This file is indexed.

/usr/lib/python3/dist-packages/mypy/checkmember.py is in python3-mypy 0.560-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
"""Type checking of attribute access"""

from typing import cast, Callable, List, Optional, TypeVar

from mypy.types import (
    Type, Instance, AnyType, TupleType, TypedDictType, CallableType, FunctionLike, TypeVarDef,
    Overloaded, TypeVarType, UnionType, PartialType, UninhabitedType, TypeOfAny,
    DeletedType, NoneTyp, TypeType, function_type, get_type_vars,
)
from mypy.nodes import (
    TypeInfo, FuncBase, Var, FuncDef, SymbolNode, Context, MypyFile, TypeVarExpr,
    ARG_POS, ARG_STAR, ARG_STAR2,
    Decorator, OverloadedFuncDef,
)
from mypy.messages import MessageBuilder
from mypy.maptype import map_instance_to_supertype
from mypy.expandtype import expand_type_by_instance, expand_type, freshen_function_type_vars
from mypy.infer import infer_type_arguments
from mypy.typevars import fill_typevars
from mypy.plugin import Plugin, AttributeContext
from mypy import messages
from mypy import subtypes
from mypy import meet

MYPY = False
if MYPY:  # import for forward declaration only
    import mypy.checker

from mypy import experiments


def analyze_member_access(name: str,
                          typ: Type,
                          node: Context,
                          is_lvalue: bool,
                          is_super: bool,
                          is_operator: bool,
                          builtin_type: Callable[[str], Instance],
                          not_ready_callback: Callable[[str, Context], None],
                          msg: MessageBuilder, *,
                          original_type: Type,
                          chk: 'mypy.checker.TypeChecker',
                          override_info: Optional[TypeInfo] = None) -> Type:
    """Return the type of attribute `name` of typ.

    This is a general operation that supports various different variations:

      1. lvalue or non-lvalue access (i.e. setter or getter access)
      2. supertype access (when using super(); is_super == True and
         override_info should refer to the supertype)

    original_type is the most precise inferred or declared type of the base object
    that we have available. typ is generally a supertype of original_type.
    When looking for an attribute of typ, we may perform recursive calls targeting
    the fallback type, for example.
    original_type is always the type used in the initial call.
    """
    # TODO: this and following functions share some logic with subtypes.find_member,
    # consider refactoring.
    if isinstance(typ, Instance):
        if name == '__init__' and not is_super:
            # Accessing __init__ in statically typed code would compromise
            # type safety unless used via super().
            msg.fail(messages.CANNOT_ACCESS_INIT, node)
            return AnyType(TypeOfAny.from_error)

        # The base object has an instance type.

        info = typ.type
        if override_info:
            info = override_info

        if (experiments.find_occurrences and
                info.name() == experiments.find_occurrences[0] and
                name == experiments.find_occurrences[1]):
            msg.note("Occurrence of '{}.{}'".format(*experiments.find_occurrences), node)

