This file is indexed.

/usr/lib/python3/dist-packages/mypy/join.py is in python3-mypy 0.560-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
"""Calculation of the least upper bound types (joins)."""

from collections import OrderedDict
from typing import cast, List, Optional

from mypy.types import (
    Type, AnyType, NoneTyp, TypeVisitor, Instance, UnboundType, TypeVarType, CallableType,
    TupleType, TypedDictType, ErasedType, TypeList, UnionType, FunctionLike, Overloaded,
    PartialType, DeletedType, UninhabitedType, TypeType, true_or_false, TypeOfAny
)
from mypy.maptype import map_instance_to_supertype
from mypy.subtypes import (
    is_subtype, is_equivalent, is_subtype_ignoring_tvars, is_proper_subtype,
    is_protocol_implementation
)

from mypy import experiments


def join_simple(declaration: Optional[Type], s: Type, t: Type) -> Type:
    """Return a simple least upper bound given the declared type."""

    if (s.can_be_true, s.can_be_false) != (t.can_be_true, t.can_be_false):
        # if types are restricted in different ways, use the more general versions
        s = true_or_false(s)
        t = true_or_false(t)

    if isinstance(s, AnyType):
        return s

    if isinstance(s, ErasedType):
        return t

    if is_proper_subtype(s, t):
        return t

    if is_proper_subtype(t, s):
        return s

    if isinstance(declaration, UnionType):
        return UnionType.make_simplified_union([s, t])

    if isinstance(s, NoneTyp) and not isinstance(t, NoneTyp):
        s, t = t, s

    if isinstance(s, UninhabitedType) and not isinstance(t, UninhabitedType):
        s, t = t, s

    value = t.accept(TypeJoinVisitor(s))

    if value is None:
        # XXX this code path probably should be avoided.
        # It seems to happen when a line (x = y) is a type error, and
        # it's not clear that assuming that x is arbitrary afterward
        # is a good idea.
        return declaration

    if declaration is None or is_subtype(value, declaration):
        return value

    return declaration


def join_types(s: Type, t: Type) -> Type:
    """Return the least upper bound of s and t.

    For example, the join of 'int' and 'object' is 'object'.
    """
    if (s.can_be_true, s.can_be_false) != (t.can_be_true, t.can_be_false):
        # if types are restricted in different ways, use the more general versions
        s = true_or_false(s)
        t = true_or_false(t)

    if isinstance(s, AnyType):
        return s

    if isinstance(s, ErasedType):
        return t

    if isinstance(s, UnionType) and not isinstance(t, UnionType):
        s, t = t, s

    if isinstance(s, NoneTyp) and not isinstance(t, NoneTyp):
        s, t = t, s

    if isinstance(s, UninhabitedType) and not isinstance(t, UninhabitedType):
        s, t = t, s

    # Use a visitor to handle non-trivial cases.
    return t.accept(TypeJoinVisitor(s))


class TypeJoinVisitor(TypeVisitor[Type]):
    """Implementation of the least upper bound algorithm.

    Attributes:
      s: The other (left) type operand.
    """

    def __init__(self, s: Type) -> None:
        self.s = s

    def visit_unbound_type(self, t: UnboundType) -> Type:
        return AnyType(TypeOfAny.special_form)

    def visit_union_type(self, t: UnionType) -> Type:
        if is_subtype(self.s, t):
            return t
        else:
            return UnionType.make_simplified_union([self.s, t])

    def visit_any(self, t: AnyType) -> Type:
        return t

    def visit_none_type(self, t: NoneTyp) -> Type:
        if experiments.STRICT_OPTIONAL:
            if isinstance(self.s, (NoneTyp, UninhabitedType)):
                return t
            elif isinstance(self.s, UnboundType):
                return AnyType(TypeOfAny.special_form)
            else:
                return UnionType.make_simplified_union([self.s, t])
        else:
            return self.s

    def visit_uninhabited_type(self, t: UninhabitedType) -> Type:
        return self.s

    def visit_deleted_type(self, t: DeletedType) -> Type:
        return self.s

    def visit_erased_type(self, t: ErasedType) -> Type:
        return self.s

    def visit_type_var(self, t: TypeVarType) -> Type:
        if isinstance(self.s, TypeVarType) and self.s.id == t.id:
            return self.s
        else:
            return self.default(self.s)

    def visit_instance(self, t: Instance) -> Type:
        if isinstance(self.s, Instance):
            nominal = join_instances(t, self.s)
            structural = None  # type: Optional[Instance]
            if t.type.is_protocol and is_protocol_implementation(self.s, t):
                structural = t
            elif self.s.type.is_protocol and is_protocol_implementation(t, self.s):
                structural = self.s
            # Structural join is preferred in the case where we have found both
            # structural and nominal and they have same MRO length (see two comments
            # in join_instances_via_supertype). Otherwise, just return the nominal join.
            if not structural or is_better(nominal, structural):
                return nominal
            return structural
        elif isinstance(self.s, FunctionLike):
            return join_types(t, self.s.fallback)
        elif isinstance(self.s, TypeType):
            return join_types(t, self.s)
        elif isinstance(self.s, TypedDictType):
            return join_types(t, self.s)
        else:
            return self.default(self.s)

