items.keys()
                             if key in callee.required_keys or key in kwargs.keys()]
            actual_keys = kwargs.keys()
            self.msg.unexpected_typeddict_keys(
                callee,
                expected_keys=expected_keys,
                actual_keys=list(actual_keys),
                context=context)
            return AnyType(TypeOfAny.from_error)

        for (item_name, item_expected_type) in callee.items.items():
            if item_name in kwargs:
                item_value = kwargs[item_name]
                self.chk.check_simple_assignment(
                    lvalue_type=item_expected_type, rvalue=item_value, context=item_value,
                    msg=messages.INCOMPATIBLE_TYPES,
                    lvalue_name='TypedDict item "{}"'.format(item_name),
                    rvalue_name='expression')

        return callee

    # Types and methods that can be used to infer partial types.
    item_args = {'builtins.list': ['append'],
                 'builtins.set': ['add', 'discard'],
                 }
    container_args = {'builtins.list': {'extend': ['builtins.list']},
                      'builtins.dict': {'update': ['builtins.dict']},
                      'builtins.set': {'update': ['builtins.set', 'builtins.list']},
                      }

    def try_infer_partial_type(self, e: CallExpr) -> None:
        if isinstance(e.callee, MemberExpr) and isinstance(e.callee.expr, RefExpr):
            var = cast(Var, e.callee.expr.node)
            partial_types = self.chk.find_partial_types(var)
            if partial_types is not None and not self.chk.current_node_deferred:
                partial_type = var.type
                if (partial_type is None or
                        not isinstance(partial_type, PartialType) or
                        partial_type.type is None):
                    # A partial None type -> can't infer anything.
                    return
                typename = partial_type.type.fullname()
                methodname = e.callee.name
                # Sometimes we can infer a full type for a partial List, Dict or Set type.
                # TODO: Don't infer argument expression twice.
                if (typename in self.item_args and methodname in self.item_args[typename]
                        and e.arg_kinds == [ARG_POS]):
                    item_type = self.accept(e.args[0])
                    full_item_type = UnionType.make_simplified_union(
                        [item_type, partial_type.inner_types[0]])
                    if mypy.checker.is_valid_inferred_type(full_item_type):
                        var.type = self.chk.named_generic_type(typename, [full_item_type])
                        del partial_types[var]
                elif (typename in self.container_args
                      and methodname in self.container_args[typename]
                      and e.arg_kinds == [ARG_POS]):
                    arg_type = self.accept(e.args[0])
                    if isinstance(arg_type, Instance):
                        arg_typename = arg_type.type.fullname()
                        if arg_typename in self.container_args[typename][methodname]:
                            full_item_types = [
                                UnionType.make_simplified_union([item_type, prev_type])
                                for item_type, prev_type
                                in zip(arg_type.args, partial_type.inner_types)
                            ]
                            if all(mypy.checker.is_valid_inferred_type(item_type)
                                   for item_type in full_item_types):
                                var.type = self.chk.named_generic_type(typename,
                                                                       list(full_item_types))
                                del partial_types[var]

    def apply_function_plugin(self,
                              arg_types: List[Type],
                              inferred_ret_type: Type,
                              arg_kinds: List[int],
                              formal_to_actual: List[List[int]],
                              args: List[Expression],
                              num_formals: int,
                              fullname: str,
                              object_type: Optional[Type],
                              context: Context) -> Type:
        """Use special case logic to infer the return type of a specific named function/method.

        Caller must ensure that a plugin hook exists. There are two different cases:

        - If object_type is None, the caller must ensure that a function hook exists
          for fullname.
        - If object_type is not None, the caller must ensure that a method hook exists
          for fullname.

        Return the inferred return type.
        """
        formal_arg_types = [[] for _ in range(num_formals)]  # type: List[List[Type]]
        formal_arg_exprs = [[] for _ in range(num_formals)]  # type: List[List[Expression]]
        for formal, actuals in enumerate(formal_to_actual):
            for actual in actuals:
                formal_arg_types[formal].append(arg_types[actual])
                formal_arg_exprs[formal].append(args[actual])
        if object_type is None:
            # Apply function plugin
            callback = self.plugin.get_function_hook(fullname)
            assert callback is not None  # Assume that caller ensures this
            return callback(
                FunctionContext(formal_arg_types, inferred_ret_type, formal_arg_exprs,
                                context, self.chk))
        else:
            # Apply method plugin
            method_callback = self.plugin.get_method_hook(fullname)
            assert method_callback is not None  # Assume that caller ensures this
            return method_callback(
                MethodContext(object_type, formal_arg_types,
                              inferred_ret_type, formal_arg_exprs,
                              context, self.chk))

    def apply_method_signature_hook(
            self, e: CallExpr, callee: FunctionLike, object_type: Type,
            signature_hook: Callable[[MethodSigContext], CallableType]) -> FunctionLike:
        """Apply a plugin hook that may infer a more precise signature for a method."""
        if isinstance(callee, CallableType):
            arg_kinds = e.arg_kinds
            arg_names = e.arg_names
            args = e.args
            num_formals = len(callee.arg_kinds)
            formal_to_actual = map_actuals_to_formals(
                arg_kinds, arg_names,
                callee.arg_kinds, callee.arg_names,
                lambda i: self.accept(args[i]))
            formal_arg_exprs = [[] for _ in range(num_formals)]  # type: List[List[Expression]]
            for formal, actuals in enumerate(formal_to_actual):
                for actual in actuals:
                    formal_arg_exprs[formal].append(args[actual])
            return signature_hook(
                MethodSigContext(object_type, formal_arg_exprs, callee, e, self.chk))
        else:
            assert isinstance(callee, Overloaded)
            items = []
            for item in callee.items():
                adjusted = self.apply_method_signature_hook(e, item, object_type, signature_hook)
                assert isinstance(adjusted, CallableType)
                items.append(adjusted)
            return Overloaded(items)

    def check_call_expr_with_callee_type(self,
                                         callee_type: Type,
                                         e: CallExpr,
                                         callable_name: Optional[str],
                                         object_type: Optional[Type]) -> Type:
        """Type check call expression.

        The given callee type overrides the type of the callee
        expression.
        """
        return self.check_call(callee_type, e.args, e.arg_kinds, e,
                               e.arg_names, callable_node=e.callee,
                               callable_name=callable_name,
                               object_type=object_type)[0]

    def check_call(self, callee: Type, args: List[Expression],
                   arg_kinds: List[int], context: Context,
                   arg_names: Optional[Sequence[Optional[str]]] = None,
                   callable_node: Optional[Expression] = None,
                   arg_messages: Optional[MessageBuilder] = None,
                   callable_name: Optional[str] = None,
                   object_type: Optional[Type] = None) -> Tuple[Type, Type]:
        """Type check a call.

        Also infer type arguments if the callee is a generic function.

        Return (result type, inferred callee type).

        Arguments:
            callee: type of the called value
            args: actual argument expressions
            arg_kinds: contains nodes.ARG_* constant for each argument in args
                 describing whether the argument is positional, *arg, etc.
            arg_names: names of arguments (optional)
            callable_node: associate the inferred callable type to this node,
                if specified
            arg_messages: TODO
            callable_name: Fully-qualified name of the function/method to call,
                or None if unavaiable (examples: 'builtins.open', 'typing.Mapping.get')
            object_type: If callable_name refers to a method, the type of the object
                on which the method is being called
        """
        arg_messages = arg_messages or self.msg
        if isinstance(callee, CallableType):
            if callable_name is None and callee.name:
                callable_name = callee.name
            if (isinstance(callable_node, RefExpr)
                and callable_node.fullname in ('enum.Enum', 'enum.IntEnum',
                                               'enum.Flag', 'enum.IntFlag')):
                # An Enum() call that failed SemanticAnalyzerPass2.check_enum_call().
                return callee.ret_type, callee

            if (callee.is_type_obj() and callee.type_object().is_abstract
                    # Exceptions for Type[...] and classmethod first argument
                    and not callee.from_type_type and not callee.is_classmethod_class
                    and not callee.type_object().fallback_to_any):
                type = callee.type_object()
                self.msg.cannot_instantiate_abstract_class(
                    callee.type_object().name(), type.abstract_attributes,
                    context)
            elif (callee.is_type_obj() and callee.type_object().is_protocol
                  # Exceptions for Type[...] and classmethod first argument
                  and not callee.from_type_type and not callee.is_classmethod_class):
                self.chk.fail('Cannot instantiate protocol class "{}"'
                              .format(callee.type_object().name()), context)

            formal_to_actual = map_actuals_to_formals(
                arg_kinds, arg_names,
                callee.arg_kinds, callee.arg_names,
                lambda i: self.accept(args[i]))

            if callee.is_generic():
                callee = freshen_function_type_vars(callee)
                callee = self.infer_function_type_arguments_using_context(
                    callee, context)
                callee = self.infer_function_type_arguments(
                    callee, args, arg_kinds, formal_to_actual, context)

            arg_types = self.infer_arg_types_in_context2(
                callee, args, arg_kinds, formal_to_actual)

            self.check_argument_count(callee, arg_types, arg_kinds,
                                      arg_names, formal_to_actual, context, self.msg)

            self.check_argument_types(arg_types, arg_kinds, callee,
                                      formal_to_actual, context,
                                      messages=arg_messages)

            if (callee.is_type_obj() and (len(arg_types) == 1)
                    and is_equivalent(callee.ret_type, self.named_type('builtins.type'))):
                callee = callee.copy_modified(ret_type=TypeType.make_normalized(arg_types[0]))

            if callable_node:
                # Store the inferred callable type.
                self.chk.store_type(callable_node, callee)

            if (callable_name
                    and ((object_type is None and self.plugin.get_function_hook(callable_name))
                         or (object_type is not None
                             and self.plugin.get_method_hook(callable_name)))):
                ret_type = self.apply_function_plugin(
                    arg_types, callee.ret_type, arg_kinds, formal_to_actual,
                    args, len(callee.arg_types), callable_name, object_type, context)
                callee = callee.copy_modified(ret_type=ret_type)
            return callee.ret_type, callee
        elif isinstance(callee, Overloaded):
            # Type check arguments in empty context. They will be checked again
            # later in a context derived from the signature; these types are
            # only used to pick a signature variant.
            self.msg.disable_errors()
            arg_types = self.infer_arg_types_in_context(None, args)
            self.msg.enable_errors()

            target = self.overload_call_target(arg_types, arg_kinds, arg_names,
                                               callee, context,
                                               messages=arg_messages)
            return self.check_call(target, args, arg_kinds, context, arg_names,
                                   arg_messages=arg_messages,
                                   callable_name=callable_name,
                                   object_type=object_type)
        elif isinstance(callee, AnyType) or not self.chk.in_checked_function():
            self.infer_arg_types_in_context(None, args)
            if isinstance(callee, AnyType):
                return (AnyType(TypeOfAny.from_another_any, source_any=callee),
                        AnyType(TypeOfAny.from_another_any, source_any=callee))
            else:
                return AnyType(TypeOfAny.special_form), AnyType(TypeOfAny.special_form)
        elif isinstance(callee, UnionType):
            self.msg.disable_type_names += 1
            results = [self.check_call(subtype, args, arg_kinds, context, arg_names,
                                       arg_messages=arg_messages)
                       for subtype in callee.relevant_items()]
            self.msg.disable_type_names -= 1
            return (UnionType.make_simplified_union([res[0] for res in results]),
                    callee)
        elif isinstance(callee, Instance):
            call_function = analyze_member_access('__call__', callee, context,
                                                  False, False, False, self.named_type,
                                                  self.not_ready_callback, self.msg,
                                                  original_type=callee, chk=self.chk)
            return self.check_call(call_function, args, arg_kinds, context, arg_names,
                                   callable_node, arg_messages)
        elif isinstance(callee, TypeVarType):
            return self.check_call(callee.upper_bound, args, arg_kinds, context, arg_names,
                                   callable_node, arg_messages)
        elif isinstance(callee, TypeType):
            # Pass the original Type[] as context since that's where errors should go.
            item = self.analyze_type_type_callee(callee.item, callee)
            return self.check_call(item, args, arg_kinds, context, arg_names,
                                   callable_node, arg_messages)
        else:
            return self.msg.not_callable(callee, context), AnyType(TypeOfAny.from_error)

    def analyze_type_type_callee(self, item: Type, context: Context) -> Type:
        """Analyze the callee X in X(...) where X is Type[item].