        # Look up the member. First look up the method dictionary.
        method = info.get_method(name)
        if method:
            if method.is_property:
                assert isinstance(method, OverloadedFuncDef)
                first_item = cast(Decorator, method.items[0])
                return analyze_var(name, first_item.var, typ, info, node, is_lvalue, msg,
                                   original_type, not_ready_callback, chk=chk)
            if is_lvalue:
                msg.cant_assign_to_method(node)
            signature = function_type(method, builtin_type('builtins.function'))
            signature = freshen_function_type_vars(signature)
            if name == '__new__':
                # __new__ is special and behaves like a static method -- don't strip
                # the first argument.
                pass
            else:
                signature = bind_self(signature, original_type)
            typ = map_instance_to_supertype(typ, method.info)
            member_type = expand_type_by_instance(signature, typ)
            freeze_type_vars(member_type)
            return member_type
        else:
            # Not a method.
            return analyze_member_var_access(name, typ, info, node,
                                             is_lvalue, is_super, builtin_type,
                                             not_ready_callback, msg,
                                             original_type=original_type, chk=chk)
    elif isinstance(typ, AnyType):
        # The base object has dynamic type.
        return AnyType(TypeOfAny.from_another_any, source_any=typ)
    elif isinstance(typ, NoneTyp):
        if chk.should_suppress_optional_error([typ]):
            return AnyType(TypeOfAny.from_error)
        # The only attribute NoneType has are those it inherits from object
        return analyze_member_access(name, builtin_type('builtins.object'), node, is_lvalue,
                                     is_super, is_operator, builtin_type, not_ready_callback, msg,
                                     original_type=original_type, chk=chk)
    elif isinstance(typ, UnionType):
        # The base object has dynamic type.
        msg.disable_type_names += 1
        results = [analyze_member_access(name, subtype, node, is_lvalue, is_super,
                                         is_operator, builtin_type, not_ready_callback, msg,
                                         original_type=original_type, chk=chk)
                   for subtype in typ.relevant_items()]
        msg.disable_type_names -= 1
        return UnionType.make_simplified_union(results)
    elif isinstance(typ, TupleType):
        # Actually look up from the fallback instance type.
        return analyze_member_access(name, typ.fallback, node, is_lvalue, is_super,
                                     is_operator, builtin_type, not_ready_callback, msg,
                                     original_type=original_type, chk=chk)
    elif isinstance(typ, TypedDictType):
        # Actually look up from the fallback instance type.
        return analyze_member_access(name, typ.fallback, node, is_lvalue, is_super,
                                     is_operator, builtin_type, not_ready_callback, msg,
                                     original_type=original_type, chk=chk)
    elif isinstance(typ, FunctionLike) and typ.is_type_obj():
        # Class attribute.
        # TODO super?
        ret_type = typ.items()[0].ret_type
        if isinstance(ret_type, TupleType):
            ret_type = ret_type.fallback
        if isinstance(ret_type, Instance):
            if not is_operator:
                # When Python sees an operator (eg `3 == 4`), it automatically translates that
                # into something like `int.__eq__(3, 4)` instead of `(3).__eq__(4)` as an
                # optimization.
                #
                # While it normally it doesn't matter which of the two versions are used, it
                # does cause inconsistencies when working with classes. For example, translating
                # `int == int` to `int.__eq__(int)` would not work since `int.__eq__` is meant to
                # compare two int _instances_. What we really want is `type(int).__eq__`, which
                # is meant to compare two types or classes.
                #
                # This check makes sure that when we encounter an operator, we skip looking up
                # the corresponding method in the current instance to avoid this edge case.
                # See https://github.com/python/mypy/pull/1787 for more info.
                result = analyze_class_attribute_access(ret_type, name, node, is_lvalue,
                                                        builtin_type, not_ready_callback, msg,
                                                        original_type=original_type)
                if result:
                    return result
            # Look up from the 'type' type.
            return analyze_member_access(name, typ.fallback, node, is_lvalue, is_super,
                                         is_operator, builtin_type, not_ready_callback, msg,
                                         original_type=original_type, chk=chk)
        else:
            assert False, 'Unexpected type {}'.format(repr(ret_type))
    elif isinstance(typ, FunctionLike):
        # Look up from the 'function' type.
        return analyze_member_access(name, typ.fallback, node, is_lvalue, is_super,
                                     is_operator, builtin_type, not_ready_callback, msg,
                                     original_type=original_type, chk=chk)
    elif isinstance(typ, TypeVarType):
        return analyze_member_access(name, typ.upper_bound, node, is_lvalue, is_super,
                                     is_operator, builtin_type, not_ready_callback, msg,
                                     original_type=original_type, chk=chk)
    elif isinstance(typ, DeletedType):
        msg.deleted_as_rvalue(typ, node)
        return AnyType(TypeOfAny.from_error)
    elif isinstance(typ, TypeType):
        # Similar to FunctionLike + is_type_obj() above.
        item = None
        fallback = builtin_type('builtins.type')
        ignore_messages = msg.copy()
        ignore_messages.disable_errors()
        if isinstance(typ.item, Instance):
            item = typ.item
        elif isinstance(typ.item, AnyType):
            return analyze_member_access(name, fallback, node, is_lvalue, is_super,
                                     is_operator, builtin_type, not_ready_callback,
                                     ignore_messages, original_type=original_type, chk=chk)
        elif isinstance(typ.item, TypeVarType):
            if isinstance(typ.item.upper_bound, Instance):
                item = typ.item.upper_bound
        elif isinstance(typ.item, TupleType):
            item = typ.item.fallback
        elif isinstance(typ.item, FunctionLike) and typ.item.is_type_obj():
            item = typ.item.fallback
        elif isinstance(typ.item, TypeType):
            # Access member on metaclass object via Type[Type[C]]
            if isinstance(typ.item.item, Instance):
                item = typ.item.item.type.metaclass_type
        if item and not is_operator:
            # See comment above for why operators are skipped
            result = analyze_class_attribute_access(item, name, node, is_lvalue,
                                                    builtin_type, not_ready_callback, msg,
                                                    original_type=original_type)
            if result:
                if not (isinstance(result, AnyType) and item.type.fallback_to_any):
                    return result
                else:
                    # We don't want errors on metaclass lookup for classes with Any fallback
                    msg = ignore_messages
        if item is not None:
            fallback = item.type.metaclass_type or fallback
        return analyze_member_access(name, fallback, node, is_lvalue, is_super,
                                     is_operator, builtin_type, not_ready_callback, msg,
                                     original_type=original_type, chk=chk)

    if chk.should_suppress_optional_error([typ]):
        return AnyType(TypeOfAny.from_error)
    return msg.has_no_attr(original_type, typ, name, node)


def analyze_member_var_access(name: str, itype: Instance, info: TypeInfo,
                              node: Context, is_lvalue: bool, is_super: bool,
                              builtin_type: Callable[[str], Instance],
                              not_ready_callback: Callable[[str, Context], None],
                              msg: MessageBuilder,
                              original_type: Type,
                              chk: 'mypy.checker.TypeChecker') -> Type:
    """Analyse attribute access that does not target a method.

    This is logically part of analyze_member_access and the arguments are similar.

    original_type is the type of E in the expression E.var
    """
    # It was not a method. Try looking up a variable.
    v = lookup_member_var_or_accessor(info, name, is_lvalue)

    vv = v
    if isinstance(vv, Decorator):
        # The associated Var node of a decorator contains the type.
        v = vv.var

    if isinstance(vv, TypeInfo):
        # If the associated variable is a TypeInfo synthesize a Var node for
        # the purposes of type checking.  This enables us to type check things
        # like accessing class attributes on an inner class.
        v = Var(name, type=type_object_type(vv, builtin_type))
        v.info = info

    if isinstance(v, Var):
        return analyze_var(name, v, itype, info, node, is_lvalue, msg,
                           original_type, not_ready_callback, chk=chk)
    elif isinstance(v, FuncDef):
        assert False, "Did not expect a function"
    elif not v and name not in ['__getattr__', '__setattr__', '__getattribute__']:
        if not is_lvalue:
            for method_name in ('__getattribute__', '__getattr__'):
                method = info.get_method(method_name)
                # __getattribute__ is defined on builtins.object and returns Any, so without
                # the guard this search will always find object.__getattribute__ and conclude
                # that the attribute exists
                if method and method.info.fullname() != 'builtins.object':
                    function = function_type(method, builtin_type('builtins.function'))
                    bound_method = bind_self(function, original_type)
                    typ = map_instance_to_supertype(itype, method.info)
                    getattr_type = expand_type_by_instance(bound_method, typ)
                    if isinstance(getattr_type, CallableType):
                        return getattr_type.ret_type
        else:
            setattr_meth = info.get_method('__setattr__')
            if setattr_meth and setattr_meth.info.fullname() != 'builtins.object':
                setattr_func = function_type(setattr_meth, builtin_type('builtins.function'))
                bound_type = bind_self(setattr_func, original_type)
                typ = map_instance_to_supertype(itype, setattr_meth.info)
                setattr_type = expand_type_by_instance(bound_type, typ)
                if isinstance(setattr_type, CallableType) and len(setattr_type.arg_types) > 0:
                    return setattr_type.arg_types[-1]

    if itype.type.fallback_to_any:
        return AnyType(TypeOfAny.special_form)