        Return a Y that we can pass to check_call(Y, ...).
        """
        if isinstance(item, AnyType):
            return AnyType(TypeOfAny.from_another_any, source_any=item)
        if isinstance(item, Instance):
            res = type_object_type(item.type, self.named_type)
            if isinstance(res, CallableType):
                res = res.copy_modified(from_type_type=True)
            return expand_type_by_instance(res, item)
        if isinstance(item, UnionType):
            return UnionType([self.analyze_type_type_callee(item, context)
                              for item in item.relevant_items()], item.line)
        if isinstance(item, TypeVarType):
            # Pretend we're calling the typevar's upper bound,
            # i.e. its constructor (a poor approximation for reality,
            # but better than AnyType...), but replace the return type
            # with typevar.
            callee = self.analyze_type_type_callee(item.upper_bound,
                                                   context)  # type: Optional[Type]
            if isinstance(callee, CallableType):
                if callee.is_generic():
                    callee = None
                else:
                    callee = callee.copy_modified(ret_type=item)
            elif isinstance(callee, Overloaded):
                if callee.items()[0].is_generic():
                    callee = None
                else:
                    callee = Overloaded([c.copy_modified(ret_type=item)
                                         for c in callee.items()])
            if callee:
                return callee

        self.msg.unsupported_type_type(item, context)
        return AnyType(TypeOfAny.from_error)

    def infer_arg_types_in_context(self, callee: Optional[CallableType],
                                   args: List[Expression]) -> List[Type]:
        """Infer argument expression types using a callable type as context.

        For example, if callee argument 2 has type List[int], infer the
        argument expression with List[int] type context.
        """
        # TODO Always called with callee as None, i.e. empty context.
        res = []  # type: List[Type]

        fixed = len(args)
        if callee:
            fixed = min(fixed, callee.max_fixed_args())

        ctx = None
        for i, arg in enumerate(args):
            if i < fixed:
                if callee and i < len(callee.arg_types):
                    ctx = callee.arg_types[i]
                arg_type = self.accept(arg, ctx)
            else:
                if callee and callee.is_var_arg:
                    arg_type = self.accept(arg, callee.arg_types[-1])
                else:
                    arg_type = self.accept(arg)
            if has_erased_component(arg_type):
                res.append(NoneTyp())
            else:
                res.append(arg_type)
        return res

    def infer_arg_types_in_context2(
            self, callee: CallableType, args: List[Expression], arg_kinds: List[int],
            formal_to_actual: List[List[int]]) -> List[Type]:
        """Infer argument expression types using a callable type as context.

        For example, if callee argument 2 has type List[int], infer the
        argument expression with List[int] type context.

        Returns the inferred types of *actual arguments*.
        """
        res = [None] * len(args)  # type: List[Optional[Type]]

        for i, actuals in enumerate(formal_to_actual):
            for ai in actuals:
                if arg_kinds[ai] not in (nodes.ARG_STAR, nodes.ARG_STAR2):
                    res[ai] = self.accept(args[ai], callee.arg_types[i])

        # Fill in the rest of the argument types.
        for i, t in enumerate(res):
            if not t:
                res[i] = self.accept(args[i])
        assert all(tp is not None for tp in res)
        return cast(List[Type], res)

    def infer_function_type_arguments_using_context(
            self, callable: CallableType, error_context: Context) -> CallableType:
        """Unify callable return type to type context to infer type vars.

        For example, if the return type is set[t] where 't' is a type variable
        of callable, and if the context is set[int], return callable modified
        by substituting 't' with 'int'.
        """
        ctx = self.type_context[-1]
        if not ctx:
            return callable
        # The return type may have references to type metavariables that
        # we are inferring right now. We must consider them as indeterminate
        # and they are not potential results; thus we replace them with the
        # special ErasedType type. On the other hand, class type variables are
        # valid results.
        erased_ctx = replace_meta_vars(ctx, ErasedType())
        ret_type = callable.ret_type
        if isinstance(ret_type, TypeVarType):
            if ret_type.values or (not isinstance(ctx, Instance) or
                                   not ctx.args):
                # The return type is a type variable. If it has values, we can't easily restrict
                # type inference to conform to the valid values. If it's unrestricted, we could
                # infer a too general type for the type variable if we use context, and this could
                # result in confusing and spurious type errors elsewhere.
                #
                # Give up and just use function arguments for type inference. As an exception,
                # if the context is a generic instance type, actually use it as context, as
                # this *seems* to usually be the reasonable thing to do.
                #
                # See also github issues #462 and #360.
                ret_type = NoneTyp()
        args = infer_type_arguments(callable.type_var_ids(), ret_type, erased_ctx)
        # Only substitute non-Uninhabited and non-erased types.
        new_args = []  # type: List[Optional[Type]]
        for arg in args:
            if has_uninhabited_component(arg) or has_erased_component(arg):
                new_args.append(None)
            else:
                new_args.append(arg)
        return self.apply_generic_arguments(callable, new_args, error_context)

    def infer_function_type_arguments(self, callee_type: CallableType,
                                      args: List[Expression],
                                      arg_kinds: List[int],
                                      formal_to_actual: List[List[int]],
                                      context: Context) -> CallableType:
        """Infer the type arguments for a generic callee type.

        Infer based on the types of arguments.

        Return a derived callable type that has the arguments applied.
        """
        if self.chk.in_checked_function():
            # Disable type errors during type inference. There may be errors
            # due to partial available context information at this time, but
            # these errors can be safely ignored as the arguments will be
            # inferred again later.
            self.msg.disable_errors()

            arg_types = self.infer_arg_types_in_context2(
                callee_type, args, arg_kinds, formal_to_actual)

            self.msg.enable_errors()

            arg_pass_nums = self.get_arg_infer_passes(
                callee_type.arg_types, formal_to_actual, len(args))

            pass1_args = []  # type: List[Optional[Type]]
            for i, arg in enumerate(arg_types):
                if arg_pass_nums[i] > 1:
                    pass1_args.append(None)
                else:
                    pass1_args.append(arg)

            inferred_args = infer_function_type_arguments(
                callee_type, pass1_args, arg_kinds, formal_to_actual,
                strict=self.chk.in_checked_function())

            if 2 in arg_pass_nums:
                # Second pass of type inference.
                (callee_type,
                 inferred_args) = self.infer_function_type_arguments_pass2(
                    callee_type, args, arg_kinds, formal_to_actual,
                    inferred_args, context)

            if callee_type.special_sig == 'dict' and len(inferred_args) == 2 and (
                    ARG_NAMED in arg_kinds or ARG_STAR2 in arg_kinds):
                # HACK: Infer str key type for dict(...) with keyword args. The type system
                #       can't represent this so we special case it, as this is a pretty common
                #       thing. This doesn't quite work with all possible subclasses of dict
                #       if they shuffle type variables around, as we assume that there is a 1-1
                #       correspondence with dict type variables. This is a marginal issue and
                #       a little tricky to fix so it's left unfixed for now.
                first_arg = inferred_args[0]
                if isinstance(first_arg, (NoneTyp, UninhabitedType)):
                    inferred_args[0] = self.named_type('builtins.str')
                elif not first_arg or not is_subtype(self.named_type('builtins.str'), first_arg):
                    self.msg.fail(messages.KEYWORD_ARGUMENT_REQUIRES_STR_KEY_TYPE,
                                  context)
        else:
            # In dynamically typed functions use implicit 'Any' types for
            # type variables.
            inferred_args = [AnyType(TypeOfAny.unannotated)] * len(callee_type.variables)
        return self.apply_inferred_arguments(callee_type, inferred_args,
                                             context)

    def infer_function_type_arguments_pass2(
            self, callee_type: CallableType,
            args: List[Expression],
            arg_kinds: List[int],
            formal_to_actual: List[List[int]],
            old_inferred_args: Sequence[Optional[Type]],
            context: Context) -> Tuple[CallableType, List[Optional[Type]]]:
        """Perform second pass of generic function type argument inference.

        The second pass is needed for arguments with types such as Callable[[T], S],
        where both T and S are type variables, when the actual argument is a
        lambda with inferred types.  The idea is to infer the type variable T
        in the first pass (based on the types of other arguments).  This lets
        us infer the argument and return type of the lambda expression and
        thus also the type variable S in this second pass.

        Return (the callee with type vars applied, inferred actual arg types).
        """
        # None or erased types in inferred types mean that there was not enough
        # information to infer the argument. Replace them with None values so
        # that they are not applied yet below.
        inferred_args = list(old_inferred_args)
        for i, arg in enumerate(inferred_args):
            if isinstance(arg, (NoneTyp, UninhabitedType)) or has_erased_component(arg):
                inferred_args[i] = None
        callee_type = self.apply_generic_arguments(callee_type, inferred_args, context)

        arg_types = self.infer_arg_types_in_context2(
            callee_type, args, arg_kinds, formal_to_actual)

        inferred_args = infer_function_type_arguments(
            callee_type, arg_types, arg_kinds, formal_to_actual)

        return callee_type, inferred_args

    def get_arg_infer_passes(self, arg_types: List[Type],
                             formal_to_actual: List[List[int]],
                             num_actuals: int) -> List[int]:
        """Return pass numbers for args for two-pass argument type inference.

        For each actual, the pass number is either 1 (first pass) or 2 (second
        pass).

        Two-pass argument type inference primarily lets us infer types of
        lambdas more effectively.
        """
        res = [1] * num_actuals
        for i, arg in enumerate(arg_types):
            if arg.accept(ArgInferSecondPassQuery()):
                for j in formal_to_actual[i]:
                    res[j] = 2
        return res

    def apply_inferred_arguments(self, callee_type: CallableType,
                                 inferred_args: Sequence[Optional[Type]],
                                 context: Context) -> CallableType:
        """Apply inferred values of type arguments to a generic function.

        Inferred_args contains the values of function type arguments.
        """
        # Report error if some of the variables could not be solved. In that
        # case assume that all variables have type Any to avoid extra
        # bogus error messages.
        for i, inferred_type in enumerate(inferred_args):
            if not inferred_type or has_erased_component(inferred_type):
                # Could not infer a non-trivial type for a type variable.
                self.msg.could_not_infer_type_arguments(
                    callee_type, i + 1, context)
                inferred_args = [AnyType(TypeOfAny.from_error)] * len(inferred_args)
        # Apply the inferred types to the function type. In this case the
        # return type must be CallableType, since we give the right number of type
        # arguments.
        return self.apply_generic_arguments(callee_type, inferred_args, context)

    def check_argument_count(self, callee: CallableType, actual_types: List[Type],
                             actual_kinds: List[int],
                             actual_names: Optional[Sequence[Optional[str]]],
                             formal_to_actual: List[List[int]],
                             context: Optional[Context],
                             messages: Optional[MessageBuilder]) -> bool:
        """Check that there is a value for all required arguments to a function.

        Also check that there are no duplicate values for arguments. Report found errors
        using 'messages' if it's not None. If 'messages' is given, 'context' must also be given.

        Return False if there were any errors. Otherwise return True
        """
        # TODO(jukka): We could return as soon as we find an error if messages is None.
        formal_kinds = callee.arg_kinds

        # Collect list of all actual arguments matched to formal arguments.
        all_actuals = []  # type: List[int]
        for actuals in formal_to_actual:
            all_actuals.extend(actuals)

        is_unexpected_arg_error = False  # Keep track of errors to avoid duplicate errors.
        ok = True  # False if we've found any error.
        for i, kind in enumerate(actual_kinds):
            if i not in all_actuals and (
                    kind != nodes.ARG_STAR or
                    not is_empty_tuple(actual_types[i])):
                # Extra actual: not matched by a formal argument.
                ok = False
                if kind != nodes.ARG_NAMED:
                    if messages:
                        assert context, "Internal error: messages given without context"
                        messages.too_many_arguments(callee, context)
                else:
                    if messages:
                        assert context, "Internal error: messages given without context"
                        assert actual_names, "Internal error: named kinds without names given"
                        act_name = actual_names[i]
                        assert act_name is not None
                        messages.unexpected_keyword_argument(
                            callee, act_name, context)
                    is_unexpected_arg_error = True
            elif kind == nodes.ARG_STAR and (
                    nodes.ARG_STAR not in formal_kinds):
                actual_type = actual_types[i]
                if isinstance(actual_type, TupleType):
                    if all_actuals.count(i) < len(actual_type.items):
                        # Too many tuple items as some did not match.
                        if messages:
                            assert context, "Internal error: messages given without context"
                            messages.too_many_arguments(callee, context)
                        ok = False
                # *args can be applied even if the function takes a fixed
                # number of positional arguments. This may succeed at runtime.

        for i, kind in enumerate(formal_kinds):
            if kind == nodes.ARG_POS and (not formal_to_actual[i] and
                                          not is_unexpected_arg_error):
                # No actual for a mandatory positional formal.
                if messages:
                    assert context, "Internal error: messages given without context"
                    messages.too_few_arguments(callee, context, actual_names)
                ok = False
            elif kind == nodes.ARG_NAMED and (not formal_to_actual[i] and
                                              not is_unexpected_arg_error):
                # No actual for a mandatory named formal
                if messages:
                    argname = callee.arg_names[i]
                    assert argname is not None
                    assert context, "Internal error: messages given without context"
                    messages.missing_named_argument(callee, context, argname)
                ok = False
            elif kind in [nodes.ARG_POS, nodes.ARG_OPT,
                          nodes.ARG_NAMED, nodes.ARG_NAMED_OPT] and is_duplicate_mapping(
                    formal_to_actual[i], actual_kinds):
                if (self.chk.in_checked_function() or
                        isinstance(actual_types[formal_to_actual[i][0]], TupleType)):
                    if messages:
                        assert context, "Internal error: messages given without context"
                        messages.duplicate_argument_value(callee, i, context)
                    ok = False
            elif (kind in (nodes.ARG_NAMED, nodes.ARG_NAMED_OPT) and formal_to_actual[i] and
                  actual_kinds[formal_to_actual[i][0]] not in [nodes.ARG_NAMED, nodes.ARG_STAR2]):
                # Positional argument when expecting a keyword argument.
                if messages:
                    assert context, "Internal error: messages given without context"
                    messages.too_many_positional_arguments(callee, context)
                ok = False
        return ok

    def check_argument_types(self, arg_types: List[Type], arg_kinds: List[int],
                             callee: CallableType,
                             formal_to_actual: List[List[int]],
                             context: Context,
                             messages: Optional[MessageBuilder] = None,
                             check_arg: Optional[ArgChecker] = None) -> None:
        """Check argument types against a callable type.