    # Could not find the member.
    if is_super:
        msg.undefined_in_superclass(name, node)
        return AnyType(TypeOfAny.from_error)
    else:
        if chk and chk.should_suppress_optional_error([itype]):
            return AnyType(TypeOfAny.from_error)
        return msg.has_no_attr(original_type, itype, name, node)


def analyze_var(name: str, var: Var, itype: Instance, info: TypeInfo, node: Context,
                is_lvalue: bool, msg: MessageBuilder, original_type: Type,
                not_ready_callback: Callable[[str, Context], None], *,
                chk: 'mypy.checker.TypeChecker') -> Type:
    """Analyze access to an attribute via a Var node.

    This is conceptually part of analyze_member_access and the arguments are similar.

    itype is the class object in which var is dedined
    original_type is the type of E in the expression E.var
    """
    # Found a member variable.
    itype = map_instance_to_supertype(itype, var.info)
    typ = var.type
    if typ:
        if isinstance(typ, PartialType):
            return handle_partial_attribute_type(typ, is_lvalue, msg, var)
        t = expand_type_by_instance(typ, itype)
        if is_lvalue and var.is_property and not var.is_settable_property:
            # TODO allow setting attributes in subclass (although it is probably an error)
            msg.read_only_property(name, info, node)
        if is_lvalue and var.is_classvar:
            msg.cant_assign_to_classvar(name, node)
        result = t
        if var.is_initialized_in_class and isinstance(t, FunctionLike) and not t.is_type_obj():
            if is_lvalue:
                if var.is_property:
                    if not var.is_settable_property:
                        msg.read_only_property(name, info, node)
                else:
                    msg.cant_assign_to_method(node)

            if not var.is_staticmethod:
                # Class-level function objects and classmethods become bound methods:
                # the former to the instance, the latter to the class.
                functype = t
                # Use meet to narrow original_type to the dispatched type.
                # For example, assume
                # * A.f: Callable[[A1], None] where A1 <: A (maybe A1 == A)
                # * B.f: Callable[[B1], None] where B1 <: B (maybe B1 == B)
                # * x: Union[A1, B1]
                # In `x.f`, when checking `x` against A1 we assume x is compatible with A
                # and similarly for B1 when checking agains B
                dispatched_type = meet.meet_types(original_type, itype)
                check_self_arg(functype, dispatched_type, var.is_classmethod, node, name, msg)
                signature = bind_self(functype, original_type, var.is_classmethod)
                if var.is_property:
                    # A property cannot have an overloaded type => the cast is fine.
                    assert isinstance(signature, CallableType)
                    result = signature.ret_type
                else:
                    result = signature
    else:
        if not var.is_ready:
            not_ready_callback(var.name(), node)
        # Implicit 'Any' type.
        result = AnyType(TypeOfAny.special_form)
    fullname = '{}.{}'.format(var.info.fullname(), name)
    hook = chk.plugin.get_attribute_hook(fullname)
    if hook:
        result = hook(AttributeContext(original_type, result, node, chk))
    return result


def freeze_type_vars(member_type: Type) -> None:
    if isinstance(member_type, CallableType):
        for v in member_type.variables:
            v.id.meta_level = 0
    if isinstance(member_type, Overloaded):
        for it in member_type.items():
            for v in it.variables:
                v.id.meta_level = 0


def handle_partial_attribute_type(typ: PartialType, is_lvalue: bool, msg: MessageBuilder,
                                  context: Context) -> Type:
    if typ.type is None:
        # 'None' partial type. It has a well-defined type -- 'None'.
        # In an lvalue context we want to preserver the knowledge of
        # it being a partial type.
        if not is_lvalue:
            return NoneTyp()
        return typ
    else:
        msg.fail(messages.NEED_ANNOTATION_FOR_VAR, context)
        return AnyType(TypeOfAny.from_error)


def lookup_member_var_or_accessor(info: TypeInfo, name: str,
                                  is_lvalue: bool) -> Optional[SymbolNode]:
    """Find the attribute/accessor node that refers to a member of a type."""
    # TODO handle lvalues
    node = info.get(name)
    if node:
        return node.node
    else:
        return None


def check_self_arg(functype: FunctionLike, dispatched_arg_type: Type, is_classmethod: bool,
                   context: Context, name: str, msg: MessageBuilder) -> None:
    """For x.f where A.f: A1 -> T, check that meet(type(x), A) <: A1 for each overload.

    dispatched_arg_type is meet(B, A) in the following example

        def g(x: B): x.f
        class A:
            f: Callable[[A1], None]
    """
    # TODO: this is too strict. We can return filtered overloads for matching definitions
    for item in functype.items():
        if not item.arg_types or item.arg_kinds[0] not in (ARG_POS, ARG_STAR):
            # No positional first (self) argument (*args is okay).
            msg.no_formal_self(name, item, context)
        else:
            selfarg = item.arg_types[0]
            if is_classmethod:
                dispatched_arg_type = TypeType.make_normalized(dispatched_arg_type)
            if not subtypes.is_subtype(dispatched_arg_type, erase_to_bound(selfarg)):
                msg.incompatible_self_argument(name, dispatched_arg_type, item,
                                               is_classmethod, context)


def analyze_class_attribute_access(itype: Instance,
                                   name: str,
                                   context: Context,
                                   is_lvalue: bool,
                                   builtin_type: Callable[[str], Instance],
                                   not_ready_callback: Callable[[str, Context], None],
                                   msg: MessageBuilder,
                                   original_type: Type) -> Optional[Type]:
    """original_type is the type of E in the expression E.var"""
    node = itype.type.get(name)
    if not node:
        if itype.type.fallback_to_any:
            return AnyType(TypeOfAny.special_form)
        return None

    is_decorated = isinstance(node.node, Decorator)
    is_method = is_decorated or isinstance(node.node, FuncDef)
    if is_lvalue:
        if is_method:
            msg.cant_assign_to_method(context)
        if isinstance(node.node, TypeInfo):
            msg.fail(messages.CANNOT_ASSIGN_TO_TYPE, context)

    if itype.type.is_enum and not (is_lvalue or is_decorated or is_method):
        return itype

    t = node.type
    if t:
        if isinstance(t, PartialType):
            symnode = node.node
            assert symnode is not None
            return handle_partial_attribute_type(t, is_lvalue, msg, symnode)
        if not is_method and (isinstance(t, TypeVarType) or get_type_vars(t)):
            msg.fail(messages.GENERIC_INSTANCE_VAR_CLASS_ACCESS, context)
        is_classmethod = is_decorated and cast(Decorator, node.node).func.is_class
        return add_class_tvars(t, itype, is_classmethod, builtin_type, original_type)
    elif isinstance(node.node, Var):
        not_ready_callback(name, context)
        return AnyType(TypeOfAny.special_form)

    if isinstance(node.node, TypeVarExpr):
        msg.fail('Type variable "{}.{}" cannot be used as an expression'.format(
                 itype.type.name(), name), context)
        return AnyType(TypeOfAny.from_error)

    if isinstance(node.node, TypeInfo):
        return type_object_type(node.node, builtin_type)

    if isinstance(node.node, MypyFile):
        # Reference to a module object.
        return builtin_type('types.ModuleType')

    if is_decorated:
        # TODO: Return type of decorated function. This is quick hack to work around #998.
        return AnyType(TypeOfAny.special_form)
    else:
        return function_type(cast(FuncBase, node.node), builtin_type('builtins.function'))


def add_class_tvars(t: Type, itype: Instance, is_classmethod: bool,
                    builtin_type: Callable[[str], Instance],
                    original_type: Type) -> Type:
    """Instantiate type variables during analyze_class_attribute_access,
    e.g T and Q in the following:

    def A(Generic(T)):
        @classmethod
        def foo(cls: Type[Q]) -> Tuple[T, Q]: ...