        Report errors if the argument types are not compatible.
        """
        messages = messages or self.msg
        check_arg = check_arg or self.check_arg
        # Keep track of consumed tuple *arg items.
        tuple_counter = [0]
        for i, actuals in enumerate(formal_to_actual):
            for actual in actuals:
                arg_type = arg_types[actual]
                if arg_type is None:
                    continue  # Some kind of error was already reported.
                # Check that a *arg is valid as varargs.
                if (arg_kinds[actual] == nodes.ARG_STAR and
                        not self.is_valid_var_arg(arg_type)):
                    messages.invalid_var_arg(arg_type, context)
                if (arg_kinds[actual] == nodes.ARG_STAR2 and
                        not self.is_valid_keyword_var_arg(arg_type)):
                    is_mapping = is_subtype(arg_type, self.chk.named_type('typing.Mapping'))
                    messages.invalid_keyword_var_arg(arg_type, is_mapping, context)
                # Get the type of an individual actual argument (for *args
                # and **args this is the item type, not the collection type).
                if (isinstance(arg_type, TupleType)
                        and tuple_counter[0] >= len(arg_type.items)
                        and arg_kinds[actual] == nodes.ARG_STAR):
                    # The tuple is exhausted. Continue with further arguments.
                    continue
                actual_type = get_actual_type(arg_type, arg_kinds[actual],
                                              tuple_counter)
                check_arg(actual_type, arg_type, arg_kinds[actual],
                          callee.arg_types[i],
                          actual + 1, i + 1, callee, context, messages)

                # There may be some remaining tuple varargs items that haven't
                # been checked yet. Handle them.
                tuplet = arg_types[actual]
                if (callee.arg_kinds[i] == nodes.ARG_STAR and
                        arg_kinds[actual] == nodes.ARG_STAR and
                        isinstance(tuplet, TupleType)):
                    while tuple_counter[0] < len(tuplet.items):
                        actual_type = get_actual_type(arg_type,
                                                      arg_kinds[actual],
                                                      tuple_counter)
                        check_arg(actual_type, arg_type, arg_kinds[actual],
                                  callee.arg_types[i],
                                  actual + 1, i + 1, callee, context, messages)

    def check_arg(self, caller_type: Type, original_caller_type: Type,
                  caller_kind: int,
                  callee_type: Type, n: int, m: int, callee: CallableType,
                  context: Context, messages: MessageBuilder) -> None:
        """Check the type of a single argument in a call."""
        if isinstance(caller_type, DeletedType):
            messages.deleted_as_rvalue(caller_type, context)
        # Only non-abstract non-protocol class can be given where Type[...] is expected...
        elif (isinstance(caller_type, CallableType) and isinstance(callee_type, TypeType) and
              caller_type.is_type_obj() and
              (caller_type.type_object().is_abstract or caller_type.type_object().is_protocol) and
              isinstance(callee_type.item, Instance) and
              (callee_type.item.type.is_abstract or callee_type.item.type.is_protocol) and
              # ...except for classmethod first argument
              not caller_type.is_classmethod_class):
            self.msg.concrete_only_call(callee_type, context)
        elif not is_subtype(caller_type, callee_type):
            if self.chk.should_suppress_optional_error([caller_type, callee_type]):
                return
            messages.incompatible_argument(n, m, callee, original_caller_type,
                                           caller_kind, context)
            if (isinstance(original_caller_type, (Instance, TupleType, TypedDictType)) and
                    isinstance(callee_type, Instance) and callee_type.type.is_protocol):
                self.msg.report_protocol_problems(original_caller_type, callee_type, context)
            if (isinstance(callee_type, CallableType) and
                    isinstance(original_caller_type, Instance)):
                call = find_member('__call__', original_caller_type, original_caller_type)
                if call:
                    self.msg.note_call(original_caller_type, call, context)

    def overload_call_target(self, arg_types: List[Type], arg_kinds: List[int],
                             arg_names: Optional[Sequence[Optional[str]]],
                             overload: Overloaded, context: Context,
                             messages: Optional[MessageBuilder] = None) -> Type:
        """Infer the correct overload item to call with given argument types.

        The return value may be CallableType or AnyType (if an unique item
        could not be determined).
        """
        messages = messages or self.msg
        # TODO: For overlapping signatures we should try to get a more precise
        #       result than 'Any'.
        match = []  # type: List[CallableType]
        best_match = 0
        for typ in overload.items():
            similarity = self.erased_signature_similarity(arg_types, arg_kinds, arg_names,
                                                          typ, context=context)
            if similarity > 0 and similarity >= best_match:
                if (match and not is_same_type(match[-1].ret_type,
                                               typ.ret_type) and
                    (not mypy.checker.is_more_precise_signature(match[-1], typ)
                     or (any(isinstance(arg, AnyType) for arg in arg_types)
                         and any_arg_causes_overload_ambiguity(
                             match + [typ], arg_types, arg_kinds, arg_names)))):
                    # Ambiguous return type. Either the function overload is
                    # overlapping (which we don't handle very well here) or the
                    # caller has provided some Any argument types; in either
                    # case we'll fall back to Any. It's okay to use Any types
                    # in calls.
                    #
                    # Overlapping overload items are generally fine if the
                    # overlapping is only possible when there is multiple
                    # inheritance, as this is rare. See docstring of
                    # mypy.meet.is_overlapping_types for more about this.
                    #
                    # Note that there is no ambiguity if the items are
                    # covariant in both argument types and return types with
                    # respect to type precision. We'll pick the best/closest
                    # match.
                    #
                    # TODO: Consider returning a union type instead if the
                    #       overlapping is NOT due to Any types?
                    return AnyType(TypeOfAny.special_form)
                else:
                    match.append(typ)
                best_match = max(best_match, similarity)
        if not match:
            if not self.chk.should_suppress_optional_error(arg_types):
                messages.no_variant_matches_arguments(overload, arg_types, context)
            return AnyType(TypeOfAny.from_error)
        else:
            if len(match) == 1:
                return match[0]
            else:
                # More than one signature matches. Pick the first *non-erased*
                # matching signature, or default to the first one if none
                # match.
                for m in match:
                    if self.match_signature_types(arg_types, arg_kinds, arg_names, m,
                                                  context=context):
                        return m
                return match[0]

    def erased_signature_similarity(self, arg_types: List[Type], arg_kinds: List[int],
                                    arg_names: Optional[Sequence[Optional[str]]],
                                    callee: CallableType,
                                    context: Context) -> int:
        """Determine whether arguments could match the signature at runtime.

        Return similarity level (0 = no match, 1 = can match, 2 = non-promotion match). See
        overload_arg_similarity for a discussion of similarity levels.
        """
        formal_to_actual = map_actuals_to_formals(arg_kinds,
                                                  arg_names,
                                                  callee.arg_kinds,
                                                  callee.arg_names,
                                                  lambda i: arg_types[i])

        if not self.check_argument_count(callee, arg_types, arg_kinds, arg_names,
                                         formal_to_actual, None, None):
            # Too few or many arguments -> no match.
            return 0

        similarity = 2

        def check_arg(caller_type: Type, original_caller_type: Type, caller_kind: int,
                      callee_type: Type, n: int, m: int, callee: CallableType,
                      context: Context, messages: MessageBuilder) -> None:
            nonlocal similarity
            similarity = min(similarity,
                             overload_arg_similarity(caller_type, callee_type))
            if similarity == 0:
                # No match -- exit early since none of the remaining work can change
                # the result.
                raise Finished

        try:
            self.check_argument_types(arg_types, arg_kinds, callee, formal_to_actual,
                                      context=context, check_arg=check_arg)
        except Finished:
            pass

        return similarity

    def match_signature_types(self, arg_types: List[Type], arg_kinds: List[int],
                              arg_names: Optional[Sequence[Optional[str]]], callee: CallableType,
                              context: Context) -> bool:
        """Determine whether arguments types match the signature.

        Assume that argument counts are compatible.

        Return True if arguments match.
        """
        formal_to_actual = map_actuals_to_formals(arg_kinds,
                                                  arg_names,
                                                  callee.arg_kinds,
                                                  callee.arg_names,
                                                  lambda i: arg_types[i])
        ok = True

        def check_arg(caller_type: Type, original_caller_type: Type, caller_kind: int,
                      callee_type: Type, n: int, m: int, callee: CallableType,
                      context: Context, messages: MessageBuilder) -> None:
            nonlocal ok
            if not is_subtype(caller_type, callee_type):
                ok = False

        self.check_argument_types(arg_types, arg_kinds, callee, formal_to_actual,
                                  context=context, check_arg=check_arg)
        return ok

    def apply_generic_arguments(self, callable: CallableType, types: Sequence[Optional[Type]],
                                context: Context) -> CallableType:
        """Simple wrapper around mypy.applytype.apply_generic_arguments."""
        return applytype.apply_generic_arguments(callable, types, self.msg, context)

    def visit_member_expr(self, e: MemberExpr) -> Type:
        """Visit member expression (of form e.id)."""
        self.chk.module_refs.update(extract_refexpr_names(e))
        result = self.analyze_ordinary_member_access(e, False)
        return self.narrow_type_from_binder(e, result)

    def analyze_ordinary_member_access(self, e: MemberExpr,
                                       is_lvalue: bool) -> Type:
        """Analyse member expression or member lvalue."""
        if e.kind is not None:
            # This is a reference to a module attribute.
            return self.analyze_ref_expr(e)
        else:
            # This is a reference to a non-module attribute.
            original_type = self.accept(e.expr)
            member_type = analyze_member_access(
                e.name, original_type, e, is_lvalue, False, False,
                self.named_type, self.not_ready_callback, self.msg,
                original_type=original_type, chk=self.chk)
            if is_lvalue:
                return member_type
            else:
                return self.analyze_descriptor_access(original_type, member_type, e)

    def analyze_descriptor_access(self, instance_type: Type, descriptor_type: Type,
                                  context: Context) -> Type:
        """Type check descriptor access.

        Arguments:
            instance_type: The type of the instance on which the descriptor
                attribute is being accessed (the type of ``a`` in ``a.f`` when
                ``f`` is a descriptor).
            descriptor_type: The type of the descriptor attribute being accessed
                (the type of ``f`` in ``a.f`` when ``f`` is a descriptor).
            context: The node defining the context of this inference.
        Return:
            The return type of the appropriate ``__get__`` overload for the descriptor.
        """
        if not isinstance(descriptor_type, Instance):
            return descriptor_type

        if not descriptor_type.type.has_readable_member('__get__'):
            return descriptor_type

        dunder_get = descriptor_type.type.get_method('__get__')

        if dunder_get is None:
            self.msg.fail("{}.__get__ is not callable".format(descriptor_type), context)
            return AnyType(TypeOfAny.from_error)

        function = function_type(dunder_get, self.named_type('builtins.function'))
        bound_method = bind_self(function, descriptor_type)
        typ = map_instance_to_supertype(descriptor_type, dunder_get.info)
        dunder_get_type = expand_type_by_instance(bound_method, typ)

        if isinstance(instance_type, FunctionLike) and instance_type.is_type_obj():
            owner_type = instance_type.items()[0].ret_type
            instance_type = NoneTyp()
        elif isinstance(instance_type, TypeType):
            owner_type = instance_type.item
            instance_type = NoneTyp()
        else:
            owner_type = instance_type

        _, inferred_dunder_get_type = self.check_call(
            dunder_get_type,
            [TempNode(instance_type), TempNode(TypeType.make_normalized(owner_type))],
            [nodes.ARG_POS, nodes.ARG_POS], context)

        if isinstance(inferred_dunder_get_type, AnyType):
            # check_call failed, and will have reported an error
            return inferred_dunder_get_type

        if not isinstance(inferred_dunder_get_type, CallableType):
            self.msg.fail("{}.__get__ is not callable".format(descriptor_type), context)
            return AnyType(TypeOfAny.from_error)

        return inferred_dunder_get_type.ret_type

    def analyze_external_member_access(self, member: str, base_type: Type,
                                       context: Context) -> Type:
        """Analyse member access that is external, i.e. it cannot
        refer to private definitions. Return the result type.
        """
        # TODO remove; no private definitions in mypy
        return analyze_member_access(member, base_type, context, False, False, False,
                                     self.named_type, self.not_ready_callback, self.msg,
                                     original_type=base_type, chk=self.chk)

    def visit_int_expr(self, e: IntExpr) -> Type:
        """Type check an integer literal (trivial)."""
        return self.named_type('builtins.int')

    def visit_str_expr(self, e: StrExpr) -> Type:
        """Type check a string literal (trivial)."""
        return self.named_type('builtins.str')

    def visit_bytes_expr(self, e: BytesExpr) -> Type:
        """Type check a bytes literal (trivial)."""
        return self.named_type('builtins.bytes')

    def visit_unicode_expr(self, e: UnicodeExpr) -> Type:
        """Type check a unicode literal (trivial)."""
        return self.named_type('builtins.unicode')

    def visit_float_expr(self, e: FloatExpr) -> Type:
        """Type check a float literal (trivial)."""
        return self.named_type('builtins.float')

    def visit_complex_expr(self, e: ComplexExpr) -> Type:
        """Type check a complex literal."""
        return self.named_type('builtins.complex')

    def visit_ellipsis(self, e: EllipsisExpr) -> Type:
        """Type check '...'."""
        if self.chk.options.python_version[0] >= 3:
            return self.named_type('builtins.ellipsis')
        else:
            # '...' is not valid in normal Python 2 code, but it can
            # be used in stubs.  The parser makes sure that we only
            # get this far if we are in a stub, and we can safely
            # return 'object' as ellipsis is special cased elsewhere.
            # The builtins.ellipsis type does not exist in Python 2.
            return self.named_type('builtins.object')

    def visit_op_expr(self, e: OpExpr) -> Type:
        """Type check a binary operator expression."""
        if e.op == 'and' or e.op == 'or':
            return self.check_boolean_op(e, e)
        if e.op == '*' and isinstance(e.left, ListExpr):
            # Expressions of form [...] * e get special type inference.
            return self.check_list_multiply(e)
        if e.op == '%':
            pyversion = self.chk.options.python_version
            if pyversion[0] == 3:
                if isinstance(e.left, BytesExpr) and pyversion[1] >= 5:
                    return self.strfrm_checker.check_str_interpolation(e.left, e.right)
                if isinstance(e.left, StrExpr):
                    return self.strfrm_checker.check_str_interpolation(e.left, e.right)
            elif pyversion[0] <= 2:
                if isinstance(e.left, (StrExpr, BytesExpr, UnicodeExpr)):
                    return self.strfrm_checker.check_str_interpolation(e.left, e.right)
        left_type = self.accept(e.left)

        if e.op in nodes.op_methods:
            method = self.get_operator_method(e.op)
            result, method_type = self.check_op(method, left_type, e.right, e,
                                                allow_reverse=True)
            e.method_type = method_type
            return result
        else:
            raise RuntimeError('Unknown operator {}'.format(e.op))

    def visit_comparison_expr(self, e: ComparisonExpr) -> Type:
        """Type check a comparison expression.

        Comparison expressions are type checked consecutive-pair-wise
        That is, 'a < b > c == d' is check as 'a < b and b > c and c == d'
        """
        result = None

        # Check each consecutive operand pair and their operator
        for left, right, operator in zip(e.operands, e.operands[1:], e.operators):
            left_type = self.accept(left)

            method_type = None  # type: Optional[mypy.types.Type]

            if operator == 'in' or operator == 'not in':
                right_type = self.accept(right)  # always validate the right operand

                # Keep track of whether we get type check errors (these won't be reported, they
                # are just to verify whether something is valid typing wise).
                local_errors = self.msg.copy()
                local_errors.disable_count = 0
                sub_result, method_type = self.check_op_local('__contains__', right_type,
                                                          left, e, local_errors)
                if isinstance(right_type, PartialType):
                    # We don't really know if this is an error or not, so just shut up.
                    pass
                elif (local_errors.is_errors() and
                    # is_valid_var_arg is True for any Iterable
                        self.is_valid_var_arg(right_type)):
                    itertype = self.chk.analyze_iterable_item_type(right)
                    method_type = CallableType(
                        [left_type],
                        [nodes.ARG_POS],
                        [None],
                        self.bool_type(),
                        self.named_type('builtins.function'))
                    sub_result = self.bool_type()
                    if not is_subtype(left_type, itertype):
                        self.msg.unsupported_operand_types('in', left_type, right_type, e)
                else:
                    self.msg.add_errors(local_errors)
                if operator == 'not in':
                    sub_result = self.bool_type()
            elif operator in nodes.op_methods:
                method = self.get_operator_method(operator)
                sub_result, method_type = self.check_op(method, left_type, right, e,
                                                    allow_reverse=True)

            elif operator == 'is' or operator == 'is not':
                self.accept(right)  # validate the right operand
                sub_result = self.bool_type()
                method_type = None
            else:
                raise RuntimeError('Unknown comparison operator {}'.format(operator))

            e.method_types.append(method_type)

            #  Determine type of boolean-and of result and sub_result
            if result is None:
                result = sub_result
            else:
                result = join.join_types(result, sub_result)

        assert result is not None
        return result

    def get_operator_method(self, op: str) -> str:
        if op == '/' and self.chk.options.python_version[0] == 2:
            # TODO also check for "from __future__ import division"
            return '__div__'
        else:
            return nodes.op_methods[op]

    def _check_op_for_errors(self, method: str, base_type: Type, arg: Expression,
                             context: Context
                             ) -> Tuple[Tuple[Type, Type], MessageBuilder]:
        """Type check a binary operation which maps to a method call.

        Return ((result type, inferred operator method type), error message).
        """
        local_errors = self.msg.copy()
        local_errors.disable_count = 0
        result = self.check_op_local(method, base_type,
                                     arg, context,
                                     local_errors)
        return result, local_errors

    def check_op_local(self, method: str, base_type: Type, arg: Expression,
                       context: Context, local_errors: MessageBuilder) -> Tuple[Type, Type]:
        """Type check a binary operation which maps to a method call.

        Return tuple (result type, inferred operator method type).
        """
        method_type = analyze_member_access(method, base_type, context, False, False, True,
                                            self.named_type, self.not_ready_callback, local_errors,
                                            original_type=base_type, chk=self.chk)
        callable_name = None
        object_type = None
        if isinstance(base_type, Instance):
            # TODO: Find out in which class the method was defined originally?
            # TODO: Support non-Instance types.
            callable_name = '{}.{}'.format(base_type.type.fullname(), method)
            object_type = base_type
        return self.check_call(method_type, [arg], [nodes.ARG_POS],
                               context, arg_messages=local_errors,
                               callable_name=callable_name, object_type=object_type)

    def check_op(self, method: str, base_type: Type, arg: Expression,
                 context: Context,
                 allow_reverse: bool = False) -> Tuple[Type, Type]:
        """Type check a binary operation which maps to a method call.

        Return tuple (result type, inferred operator method type).
        """
        # Use a local error storage for errors related to invalid argument
        # type (but NOT other errors). This error may need to be suppressed
        # for operators which support __rX methods.
        local_errors = self.msg.copy()
        local_errors.disable_count = 0
        if not allow_reverse or self.has_member(base_type, method):
            result = self.check_op_local(method, base_type, arg, context,
                                         local_errors)
            if allow_reverse:
                arg_type = self.chk.type_map[arg]
                if isinstance(arg_type, AnyType):
                    # If the right operand has type Any, we can't make any
                    # conjectures about the type of the result, since the
                    # operand could have a __r method that returns anything.
                    any_type = AnyType(TypeOfAny.from_another_any, source_any=arg_type)
                    result = any_type, result[1]
            success = not local_errors.is_errors()
        else:
            error_any = AnyType(TypeOfAny.from_error)
            result = error_any, error_any
            success = False
        if success or not allow_reverse or isinstance(base_type, AnyType):
            # We were able to call the normal variant of the operator method,
            # or there was some problem not related to argument type
            # validity, or the operator has no __rX method. In any case, we
            # don't need to consider the __rX method.
            self.msg.add_errors(local_errors)
            return result
        else:
            # Calling the operator method was unsuccessful. Try the __rX
            # method of the other operand instead.
            rmethod = self.get_reverse_op_method(method)
            arg_type = self.accept(arg)
            base_arg_node = TempNode(base_type)
            # In order to be consistent with showing an error about the lhs not matching if neither
            # the lhs nor the rhs have a compatible signature, we keep track of the first error
            # message generated when considering __rX methods and __cmp__ methods for Python 2.
            first_error = None  # type: Optional[Tuple[Tuple[Type, Type], MessageBuilder]]
            if self.has_member(arg_type, rmethod):
                result, local_errors = self._check_op_for_errors(rmethod, arg_type,
                                                                 base_arg_node, context)
                if not local_errors.is_errors():
                    return result
                first_error = first_error or (result, local_errors)
            # If we've failed to find an __rX method and we're checking Python 2, check to see if
            # there is a __cmp__ method on the lhs or on the rhs.
            if (self.chk.options.python_version[0] == 2 and
                    method in nodes.ops_falling_back_to_cmp):
                cmp_method = nodes.comparison_fallback_method
                if self.has_member(base_type, cmp_method):
                    # First check the if the lhs has a __cmp__ method that works
                    result, local_errors = self._check_op_for_errors(cmp_method, base_type,
                                                                     arg, context)
                    if not local_errors.is_errors():
                        return result
                    first_error = first_error or (result, local_errors)
                if self.has_member(arg_type, cmp_method):
                    # Failed to find a __cmp__ method on the lhs, check if
                    # the rhs as a __cmp__ method that can operate on lhs
                    result, local_errors = self._check_op_for_errors(cmp_method, arg_type,
                                                                     base_arg_node, context)
                    if not local_errors.is_errors():
                        return result
                    first_error = first_error or (result, local_errors)
            if first_error:
                # We found either a __rX method, a __cmp__ method on the base_type, or a __cmp__
                # method on the rhs and failed match. Return the error for the first of these to
                # fail.
                self.msg.add_errors(first_error[1])
                return first_error[0]
            else:
                # No __rX method or __cmp__. Do deferred type checking to
                # produce error message that we may have missed previously.
                # TODO Fix type checking an expression more than once.
                return self.check_op_local(method, base_type, arg, context,
                                           self.msg)

    def get_reverse_op_method(self, method: str) -> str:
        if method == '__div__' and self.chk.options.python_version[0] == 2:
            return '__rdiv__'
        else:
            return nodes.reverse_op_methods[method]

    def check_boolean_op(self, e: OpExpr, context: Context) -> Type:
        """Type check a boolean operation ('and' or 'or')."""

        # A boolean operation can evaluate to either of the operands.

        # We use the current type context to guide the type inference of of
        # the left operand. We also use the left operand type to guide the type
        # inference of the right operand so that expressions such as
        # '[1] or []' are inferred correctly.
        ctx = self.type_context[-1]
        left_type = self.accept(e.left, ctx)

        assert e.op in ('and', 'or')  # Checked by visit_op_expr

        if e.op == 'and':
            right_map, left_map = self.chk.find_isinstance_check(e.left)
            restricted_left_type = false_only(left_type)
            result_is_left = not left_type.can_be_true
        elif e.op == 'or':
            left_map, right_map = self.chk.find_isinstance_check(e.left)
            restricted_left_type = true_only(left_type)
            result_is_left = not left_type.can_be_false

        if e.right_unreachable:
            right_map = None
        elif e.right_always:
            left_map = None

        # If right_map is None then we know mypy considers the right branch
        # to be unreachable and therefore any errors found in the right branch
        # should be suppressed.
        if right_map is None:
            self.msg.disable_errors()
        try:
            right_type = self.analyze_cond_branch(right_map, e.right, left_type)
        finally:
            if right_map is None:
                self.msg.enable_errors()

        if right_map is None:
            # The boolean expression is statically known to be the left value
            assert left_map is not None  # find_isinstance_check guarantees this
            return left_type
        if left_map is None:
            # The boolean expression is statically known to be the right value
            assert right_map is not None  # find_isinstance_check guarantees this
            return right_type

        if isinstance(restricted_left_type, UninhabitedType):
            # The left operand can never be the result
            return right_type
        elif result_is_left:
            # The left operand is always the result
            return left_type
        else:
            return UnionType.make_simplified_union([restricted_left_type, right_type])

    def check_list_multiply(self, e: OpExpr) -> Type:
        """Type check an expression of form '[...] * e'.

        Type inference is special-cased for this common construct.
        """
        right_type = self.accept(e.right)
        if is_subtype(right_type, self.named_type('builtins.int')):
            # Special case: [...] * <int value>. Use the type context of the
            # OpExpr, since the multiplication does not affect the type.
            left_type = self.accept(e.left, type_context=self.type_context[-1])
        else:
            left_type = self.accept(e.left)
        result, method_type = self.check_op('__mul__', left_type, e.right, e)
        e.method_type = method_type
        return result

    def visit_unary_expr(self, e: UnaryExpr) -> Type:
        """Type check an unary operation ('not', '-', '+' or '~')."""
        operand_type = self.accept(e.expr)
        op = e.op
        if op == 'not':
            result = self.bool_type()  # type: Type
        else:
            method = nodes.unary_op_methods[op]
            method_type = self.analyze_external_member_access(method, operand_type, e)
            result, method_type = self.check_call(method_type, [], [], e)
            e.method_type = method_type
        return result

    def visit_index_expr(self, e: IndexExpr) -> Type:
        """Type check an index expression (base[index]).