    class B(A): pass

    B.foo()

    original_type is the value of the type B in the expression B.foo()
    """
    # TODO: verify consistency between Q and T
    info = itype.type  # type: TypeInfo
    if isinstance(t, CallableType):
        # TODO: Should we propagate type variable values?
        tvars = [TypeVarDef(n, n, i + 1, [], builtin_type('builtins.object'), tv.variance)
                 for (i, n), tv in zip(enumerate(info.type_vars), info.defn.type_vars)]
        if is_classmethod:
            t = bind_self(t, original_type, is_classmethod=True)
        return t.copy_modified(variables=tvars + t.variables)
    elif isinstance(t, Overloaded):
        return Overloaded([cast(CallableType, add_class_tvars(item, itype, is_classmethod,
                                                              builtin_type, original_type))
                           for item in t.items()])
    return t


def type_object_type(info: TypeInfo, builtin_type: Callable[[str], Instance]) -> Type:
    """Return the type of a type object.

    For a generic type G with type variables T and S the type is generally of form

      Callable[..., G[T, S]]

    where ... are argument types for the __init__/__new__ method (without the self
    argument). Also, the fallback type will be 'type' instead of 'function'.
    """
    init_method = info.get_method('__init__')
    if not init_method:
        # Must be an invalid class definition.
        return AnyType(TypeOfAny.from_error)
    else:
        fallback = info.metaclass_type or builtin_type('builtins.type')
        if init_method.info.fullname() == 'builtins.object':
            # No non-default __init__ -> look at __new__ instead.
            new_method = info.get_method('__new__')
            if new_method and new_method.info.fullname() != 'builtins.object':
                # Found one! Get signature from __new__.
                return type_object_type_from_function(new_method, info, fallback)
            # Both are defined by object.  But if we've got a bogus
            # base class, we can't know for sure, so check for that.
            if info.fallback_to_any:
                # Construct a universal callable as the prototype.
                any_type = AnyType(TypeOfAny.special_form)
                sig = CallableType(arg_types=[any_type, any_type],
                                   arg_kinds=[ARG_STAR, ARG_STAR2],
                                   arg_names=["_args", "_kwds"],
                                   ret_type=any_type,
                                   fallback=builtin_type('builtins.function'))
                return class_callable(sig, info, fallback, None)
        # Construct callable type based on signature of __init__. Adjust
        # return type and insert type arguments.
        return type_object_type_from_function(init_method, info, fallback)


def type_object_type_from_function(init_or_new: FuncBase, info: TypeInfo,
                                   fallback: Instance) -> FunctionLike:
    signature = bind_self(function_type(init_or_new, fallback))

    # The __init__ method might come from a generic superclass
    # (init_or_new.info) with type variables that do not map
    # identically to the type variables of the class being constructed
    # (info). For example
    #
    #   class A(Generic[T]): def __init__(self, x: T) -> None: pass
    #   class B(A[List[T]], Generic[T]): pass
    #
    # We need to first map B's __init__ to the type (List[T]) -> None.
    signature = cast(FunctionLike,
                     map_type_from_supertype(signature, info, init_or_new.info))
    special_sig = None  # type: Optional[str]
    if init_or_new.info.fullname() == 'builtins.dict':
        # Special signature!
        special_sig = 'dict'

    if isinstance(signature, CallableType):
        return class_callable(signature, info, fallback, special_sig)
    else:
        # Overloaded __init__/__new__.
        assert isinstance(signature, Overloaded)
        items = []  # type: List[CallableType]
        for item in signature.items():
            items.append(class_callable(item, info, fallback, special_sig))
        return Overloaded(items)


def class_callable(init_type: CallableType, info: TypeInfo, type_type: Instance,
                   special_sig: Optional[str]) -> CallableType:
    """Create a type object type based on the signature of __init__."""
    variables = []  # type: List[TypeVarDef]
    variables.extend(info.defn.type_vars)
    variables.extend(init_type.variables)

    callable_type = init_type.copy_modified(
        ret_type=fill_typevars(info), fallback=type_type, name=None, variables=variables,
        special_sig=special_sig)
    c = callable_type.with_name(info.name())
    return c


def map_type_from_supertype(typ: Type, sub_info: TypeInfo,
                            super_info: TypeInfo) -> Type:
    """Map type variables in a type defined in a supertype context to be valid
    in the subtype context. Assume that the result is unique; if more than
    one type is possible, return one of the alternatives.