        It may also represent type application.
        """
        result = self.visit_index_expr_helper(e)
        return self.narrow_type_from_binder(e, result)

    def visit_index_expr_helper(self, e: IndexExpr) -> Type:
        if e.analyzed:
            # It's actually a type application.
            return self.accept(e.analyzed)
        left_type = self.accept(e.base)
        if isinstance(left_type, TupleType) and self.chk.in_checked_function():
            # Special case for tuples. They return a more specific type when
            # indexed by an integer literal.
            index = e.index
            if isinstance(index, SliceExpr):
                return self.visit_tuple_slice_helper(left_type, index)

            n = self._get_value(index)
            if n is not None:
                if n < 0:
                    n += len(left_type.items)
                if n >= 0 and n < len(left_type.items):
                    return left_type.items[n]
                else:
                    self.chk.fail(messages.TUPLE_INDEX_OUT_OF_RANGE, e)
                    return AnyType(TypeOfAny.from_error)
            else:
                return self.nonliteral_tuple_index_helper(left_type, index)
        elif isinstance(left_type, TypedDictType):
            return self.visit_typeddict_index_expr(left_type, e.index)
        elif (isinstance(left_type, CallableType)
              and left_type.is_type_obj() and left_type.type_object().is_enum):
            return self.visit_enum_index_expr(left_type.type_object(), e.index, e)
        else:
            result, method_type = self.check_op('__getitem__', left_type, e.index, e)
            e.method_type = method_type
            return result

    def visit_tuple_slice_helper(self, left_type: TupleType, slic: SliceExpr) -> Type:
        begin = None
        end = None
        stride = None

        if slic.begin_index:
            begin = self._get_value(slic.begin_index)
            if begin is None:
                return self.nonliteral_tuple_index_helper(left_type, slic)

        if slic.end_index:
            end = self._get_value(slic.end_index)
            if end is None:
                return self.nonliteral_tuple_index_helper(left_type, slic)

        if slic.stride:
            stride = self._get_value(slic.stride)
            if stride is None:
                return self.nonliteral_tuple_index_helper(left_type, slic)

        return left_type.slice(begin, stride, end)

    def nonliteral_tuple_index_helper(self, left_type: TupleType, index: Expression) -> Type:
        index_type = self.accept(index)
        expected_type = UnionType.make_union([self.named_type('builtins.int'),
                                              self.named_type('builtins.slice')])
        if not self.chk.check_subtype(index_type, expected_type, index,
                                      messages.INVALID_TUPLE_INDEX_TYPE,
                                      'actual type', 'expected type'):
            return AnyType(TypeOfAny.from_error)
        else:
            return UnionType.make_simplified_union(left_type.items)

    def _get_value(self, index: Expression) -> Optional[int]:
        if isinstance(index, IntExpr):
            return index.value
        elif isinstance(index, UnaryExpr):
            if index.op == '-':
                operand = index.expr
                if isinstance(operand, IntExpr):
                    return -1 * operand.value
        return None

    def visit_typeddict_index_expr(self, td_type: TypedDictType, index: Expression) -> Type:
        if not isinstance(index, (StrExpr, UnicodeExpr)):
            self.msg.typeddict_key_must_be_string_literal(td_type, index)
            return AnyType(TypeOfAny.from_error)
        item_name = index.value

        item_type = td_type.items.get(item_name)
        if item_type is None:
            self.msg.typeddict_key_not_found(td_type, item_name, index)
            return AnyType(TypeOfAny.from_error)
        return item_type

    def visit_enum_index_expr(self, enum_type: TypeInfo, index: Expression,
                              context: Context) -> Type:
        string_type = self.named_type('builtins.str')  # type: Type
        if self.chk.options.python_version[0] < 3:
            string_type = UnionType.make_union([string_type,
                                                self.named_type('builtins.unicode')])
        self.chk.check_subtype(self.accept(index), string_type, context,
                               "Enum index should be a string", "actual index type")
        return Instance(enum_type, [])

    def visit_cast_expr(self, expr: CastExpr) -> Type:
        """Type check a cast expression."""
        source_type = self.accept(expr.expr, type_context=AnyType(TypeOfAny.special_form),
                                  allow_none_return=True, always_allow_any=True)
        target_type = expr.type
        options = self.chk.options
        if options.warn_redundant_casts and is_same_type(source_type, target_type):
            self.msg.redundant_cast(target_type, expr)
        if options.disallow_any_unimported and has_any_from_unimported_type(target_type):
            self.msg.unimported_type_becomes_any("Target type of cast", target_type, expr)
        check_for_explicit_any(target_type, self.chk.options, self.chk.is_typeshed_stub, self.msg,
                               context=expr)
        return target_type

    def visit_reveal_type_expr(self, expr: RevealTypeExpr) -> Type:
        """Type check a reveal_type expression."""
        revealed_type = self.accept(expr.expr, type_context=self.type_context[-1])
        if not self.chk.current_node_deferred:
            self.msg.reveal_type(revealed_type, expr)
            if not self.chk.in_checked_function():
                self.msg.note("'reveal_type' always outputs 'Any' in unchecked functions", expr)
        return revealed_type

    def visit_type_application(self, tapp: TypeApplication) -> Type:
        """Type check a type application (expr[type, ...])."""
        tp = self.accept(tapp.expr)
        if isinstance(tp, CallableType):
            if not tp.is_type_obj():
                self.chk.fail(messages.ONLY_CLASS_APPLICATION, tapp)
            if len(tp.variables) != len(tapp.types):
                self.msg.incompatible_type_application(len(tp.variables),
                                                       len(tapp.types), tapp)
                return AnyType(TypeOfAny.from_error)
            return self.apply_generic_arguments(tp, tapp.types, tapp)
        elif isinstance(tp, Overloaded):
            if not tp.is_type_obj():
                self.chk.fail(messages.ONLY_CLASS_APPLICATION, tapp)
            for item in tp.items():
                if len(item.variables) != len(tapp.types):
                    self.msg.incompatible_type_application(len(item.variables),
                                                           len(tapp.types), tapp)
                    return AnyType(TypeOfAny.from_error)
            return Overloaded([self.apply_generic_arguments(item, tapp.types, tapp)
                               for item in tp.items()])
        if isinstance(tp, AnyType):
            return AnyType(TypeOfAny.from_another_any, source_any=tp)
        return AnyType(TypeOfAny.special_form)

    def visit_type_alias_expr(self, alias: TypeAliasExpr) -> Type:
        """Get type of a type alias (could be generic) in a runtime expression."""
        if isinstance(alias.type, Instance) and alias.type.invalid:
            # An invalid alias, error already has been reported
            return AnyType(TypeOfAny.from_error)
        item = alias.type
        if not alias.in_runtime:
            # We don't replace TypeVar's with Any for alias used as Alias[T](42).
            item = set_any_tvars(item, alias.tvars, alias.line, alias.column)
        if isinstance(item, Instance):
            # Normally we get a callable type (or overloaded) with .is_type_obj() true
            # representing the class's constructor
            tp = type_object_type(item.type, self.named_type)
        else:
            # This type is invalid in most runtime contexts
            # and corresponding an error will be reported.
            return alias.fallback
        if isinstance(tp, CallableType):
            if len(tp.variables) != len(item.args):
                self.msg.incompatible_type_application(len(tp.variables),
                                                       len(item.args), item)
                return AnyType(TypeOfAny.from_error)
            return self.apply_generic_arguments(tp, item.args, item)
        elif isinstance(tp, Overloaded):
            for it in tp.items():
                if len(it.variables) != len(item.args):
                    self.msg.incompatible_type_application(len(it.variables),
                                                           len(item.args), item)
                    return AnyType(TypeOfAny.from_error)
            return Overloaded([self.apply_generic_arguments(it, item.args, item)
                               for it in tp.items()])
        return AnyType(TypeOfAny.special_form)

    def visit_list_expr(self, e: ListExpr) -> Type:
        """Type check a list expression [...]."""
        return self.check_lst_expr(e.items, 'builtins.list', '<list>', e)

    def visit_set_expr(self, e: SetExpr) -> Type:
        return self.check_lst_expr(e.items, 'builtins.set', '<set>', e)

    def check_lst_expr(self, items: List[Expression], fullname: str,
                       tag: str, context: Context) -> Type:
        # Translate into type checking a generic function call.
        # Used for list and set expressions, as well as for tuples
        # containing star expressions that don't refer to a
        # Tuple. (Note: "lst" stands for list-set-tuple. :-)
        tvdef = TypeVarDef('T', 'T', -1, [], self.object_type())
        tv = TypeVarType(tvdef)
        constructor = CallableType(
            [tv],
            [nodes.ARG_STAR],
            [None],
            self.chk.named_generic_type(fullname, [tv]),
            self.named_type('builtins.function'),
            name=tag,
            variables=[tvdef])
        return self.check_call(constructor,
                               [(i.expr if isinstance(i, StarExpr) else i)
                                for i in items],
                               [(nodes.ARG_STAR if isinstance(i, StarExpr) else nodes.ARG_POS)
                                for i in items],
                               context)[0]

    def visit_tuple_expr(self, e: TupleExpr) -> Type:
        """Type check a tuple expression."""
        # Try to determine type context for type inference.
        type_context = self.type_context[-1]
        type_context_items = None
        if isinstance(type_context, UnionType):
            tuples_in_context = [t for t in type_context.items
                                 if (isinstance(t, TupleType) and len(t.items) == len(e.items)) or
                                 is_named_instance(t, 'builtins.tuple')]
            if len(tuples_in_context) == 1:
                type_context = tuples_in_context[0]
            else:
                # There are either no relevant tuples in the Union, or there is
                # more than one.  Either way, we can't decide on a context.
                pass

        if isinstance(type_context, TupleType):
            type_context_items = type_context.items
        elif type_context and is_named_instance(type_context, 'builtins.tuple'):
            assert isinstance(type_context, Instance)
            if type_context.args:
                type_context_items = [type_context.args[0]] * len(e.items)
        # NOTE: it's possible for the context to have a different
        # number of items than e.  In that case we use those context
        # items that match a position in e, and we'll worry about type
        # mismatches later.

        # Infer item types.  Give up if there's a star expression
        # that's not a Tuple.
        items = []  # type: List[Type]
        j = 0  # Index into type_context_items; irrelevant if type_context_items is none
        for i in range(len(e.items)):
            item = e.items[i]
            if isinstance(item, StarExpr):
                # Special handling for star expressions.
                # TODO: If there's a context, and item.expr is a
                # TupleExpr, flatten it, so we can benefit from the
                # context?  Counterargument: Why would anyone write
                # (1, *(2, 3)) instead of (1, 2, 3) except in a test?
                tt = self.accept(item.expr)
                if isinstance(tt, TupleType):
                    items.extend(tt.items)
                    j += len(tt.items)
                else:
                    # A star expression that's not a Tuple.
                    # Treat the whole thing as a variable-length tuple.
                    return self.check_lst_expr(e.items, 'builtins.tuple', '<tuple>', e)
            else:
                if not type_context_items or j >= len(type_context_items):
                    tt = self.accept(item)
                else:
                    tt = self.accept(item, type_context_items[j])
                    j += 1
                items.append(tt)
        fallback_item = join.join_type_list(items)
        return TupleType(items, self.chk.named_generic_type('builtins.tuple', [fallback_item]))

    def visit_dict_expr(self, e: DictExpr) -> Type:
        """Type check a dict expression.

        Translate it into a call to dict(), with provisions for **expr.
        """
        # if the dict literal doesn't match TypedDict, check_typeddict_call_with_dict reports
        # an error, but returns the TypedDict type that matches the literal it found
        # that would cause a second error when that TypedDict type is returned upstream
        # to avoid the second error, we always return TypedDict type that was requested
        typeddict_context = self.find_typeddict_context(self.type_context[-1])
        if typeddict_context:
            self.check_typeddict_call_with_dict(
                callee=typeddict_context,
                kwargs=e,
                context=e
            )
            return typeddict_context.copy_modified()

        # Collect function arguments, watching out for **expr.
        args = []  # type: List[Expression]  # Regular "key: value"
        stargs = []  # type: List[Expression]  # For "**expr"
        for key, value in e.items:
            if key is None:
                stargs.append(value)
            else:
                args.append(TupleExpr([key, value]))
        # Define type variables (used in constructors below).
        ktdef = TypeVarDef('KT', 'KT', -1, [], self.object_type())
        vtdef = TypeVarDef('VT', 'VT', -2, [], self.object_type())
        kt = TypeVarType(ktdef)
        vt = TypeVarType(vtdef)
        rv = None
        # Call dict(*args), unless it's empty and stargs is not.
        if args or not stargs:
            # The callable type represents a function like this:
            #
            #   def <unnamed>(*v: Tuple[kt, vt]) -> Dict[kt, vt]: ...
            constructor = CallableType(
                [TupleType([kt, vt], self.named_type('builtins.tuple'))],
                [nodes.ARG_STAR],
                [None],
                self.chk.named_generic_type('builtins.dict', [kt, vt]),
                self.named_type('builtins.function'),
                name='<dict>',
                variables=[ktdef, vtdef])
            rv = self.check_call(constructor, args, [nodes.ARG_POS] * len(args), e)[0]
        else:
            # dict(...) will be called below.
            pass
        # Call rv.update(arg) for each arg in **stargs,
        # except if rv isn't set yet, then set rv = dict(arg).
        if stargs:
            for arg in stargs:
                if rv is None:
                    constructor = CallableType(
                        [self.chk.named_generic_type('typing.Mapping', [kt, vt])],
                        [nodes.ARG_POS],
                        [None],
                        self.chk.named_generic_type('builtins.dict', [kt, vt]),
                        self.named_type('builtins.function'),
                        name='<list>',
                        variables=[ktdef, vtdef])
                    rv = self.check_call(constructor, [arg], [nodes.ARG_POS], arg)[0]
                else:
                    method = self.analyze_external_member_access('update', rv, arg)
                    self.check_call(method, [arg], [nodes.ARG_POS], arg)
        assert rv is not None
        return rv

    def find_typeddict_context(self, context: Optional[Type]) -> Optional[TypedDictType]:
        if isinstance(context, TypedDictType):
            return context
        elif isinstance(context, UnionType):
            items = []
            for item in context.items:
                item_context = self.find_typeddict_context(item)
                if item_context:
                    items.append(item_context)
            if len(items) == 1:
                # Only one union item is TypedDict, so use the context as it's unambiguous.
                return items[0]
        # No TypedDict type in context.
        return None

    def visit_lambda_expr(self, e: LambdaExpr) -> Type:
        """Type check lambda expression."""
        inferred_type, type_override = self.infer_lambda_type_using_context(e)
        if not inferred_type:
            self.chk.return_types.append(AnyType(TypeOfAny.special_form))
            # No useful type context.
            ret_type = self.accept(e.expr(), allow_none_return=True)
            fallback = self.named_type('builtins.function')
            self.chk.return_types.pop()
            return callable_type(e, fallback, ret_type)
        else:
            # Type context available.
            self.chk.return_types.append(inferred_type.ret_type)
            self.chk.check_func_item(e, type_override=type_override)
            if e.expr() not in self.chk.type_map:
                self.accept(e.expr(), allow_none_return=True)
            ret_type = self.chk.type_map[e.expr()]
            if isinstance(ret_type, NoneTyp):
                # For "lambda ...: None", just use type from the context.
                # Important when the context is Callable[..., None] which
                # really means Void. See #1425.
                self.chk.return_types.pop()
                return inferred_type
            self.chk.return_types.pop()
            return replace_callable_return_type(inferred_type, ret_type)

    def infer_lambda_type_using_context(self, e: LambdaExpr) -> Tuple[Optional[CallableType],
                                                                    Optional[CallableType]]:
        """Try to infer lambda expression type using context.

        Return None if could not infer type.
        The second item in the return type is the type_override parameter for check_func_item.
        """
        # TODO also accept 'Any' context
        ctx = self.type_context[-1]

        if isinstance(ctx, UnionType):
            callables = [t for t in ctx.relevant_items() if isinstance(t, CallableType)]
            if len(callables) == 1:
                ctx = callables[0]

        if not ctx or not isinstance(ctx, CallableType):
            return None, None

        # The context may have function type variables in it. We replace them
        # since these are the type variables we are ultimately trying to infer;
        # they must be considered as indeterminate. We use ErasedType since it
        # does not affect type inference results (it is for purposes like this
        # only).
        callable_ctx = replace_meta_vars(ctx, ErasedType())
        assert isinstance(callable_ctx, CallableType)

        arg_kinds = [arg.kind for arg in e.arguments]

        if callable_ctx.is_ellipsis_args:
            # Fill in Any arguments to match the arguments of the lambda.
            callable_ctx = callable_ctx.copy_modified(
                is_ellipsis_args=False,
                arg_types=[AnyType(TypeOfAny.special_form)] * len(arg_kinds),
                arg_kinds=arg_kinds
            )

        if ARG_STAR in arg_kinds or ARG_STAR2 in arg_kinds:
            # TODO treat this case appropriately
            return callable_ctx, None
        if callable_ctx.arg_kinds != arg_kinds:
            # Incompatible context; cannot use it to infer types.
            self.chk.fail(messages.CANNOT_INFER_LAMBDA_TYPE, e)
            return None, None

        return callable_ctx, callable_ctx

    def visit_super_expr(self, e: SuperExpr) -> Type:
        """Type check a super expression (non-lvalue)."""
        self.check_super_arguments(e)
        t = self.analyze_super(e, False)
        return t

    def check_super_arguments(self, e: SuperExpr) -> None:
        """Check arguments in a super(...) call."""
        if ARG_STAR in e.call.arg_kinds:
            self.chk.fail('Varargs not supported with "super"', e)
        elif e.call.args and set(e.call.arg_kinds) != {ARG_POS}:
            self.chk.fail('"super" only accepts positional arguments', e)
        elif len(e.call.args) == 1:
            self.chk.fail('"super" with a single argument not supported', e)
        elif len(e.call.args) > 2:
            self.chk.fail('Too many arguments for "super"', e)
        elif self.chk.options.python_version[0] == 2 and len(e.call.args) == 0:
            self.chk.fail('Too few arguments for "super"', e)
        elif len(e.call.args) == 2:
            type_obj_type = self.accept(e.call.args[0])
            instance_type = self.accept(e.call.args[1])
            if isinstance(type_obj_type, FunctionLike) and type_obj_type.is_type_obj():
                type_info = type_obj_type.type_object()
            elif isinstance(type_obj_type, TypeType):
                item = type_obj_type.item
                if isinstance(item, AnyType):
                    # Could be anything.
                    return
                if isinstance(item, TupleType):
                    item = item.fallback  # Handle named tuples and other Tuple[...] subclasses.
                if not isinstance(item, Instance):
                    # A complicated type object type. Too tricky, give up.
                    # TODO: Do something more clever here.
                    self.chk.fail('Unsupported argument 1 for "super"', e)
                    return
                type_info = item.type
            elif isinstance(type_obj_type, AnyType):
                return
            else:
                self.msg.first_argument_for_super_must_be_type(type_obj_type, e)
                return

            if isinstance(instance_type, (Instance, TupleType, TypeVarType)):
                if isinstance(instance_type, TypeVarType):
                    # Needed for generic self.
                    instance_type = instance_type.upper_bound
                    if not isinstance(instance_type, (Instance, TupleType)):
                        # Too tricky, give up.
                        # TODO: Do something more clever here.
                        self.chk.fail(messages.UNSUPPORTED_ARGUMENT_2_FOR_SUPER, e)
                        return
                if isinstance(instance_type, TupleType):
                    # Needed for named tuples and other Tuple[...] subclasses.
                    instance_type = instance_type.fallback
                if type_info not in instance_type.type.mro:
                    self.chk.fail('Argument 2 for "super" not an instance of argument 1', e)
            elif isinstance(instance_type, TypeType) or (isinstance(instance_type, FunctionLike)
                                                         and instance_type.is_type_obj()):
                # TODO: Check whether this is a valid type object here.
                pass
            elif not isinstance(instance_type, AnyType):
                self.chk.fail(messages.UNSUPPORTED_ARGUMENT_2_FOR_SUPER, e)

    def analyze_super(self, e: SuperExpr, is_lvalue: bool) -> Type:
        """Type check a super expression."""
        if e.info and e.info.bases:
            # TODO fix multiple inheritance etc
            if len(e.info.mro) < 2:
                self.chk.fail('Internal error: unexpected mro for {}: {}'.format(
                    e.info.name(), e.info.mro), e)
                return AnyType(TypeOfAny.from_error)
            for base in e.info.mro[1:]:
                if e.name in base.names or base == e.info.mro[-1]:
                    if e.info.fallback_to_any and base == e.info.mro[-1]:
                        # There's an undefined base class, and we're
                        # at the end of the chain.  That's not an error.
                        return AnyType(TypeOfAny.special_form)
                    if not self.chk.in_checked_function():
                        return AnyType(TypeOfAny.unannotated)
                    if self.chk.scope.active_class() is not None:
                        self.chk.fail('super() outside of a method is not supported', e)
                        return AnyType(TypeOfAny.from_error)
                    method = self.chk.scope.top_function()
                    assert method is not None
                    args = method.arguments
                    # super() in a function with empty args is an error; we
                    # need something in declared_self.
                    if not args:
                        self.chk.fail(
                            'super() requires one or more positional arguments in '
                            'enclosing function', e)
                        return AnyType(TypeOfAny.from_error)
                    declared_self = args[0].variable.type or fill_typevars(e.info)
                    return analyze_member_access(name=e.name, typ=fill_typevars(e.info), node=e,
                                                 is_lvalue=False, is_super=True, is_operator=False,
                                                 builtin_type=self.named_type,
                                                 not_ready_callback=self.not_ready_callback,
                                                 msg=self.msg, override_info=base,
                                                 original_type=declared_self, chk=self.chk)
            assert False, 'unreachable'
        else:
            # Invalid super. This has been reported by the semantic analyzer.
            return AnyType(TypeOfAny.from_error)

    def visit_slice_expr(self, e: SliceExpr) -> Type:
        expected = make_optional_type(self.named_type('builtins.int'))
        for index in [e.begin_index, e.end_index, e.stride]:
            if index:
                t = self.accept(index)
                self.chk.check_subtype(t, expected,
                                       index, messages.INVALID_SLICE_INDEX)
        return self.named_type('builtins.slice')

    def visit_list_comprehension(self, e: ListComprehension) -> Type:
        return self.check_generator_or_comprehension(
            e.generator, 'builtins.list', '<list-comprehension>')

    def visit_set_comprehension(self, e: SetComprehension) -> Type:
        return self.check_generator_or_comprehension(
            e.generator, 'builtins.set', '<set-comprehension>')

    def visit_generator_expr(self, e: GeneratorExpr) -> Type:
        # If any of the comprehensions use async for, the expression will return an async generator
        # object
        if any(e.is_async):
            typ = 'typing.AsyncIterator'
        else:
            typ = 'typing.Iterator'
        return self.check_generator_or_comprehension(e, typ, '<generator>')

    def check_generator_or_comprehension(self, gen: GeneratorExpr,
                                         type_name: str,
                                         id_for_messages: str) -> Type:
        """Type check a generator expression or a list comprehension."""
        with self.chk.binder.frame_context(can_skip=True, fall_through=0):
            self.check_for_comp(gen)

            # Infer the type of the list comprehension by using a synthetic generic
            # callable type.
            tvdef = TypeVarDef('T', 'T', -1, [], self.object_type())
            tv = TypeVarType(tvdef)
            constructor = CallableType(
                [tv],
                [nodes.ARG_POS],
                [None],
                self.chk.named_generic_type(type_name, [tv]),
                self.chk.named_type('builtins.function'),
                name=id_for_messages,
                variables=[tvdef])
            return self.check_call(constructor,
                                [gen.left_expr], [nodes.ARG_POS], gen)[0]

    def visit_dictionary_comprehension(self, e: DictionaryComprehension) -> Type:
        """Type check a dictionary comprehension."""
        with self.chk.binder.frame_context(can_skip=True, fall_through=0):
            self.check_for_comp(e)

            # Infer the type of the list comprehension by using a synthetic generic
            # callable type.
            ktdef = TypeVarDef('KT', 'KT', -1, [], self.object_type())
            vtdef = TypeVarDef('VT', 'VT', -2, [], self.object_type())
            kt = TypeVarType(ktdef)
            vt = TypeVarType(vtdef)
            constructor = CallableType(
                [kt, vt],
                [nodes.ARG_POS, nodes.ARG_POS],
                [None, None],
                self.chk.named_generic_type('builtins.dict', [kt, vt]),
                self.chk.named_type('builtins.function'),
                name='<dictionary-comprehension>',
                variables=[ktdef, vtdef])
            return self.check_call(constructor,
                                   [e.key, e.value], [nodes.ARG_POS, nodes.ARG_POS], e)[0]

    def check_for_comp(self, e: Union[GeneratorExpr, DictionaryComprehension]) -> None:
        """Check the for_comp part of comprehensions. That is the part from 'for':
        ... for x in y if z

        Note: This adds the type information derived from the condlists to the current binder.
        """
        for index, sequence, conditions, is_async in zip(e.indices, e.sequences,
                                                         e.condlists, e.is_async):
            if is_async:
                sequence_type = self.chk.analyze_async_iterable_item_type(sequence)
            else:
                sequence_type = self.chk.analyze_iterable_item_type(sequence)
            self.chk.analyze_index_variables(index, sequence_type, True, e)
            for condition in conditions:
                self.accept(condition)