    For example, assume

    . class D(Generic[S]) ...
    . class C(D[E[T]], Generic[T]) ...

    Now S in the context of D would be mapped to E[T] in the context of C.
    """
    # Create the type of self in subtype, of form t[a1, ...].
    inst_type = fill_typevars(sub_info)
    if isinstance(inst_type, TupleType):
        inst_type = inst_type.fallback
    # Map the type of self to supertype. This gets us a description of the
    # supertype type variables in terms of subtype variables, i.e. t[t1, ...]
    # so that any type variables in tN are to be interpreted in subtype
    # context.
    inst_type = map_instance_to_supertype(inst_type, super_info)
    # Finally expand the type variables in type with those in the previously
    # constructed type. Note that both type and inst_type may have type
    # variables, but in type they are interpreted in supertype context while
    # in inst_type they are interpreted in subtype context. This works even if
    # the names of type variables in supertype and subtype overlap.
    return expand_type_by_instance(typ, inst_type)


F = TypeVar('F', bound=FunctionLike)


def bind_self(method: F, original_type: Optional[Type] = None, is_classmethod: bool = False) -> F:
    """Return a copy of `method`, with the type of its first parameter (usually
    self or cls) bound to original_type.

    If the type of `self` is a generic type (T, or Type[T] for classmethods),
    instantiate every occurrence of type with original_type in the rest of the
    signature and in the return type.

    original_type is the type of E in the expression E.copy(). It is None in
    compatibility checks. In this case we treat it as the erasure of the
    declared type of self.

    This way we can express "the type of self". For example:

    T = TypeVar('T', bound='A')
    class A:
        def copy(self: T) -> T: ...

    class B(A): pass

    b = B().copy()  # type: B

    """
    if isinstance(method, Overloaded):
        return cast(F, Overloaded([bind_self(c, original_type) for c in method.items()]))
    assert isinstance(method, CallableType)
    func = method
    if not func.arg_types:
        # invalid method. return something
        return cast(F, func)
    if func.arg_kinds[0] == ARG_STAR:
        # The signature is of the form 'def foo(*args, ...)'.
        # In this case we shouldn't drop the first arg,
        # since func will be absorbed by the *args.

        # TODO: infer bounds on the type of *args?
        return cast(F, func)
    self_param_type = func.arg_types[0]
    if func.variables and (isinstance(self_param_type, TypeVarType) or
                           (isinstance(self_param_type, TypeType) and
                            isinstance(self_param_type.item, TypeVarType))):
        if original_type is None:
            # Type check method override
            # XXX value restriction as union?
            original_type = erase_to_bound(self_param_type)

        ids = [x.id for x in func.variables]
        typearg = infer_type_arguments(ids, self_param_type, original_type)[0]
        if (is_classmethod and isinstance(typearg, UninhabitedType)
                and isinstance(original_type, (Instance, TypeVarType, TupleType))):
            # In case we call a classmethod through an instance x, fallback to type(x)
            # TODO: handle Union
            typearg = infer_type_arguments(ids, self_param_type, TypeType(original_type))[0]

        def expand(target: Type) -> Type:
            assert typearg is not None
            return expand_type(target, {func.variables[0].id: typearg})

        arg_types = [expand(x) for x in func.arg_types[1:]]
        ret_type = expand(func.ret_type)
        variables = func.variables[1:]
    else:
        arg_types = func.arg_types[1:]
        ret_type = func.ret_type
        variables = func.variables
    if isinstance(original_type, CallableType) and original_type.is_type_obj():
        original_type = TypeType.make_normalized(original_type.ret_type)
    res = func.copy_modified(arg_types=arg_types,
                             arg_kinds=func.arg_kinds[1:],
                             arg_names=func.arg_names[1:],
                             variables=variables,
                             ret_type=ret_type,
                             bound_args=[original_type])
    return cast(F, res)


def erase_to_bound(t: Type) -> Type:
    if isinstance(t, TypeVarType):
        return t.upper_bound
    if isinstance(t, TypeType):
        if isinstance(t.item, TypeVarType):
            return TypeType.make_normalized(t.item.upper_bound)
    return t