                # values are only part of the comprehension when all conditions are true
                true_map, _ = mypy.checker.find_isinstance_check(condition, self.chk.type_map)

                if true_map:
                    for var, type in true_map.items():
                        self.chk.binder.put(var, type)

    def visit_conditional_expr(self, e: ConditionalExpr) -> Type:
        cond_type = self.accept(e.cond)
        if self.chk.options.strict_boolean:
            is_bool = (isinstance(cond_type, Instance)
                and cond_type.type.fullname() == 'builtins.bool')
            if not (is_bool or isinstance(cond_type, AnyType)):
                self.chk.fail(messages.NON_BOOLEAN_IN_CONDITIONAL, e)
        ctx = self.type_context[-1]

        # Gain type information from isinstance if it is there
        # but only for the current expression
        if_map, else_map = self.chk.find_isinstance_check(e.cond)

        if_type = self.analyze_cond_branch(if_map, e.if_expr, context=ctx)

        if not mypy.checker.is_valid_inferred_type(if_type):
            # Analyze the right branch disregarding the left branch.
            else_type = self.analyze_cond_branch(else_map, e.else_expr, context=ctx)

            # If it would make a difference, re-analyze the left
            # branch using the right branch's type as context.
            if ctx is None or not is_equivalent(else_type, ctx):
                # TODO: If it's possible that the previous analysis of
                # the left branch produced errors that are avoided
                # using this context, suppress those errors.
                if_type = self.analyze_cond_branch(if_map, e.if_expr, context=else_type)

        else:
            # Analyze the right branch in the context of the left
            # branch's type.
            else_type = self.analyze_cond_branch(else_map, e.else_expr, context=if_type)

        res = join.join_types(if_type, else_type)

        return res

    def analyze_cond_branch(self, map: Optional[Dict[Expression, Type]],
                            node: Expression, context: Optional[Type]) -> Type:
        with self.chk.binder.frame_context(can_skip=True, fall_through=0):
            if map is None:
                # We still need to type check node, in case we want to
                # process it for isinstance checks later
                self.accept(node, type_context=context)
                return UninhabitedType()
            self.chk.push_type_map(map)
            return self.accept(node, type_context=context)

    def visit_backquote_expr(self, e: BackquoteExpr) -> Type:
        self.accept(e.expr)
        return self.named_type('builtins.str')

    #
    # Helpers
    #

    def accept(self,
               node: Expression,
               type_context: Optional[Type] = None,
               allow_none_return: bool = False,
               always_allow_any: bool = False,
               ) -> Type:
        """Type check a node in the given type context.  If allow_none_return
        is True and this expression is a call, allow it to return None.  This
        applies only to this expression and not any subexpressions.
        """
        self.type_context.append(type_context)
        try:
            if allow_none_return and isinstance(node, CallExpr):
                typ = self.visit_call_expr(node, allow_none_return=True)
            elif allow_none_return and isinstance(node, YieldFromExpr):
                typ = self.visit_yield_from_expr(node, allow_none_return=True)
            else:
                typ = node.accept(self)
        except Exception as err:
            report_internal_error(err, self.chk.errors.file,
                                  node.line, self.chk.errors, self.chk.options)
        self.type_context.pop()
        assert typ is not None
        self.chk.store_type(node, typ)

        if (self.chk.options.disallow_any_expr and
                not always_allow_any and
                not self.chk.is_stub and
                self.chk.in_checked_function() and
                has_any_type(typ)):
            self.msg.disallowed_any_type(typ, node)

        if not self.chk.in_checked_function():
            return AnyType(TypeOfAny.unannotated)
        else:
            return typ

    def named_type(self, name: str) -> Instance:
        """Return an instance type with type given by the name and no type
        arguments. Alias for TypeChecker.named_type.
        """
        return self.chk.named_type(name)

    def is_valid_var_arg(self, typ: Type) -> bool:
        """Is a type valid as a *args argument?"""
        return (isinstance(typ, TupleType) or
                is_subtype(typ, self.chk.named_generic_type('typing.Iterable',
                                                            [AnyType(TypeOfAny.special_form)])) or
                isinstance(typ, AnyType))

    def is_valid_keyword_var_arg(self, typ: Type) -> bool:
        """Is a type valid as a **kwargs argument?"""
        if self.chk.options.python_version[0] >= 3:
            return is_subtype(typ, self.chk.named_generic_type(
                'typing.Mapping', [self.named_type('builtins.str'),
                                   AnyType(TypeOfAny.special_form)]))
        else:
            return (
                is_subtype(typ, self.chk.named_generic_type(
                    'typing.Mapping',
                    [self.named_type('builtins.str'),
                     AnyType(TypeOfAny.special_form)]))
                or
                is_subtype(typ, self.chk.named_generic_type(
                    'typing.Mapping',
                    [self.named_type('builtins.unicode'),
                     AnyType(TypeOfAny.special_form)])))

    def has_member(self, typ: Type, member: str) -> bool:
        """Does type have member with the given name?"""
        # TODO TupleType => also consider tuple attributes
        if isinstance(typ, Instance):
            return typ.type.has_readable_member(member)
        if isinstance(typ, CallableType) and typ.is_type_obj():
            return typ.fallback.type.has_readable_member(member)
        elif isinstance(typ, AnyType):
            return True
        elif isinstance(typ, UnionType):
            result = all(self.has_member(x, member) for x in typ.relevant_items())
            return result
        elif isinstance(typ, TupleType):
            return self.has_member(typ.fallback, member)
        else:
            return False

    def not_ready_callback(self, name: str, context: Context) -> None:
        """Called when we can't infer the type of a variable because it's not ready yet.

        Either defer type checking of the enclosing function to the next
        pass or report an error.
        """
        self.chk.handle_cannot_determine_type(name, context)

    def visit_yield_expr(self, e: YieldExpr) -> Type:
        return_type = self.chk.return_types[-1]
        expected_item_type = self.chk.get_generator_yield_type(return_type, False)
        if e.expr is None:
            if (not isinstance(expected_item_type, (NoneTyp, AnyType))
                    and self.chk.in_checked_function()):
                self.chk.fail(messages.YIELD_VALUE_EXPECTED, e)
        else:
            actual_item_type = self.accept(e.expr, expected_item_type)
            self.chk.check_subtype(actual_item_type, expected_item_type, e,
                                   messages.INCOMPATIBLE_TYPES_IN_YIELD,
                                   'actual type', 'expected type')
        return self.chk.get_generator_receive_type(return_type, False)

    def visit_await_expr(self, e: AwaitExpr) -> Type:
        expected_type = self.type_context[-1]
        if expected_type is not None:
            expected_type = self.chk.named_generic_type('typing.Awaitable', [expected_type])
        actual_type = self.accept(e.expr, expected_type)
        if isinstance(actual_type, AnyType):
            return AnyType(TypeOfAny.from_another_any, source_any=actual_type)
        return self.check_awaitable_expr(actual_type, e, messages.INCOMPATIBLE_TYPES_IN_AWAIT)

    def check_awaitable_expr(self, t: Type, ctx: Context, msg: str) -> Type:
        """Check the argument to `await` and extract the type of value.

        Also used by `async for` and `async with`.
        """
        if not self.chk.check_subtype(t, self.named_type('typing.Awaitable'), ctx,
                                      msg, 'actual type', 'expected type'):
            return AnyType(TypeOfAny.special_form)
        else:
            method = self.analyze_external_member_access('__await__', t, ctx)
            generator = self.check_call(method, [], [], ctx)[0]
            return self.chk.get_generator_return_type(generator, False)

    def visit_yield_from_expr(self, e: YieldFromExpr, allow_none_return: bool = False) -> Type:
        # NOTE: Whether `yield from` accepts an `async def` decorated
        # with `@types.coroutine` (or `@asyncio.coroutine`) depends on
        # whether the generator containing the `yield from` is itself
        # thus decorated.  But it accepts a generator regardless of
        # how it's decorated.
        return_type = self.chk.return_types[-1]
        # TODO: What should the context for the sub-expression be?
        # If the containing function has type Generator[X, Y, ...],
        # the context should be Generator[X, Y, T], where T is the
        # context of the 'yield from' itself (but it isn't known).
        subexpr_type = self.accept(e.expr)

        # Check that the expr is an instance of Iterable and get the type of the iterator produced
        # by __iter__.
        if isinstance(subexpr_type, AnyType):
            iter_type = AnyType(TypeOfAny.from_another_any, source_any=subexpr_type)  # type: Type
        elif self.chk.type_is_iterable(subexpr_type):
            if is_async_def(subexpr_type) and not has_coroutine_decorator(return_type):
                self.chk.msg.yield_from_invalid_operand_type(subexpr_type, e)
            iter_method_type = self.analyze_external_member_access(
                '__iter__',
                subexpr_type,
                AnyType(TypeOfAny.special_form))

            any_type = AnyType(TypeOfAny.special_form)
            generic_generator_type = self.chk.named_generic_type('typing.Generator',
                                                                 [any_type, any_type, any_type])
            iter_type, _ = self.check_call(iter_method_type, [], [],
                                           context=generic_generator_type)
        else:
            if not (is_async_def(subexpr_type) and has_coroutine_decorator(return_type)):
                self.chk.msg.yield_from_invalid_operand_type(subexpr_type, e)
                iter_type = AnyType(TypeOfAny.from_error)
            else:
                iter_type = self.check_awaitable_expr(subexpr_type, e,
                                                      messages.INCOMPATIBLE_TYPES_IN_YIELD_FROM)

        # Check that the iterator's item type matches the type yielded by the Generator function
        # containing this `yield from` expression.
        expected_item_type = self.chk.get_generator_yield_type(return_type, False)
        actual_item_type = self.chk.get_generator_yield_type(iter_type, False)

        self.chk.check_subtype(actual_item_type, expected_item_type, e,
                           messages.INCOMPATIBLE_TYPES_IN_YIELD_FROM,
                           'actual type', 'expected type')

        # Determine the type of the entire yield from expression.
        if (isinstance(iter_type, Instance) and
                iter_type.type.fullname() == 'typing.Generator'):
            expr_type = self.chk.get_generator_return_type(iter_type, False)
        else:
            # Non-Generators don't return anything from `yield from` expressions.
            # However special-case Any (which might be produced by an error).
            if isinstance(actual_item_type, AnyType):
                expr_type = AnyType(TypeOfAny.from_another_any, source_any=actual_item_type)
            else:
                expr_type = NoneTyp()

        if not allow_none_return and isinstance(expr_type, NoneTyp):
            self.chk.msg.does_not_return_value(None, e)
        return expr_type

    def visit_temp_node(self, e: TempNode) -> Type:
        return e.type

    def visit_type_var_expr(self, e: TypeVarExpr) -> Type:
        return AnyType(TypeOfAny.special_form)

    def visit_newtype_expr(self, e: NewTypeExpr) -> Type:
        return AnyType(TypeOfAny.special_form)

    def visit_namedtuple_expr(self, e: NamedTupleExpr) -> Type:
        tuple_type = e.info.tuple_type
        if tuple_type:
            if (self.chk.options.disallow_any_unimported and
                    has_any_from_unimported_type(tuple_type)):
                self.msg.unimported_type_becomes_any("NamedTuple type", tuple_type, e)
            check_for_explicit_any(tuple_type, self.chk.options, self.chk.is_typeshed_stub,
                                   self.msg, context=e)
        return AnyType(TypeOfAny.special_form)

    def visit_enum_call_expr(self, e: EnumCallExpr) -> Type:
        for name, value in zip(e.items, e.values):
            if value is not None:
                typ = self.accept(value)
                if not isinstance(typ, AnyType):
                    var = e.info.names[name].node
                    if isinstance(var, Var):
                        # Inline TypeCheker.set_inferred_type(),
                        # without the lvalue.  (This doesn't really do
                        # much, since the value attribute is defined
                        # to have type Any in the typeshed stub.)
                        var.type = typ
                        var.is_inferred = True
        return AnyType(TypeOfAny.special_form)

    def visit_typeddict_expr(self, e: TypedDictExpr) -> Type:
        return AnyType(TypeOfAny.special_form)

    def visit__promote_expr(self, e: PromoteExpr) -> Type:
        return e.type

    def visit_star_expr(self, e: StarExpr) -> StarType:
        return StarType(self.accept(e.expr))

    def object_type(self) -> Instance:
        """Return instance type 'object'."""
        return self.named_type('builtins.object')

    def bool_type(self) -> Instance:
        """Return instance type 'bool'."""
        return self.named_type('builtins.bool')

    def narrow_type_from_binder(self, expr: Expression, known_type: Type) -> Type:
        if literal(expr) >= LITERAL_TYPE:
            restriction = self.chk.binder.get(expr)
            if restriction:
                ans = narrow_declared_type(known_type, restriction)
                return ans
        return known_type


def has_any_type(t: Type) -> bool:
    """Whether t contains an Any type"""
    return t.accept(HasAnyType())


class HasAnyType(types.TypeQuery[bool]):
    def __init__(self) -> None:
        super().__init__(any)

    def visit_any(self, t: AnyType) -> bool:
        return t.type_of_any != TypeOfAny.special_form  # special forms are not real Any types


def has_coroutine_decorator(t: Type) -> bool:
    """Whether t came from a function decorated with `@coroutine`."""
    return isinstance(t, Instance) and t.type.fullname() == 'typing.AwaitableGenerator'


def is_async_def(t: Type) -> bool:
    """Whether t came from a function defined using `async def`."""
    # In check_func_def(), when we see a function decorated with
    # `@typing.coroutine` or `@async.coroutine`, we change the
    # return type to typing.AwaitableGenerator[...], so that its
    # type is compatible with either Generator or Awaitable.
    # But for the check here we need to know whether the original
    # function (before decoration) was an `async def`.  The
    # AwaitableGenerator type conveniently preserves the original
    # type as its 4th parameter (3rd when using 0-origin indexing
    # :-), so that we can recover that information here.
    # (We really need to see whether the original, undecorated
    # function was an `async def`, which is orthogonal to its
    # decorations.)
    if (isinstance(t, Instance)
            and t.type.fullname() == 'typing.AwaitableGenerator'
            and len(t.args) >= 4):
        t = t.args[3]
    return isinstance(t, Instance) and t.type.fullname() == 'typing.Awaitable'


def map_actuals_to_formals(caller_kinds: List[int],
                           caller_names: Optional[Sequence[Optional[str]]],
                           callee_kinds: List[int],
                           callee_names: Sequence[Optional[str]],
                           caller_arg_type: Callable[[int],
                                                     Type]) -> List[List[int]]:
    """Calculate mapping between actual (caller) args and formals.

    The result contains a list of caller argument indexes mapping to each
    callee argument index, indexed by callee index.

    The caller_arg_type argument should evaluate to the type of the actual
    argument type with the given index.
    """
    ncallee = len(callee_kinds)
    map = [[] for i in range(ncallee)]  # type: List[List[int]]
    j = 0
    for i, kind in enumerate(caller_kinds):
        if kind == nodes.ARG_POS:
            if j < ncallee:
                if callee_kinds[j] in [nodes.ARG_POS, nodes.ARG_OPT,
                                       nodes.ARG_NAMED, nodes.ARG_NAMED_OPT]:
                    map[j].append(i)
                    j += 1
                elif callee_kinds[j] == nodes.ARG_STAR:
                    map[j].append(i)
        elif kind == nodes.ARG_STAR:
            # We need to know the actual type to map varargs.
            argt = caller_arg_type(i)
            if isinstance(argt, TupleType):
                # A tuple actual maps to a fixed number of formals.
                for _ in range(len(argt.items)):
                    if j < ncallee:
                        if callee_kinds[j] != nodes.ARG_STAR2:
                            map[j].append(i)
                        else:
                            break
                        if callee_kinds[j] != nodes.ARG_STAR:
                            j += 1
            else:
                # Assume that it is an iterable (if it isn't, there will be
                # an error later).
                while j < ncallee:
                    if callee_kinds[j] in (nodes.ARG_NAMED, nodes.ARG_NAMED_OPT, nodes.ARG_STAR2):
                        break
                    else:
                        map[j].append(i)
                    if callee_kinds[j] == nodes.ARG_STAR:
                        break
                    j += 1
        elif kind in (nodes.ARG_NAMED, nodes.ARG_NAMED_OPT):
            assert caller_names is not None, "Internal error: named kinds without names given"
            name = caller_names[i]
            if name in callee_names:
                map[callee_names.index(name)].append(i)
            elif nodes.ARG_STAR2 in callee_kinds:
                map[callee_kinds.index(nodes.ARG_STAR2)].append(i)
        else:
            assert kind == nodes.ARG_STAR2
            for j in range(ncallee):
                # TODO tuple varargs complicate this
                no_certain_match = (
                    not map[j] or caller_kinds[map[j][0]] == nodes.ARG_STAR)
                if ((callee_names[j] and no_certain_match)
                        or callee_kinds[j] == nodes.ARG_STAR2):
                    map[j].append(i)
    return map


def is_empty_tuple(t: Type) -> bool:
    return isinstance(t, TupleType) and not t.items


def is_duplicate_mapping(mapping: List[int], actual_kinds: List[int]) -> bool:
    # Multiple actuals can map to the same formal only if they both come from
    # varargs (*args and **kwargs); in this case at runtime it is possible that
    # there are no duplicates. We need to allow this, as the convention
    # f(..., *args, **kwargs) is common enough.
    return len(mapping) > 1 and not (
        len(mapping) == 2 and
        actual_kinds[mapping[0]] == nodes.ARG_STAR and
        actual_kinds[mapping[1]] == nodes.ARG_STAR2)


def replace_callable_return_type(c: CallableType, new_ret_type: Type) -> CallableType:
    """Return a copy of a callable type with a different return type."""
    return c.copy_modified(ret_type=new_ret_type)


class ArgInferSecondPassQuery(types.TypeQuery[bool]):
    """Query whether an argument type should be inferred in the second pass.

    The result is True if the type has a type variable in a callable return
    type anywhere. For example, the result for Callable[[], T] is True if t is
    a type variable.
    """
    def __init__(self) -> None:
        super().__init__(any)

    def visit_callable_type(self, t: CallableType) -> bool:
        return self.query_types(t.arg_types) or t.accept(HasTypeVarQuery())


class HasTypeVarQuery(types.TypeQuery[bool]):
    """Visitor for querying whether a type has a type variable component."""
    def __init__(self) -> None:
        super().__init__(any)

    def visit_type_var(self, t: TypeVarType) -> bool:
        return True


def has_erased_component(t: Optional[Type]) -> bool:
    return t is not None and t.accept(HasErasedComponentsQuery())


class HasErasedComponentsQuery(types.TypeQuery[bool]):
    """Visitor for querying whether a type has an erased component."""
    def __init__(self) -> None:
        super().__init__(any)

    def visit_erased_type(self, t: ErasedType) -> bool:
        return True


def has_uninhabited_component(t: Optional[Type]) -> bool:
    return t is not None and t.accept(HasUninhabitedComponentsQuery())


class HasUninhabitedComponentsQuery(types.TypeQuery[bool]):
    """Visitor for querying whether a type has an UninhabitedType component."""
    def __init__(self) -> None:
        super().__init__(any)

    def visit_uninhabited_type(self, t: UninhabitedType) -> bool:
        return True


def overload_arg_similarity(actual: Type, formal: Type) -> int:
    """Return if caller argument (actual) is compatible with overloaded signature arg (formal).

    Return a similarity level:
      0: no match
      1: actual is compatible, but only using type promotions (e.g. int vs float)
      2: actual is compatible without type promotions (e.g. int vs object)

    The distinction is important in cases where multiple overload items match. We want
    give priority to higher similarity matches.
    """
    # Replace type variables with their upper bounds. Overloading
    # resolution is based on runtime behavior which erases type
    # parameters, so no need to handle type variables occurring within
    # a type.
    if isinstance(actual, TypeVarType):
        actual = actual.erase_to_union_or_bound()
    if isinstance(formal, TypeVarType):
        formal = formal.erase_to_union_or_bound()
    if (isinstance(actual, UninhabitedType) or isinstance(actual, AnyType) or
            isinstance(formal, AnyType) or
            (isinstance(actual, Instance) and actual.type.fallback_to_any)):
        # These could match anything at runtime.
        return 2
    if isinstance(formal, CallableType):
        if isinstance(actual, (CallableType, Overloaded)):
            # TODO: do more sophisticated callable matching
            return 2
        if isinstance(actual, TypeType):
            return 2 if is_subtype(actual, formal) else 0
    if isinstance(actual, NoneTyp):
        if not experiments.STRICT_OPTIONAL:
            # NoneTyp matches anything if we're not doing strict Optional checking
            return 2
        else:
            # NoneType is a subtype of object
            if isinstance(formal, Instance) and formal.type.fullname() == "builtins.object":
                return 2
    if isinstance(actual, UnionType):
        return max(overload_arg_similarity(item, formal)
                   for item in actual.relevant_items())
    if isinstance(formal, UnionType):
        return max(overload_arg_similarity(actual, item)
                   for item in formal.relevant_items())
    if isinstance(formal, TypeType):
        if isinstance(actual, TypeType):
            # Since Type[T] is covariant, check if actual = Type[A] is
            # a subtype of formal = Type[F].
            return overload_arg_similarity(actual.item, formal.item)
        elif isinstance(actual, FunctionLike) and actual.is_type_obj():
            # Check if the actual is a constructor of some sort.
            # Note that this is this unsound, since we don't check the __init__ signature.
            return overload_arg_similarity(actual.items()[0].ret_type, formal.item)
        else:
            return 0
    if isinstance(actual, TypedDictType):
        if isinstance(formal, TypedDictType):
            # Don't support overloading based on the keys or value types of a TypedDict since
            # that would be complicated and probably only marginally useful.
            return 2
        return overload_arg_similarity(actual.fallback, formal)
    if isinstance(formal, Instance):
        if isinstance(actual, CallableType):
            actual = actual.fallback
        if isinstance(actual, Overloaded):
            actual = actual.items()[0].fallback
        if isinstance(actual, TupleType):
            actual = actual.fallback
        if isinstance(actual, Instance):
            # First perform a quick check (as an optimization) and fall back to generic
            # subtyping algorithm if type promotions are possible (e.g., int vs. float).
            if formal.type in actual.type.mro:
                return 2
            elif formal.type.is_protocol and is_subtype(actual, erasetype.erase_type(formal)):
                return 2
            elif actual.type._promote and is_subtype(actual, formal):
                return 1
            else:
                return 0
        elif isinstance(actual, TypeType):
            item = actual.item
            if formal.type.fullname() in {"builtins.object", "builtins.type"}:
                return 2
            elif isinstance(item, Instance) and item.type.metaclass_type:
                # FIX: this does not handle e.g. Union of instances
                return overload_arg_similarity(item.type.metaclass_type, formal)
            else:
                return 0
        else:
            return 0
    if isinstance(actual, UnboundType) or isinstance(formal, UnboundType):
        # Either actual or formal is the result of an error; shut up.
        return 2
    # Fall back to a conservative equality check for the remaining kinds of type.
    return 2 if is_same_type(erasetype.erase_type(actual), erasetype.erase_type(formal)) else 0


def any_arg_causes_overload_ambiguity(items: List[CallableType],
                                      arg_types: List[Type],
                                      arg_kinds: List[int],
                                      arg_names: Optional[Sequence[Optional[str]]]) -> bool:
    """May an Any actual argument cause ambiguous result type on call to overloaded function?

    Note that this sometimes returns True even if there is no ambiguity, since a correct
    implementation would be complex (and the call would be imprecisely typed due to Any
    types anyway).

    Args:
        items: Overload items matching the actual arguments
        arg_types: Actual argument types
        arg_kinds: Actual argument kinds
        arg_names: Actual argument names
    """
    actual_to_formal = [
        map_formals_to_actuals(
            arg_kinds, arg_names, item.arg_kinds, item.arg_names, lambda i: arg_types[i])
        for item in items
    ]

    for arg_idx, arg_type in enumerate(arg_types):
        if isinstance(arg_type, AnyType):
            matching_formals_unfiltered = [(item_idx, lookup[arg_idx])
                                           for item_idx, lookup in enumerate(actual_to_formal)
                                           if lookup[arg_idx]]
            matching_formals = []
            for item_idx, formals in matching_formals_unfiltered:
                if len(formals) > 1:
                    # An actual maps to multiple formals -- give up as too
                    # complex, just assume it overlaps.
                    return True
                matching_formals.append((item_idx, items[item_idx].arg_types[formals[0]]))
            if (not all_same_types(t for _, t in matching_formals) and
                    not all_same_types(items[idx].ret_type
                                       for idx, _ in matching_formals)):
                # Any maps to multiple different types, and the return types of these items differ.
                return True
    return False


def all_same_types(types: Iterable[Type]) -> bool:
    types = list(types)
    if len(types) == 0:
        return True
    return all(is_same_type(t, types[0]) for t in types[1:])


def map_formals_to_actuals(caller_kinds: List[int],
                           caller_names: Optional[Sequence[Optional[str]]],
                           callee_kinds: List[int],
                           callee_names: List[Optional[str]],
                           caller_arg_type: Callable[[int],
                                                     Type]) -> List[List[int]]:
    """Calculate the reverse mapping of map_actuals_to_formals."""
    formal_to_actual = map_actuals_to_formals(caller_kinds,
                                              caller_names,
                                              callee_kinds,
                                              callee_names,
                                              caller_arg_type)
    # Now reverse the mapping.
    actual_to_formal = [[] for _ in caller_kinds]  # type: List[List[int]]
    for formal, actuals in enumerate(formal_to_actual):
        for actual in actuals:
            actual_to_formal[actual].append(formal)
    return actual_to_formal