    def visit_callable_type(self, t: CallableType) -> Type:
        if isinstance(self.s, CallableType) and is_similar_callables(t, self.s):
            if is_equivalent(t, self.s):
                return combine_similar_callables(t, self.s)
            result = join_similar_callables(t, self.s)
            if any(isinstance(tp, (NoneTyp, UninhabitedType)) for tp in result.arg_types):
                # We don't want to return unusable Callable, attempt fallback instead.
                return join_types(t.fallback, self.s)
            return result
        elif isinstance(self.s, Overloaded):
            # Switch the order of arguments to that we'll get to visit_overloaded.
            return join_types(t, self.s)
        else:
            return join_types(t.fallback, self.s)

    def visit_overloaded(self, t: Overloaded) -> Type:
        # This is more complex than most other cases. Here are some
        # examples that illustrate how this works.
        #
        # First let's define a concise notation:
        #  - Cn are callable types (for n in 1, 2, ...)
        #  - Ov(C1, C2, ...) is an overloaded type with items C1, C2, ...
        #  - Callable[[T, ...], S] is written as [T, ...] -> S.
        #
        # We want some basic properties to hold (assume Cn are all
        # unrelated via Any-similarity):
        #
        #   join(Ov(C1, C2), C1) == C1
        #   join(Ov(C1, C2), Ov(C1, C2)) == Ov(C1, C2)
        #   join(Ov(C1, C2), Ov(C1, C3)) == C1
        #   join(Ov(C2, C2), C3) == join of fallback types
        #
        # The presence of Any types makes things more interesting. The join is the
        # most general type we can get with respect to Any:
        #
        #   join(Ov([int] -> int, [str] -> str), [Any] -> str) == Any -> str
        #
        # We could use a simplification step that removes redundancies, but that's not
        # implemented right now. Consider this example, where we get a redundancy:
        #
        #   join(Ov([int, Any] -> Any, [str, Any] -> Any), [Any, int] -> Any) ==
        #       Ov([Any, int] -> Any, [Any, int] -> Any)
        #
        # TODO: Consider more cases of callable subtyping.
        result = []  # type: List[CallableType]
        s = self.s
        if isinstance(s, FunctionLike):
            # The interesting case where both types are function types.
            for t_item in t.items():
                for s_item in s.items():
                    if is_similar_callables(t_item, s_item):
                        if is_equivalent(t_item, s_item):
                            result.append(combine_similar_callables(t_item, s_item))
                        elif is_subtype(t_item, s_item):
                            result.append(s_item)
            if result:
                # TODO: Simplify redundancies from the result.
                if len(result) == 1:
                    return result[0]
                else:
                    return Overloaded(result)
            return join_types(t.fallback, s.fallback)
        return join_types(t.fallback, s)

    def visit_tuple_type(self, t: TupleType) -> Type:
        if isinstance(self.s, TupleType) and self.s.length() == t.length():
            items = []  # type: List[Type]
            for i in range(t.length()):
                items.append(self.join(t.items[i], self.s.items[i]))
            fallback = join_instances(self.s.fallback, t.fallback)
            assert isinstance(fallback, Instance)
            return TupleType(items, fallback)
        else:
            return self.default(self.s)

    def visit_typeddict_type(self, t: TypedDictType) -> Type:
        if isinstance(self.s, TypedDictType):
            items = OrderedDict([
                (item_name, s_item_type)
                for (item_name, s_item_type, t_item_type) in self.s.zip(t)
                if (is_equivalent(s_item_type, t_item_type) and
                    (item_name in t.required_keys) == (item_name in self.s.required_keys))
            ])
            mapping_value_type = join_type_list(list(items.values()))
            fallback = self.s.create_anonymous_fallback(value_type=mapping_value_type)
            # We need to filter by items.keys() since some required keys present in both t and
            # self.s might be missing from the join if the types are incompatible.
            required_keys = set(items.keys()) & t.required_keys & self.s.required_keys
            return TypedDictType(items, required_keys, fallback)
        elif isinstance(self.s, Instance):
            return join_types(self.s, t.fallback)
        else:
            return self.default(self.s)

    def visit_partial_type(self, t: PartialType) -> Type:
        # We only have partial information so we can't decide the join result. We should
        # never get here.
        assert False, "Internal error"

    def visit_type_type(self, t: TypeType) -> Type:
        if isinstance(self.s, TypeType):
            return TypeType.make_normalized(self.join(t.item, self.s.item), line=t.line)
        elif isinstance(self.s, Instance) and self.s.type.fullname() == 'builtins.type':
            return self.s
        else:
            return self.default(self.s)

    def join(self, s: Type, t: Type) -> Type:
        return join_types(s, t)

    def default(self, typ: Type) -> Type:
        if isinstance(typ, Instance):
            return object_from_instance(typ)
        elif isinstance(typ, UnboundType):
            return AnyType(TypeOfAny.special_form)
        elif isinstance(typ, TupleType):
            return self.default(typ.fallback)
        elif isinstance(typ, TypedDictType):
            return self.default(typ.fallback)
        elif isinstance(typ, FunctionLike):
            return self.default(typ.fallback)
        elif isinstance(typ, TypeVarType):
            return self.default(typ.upper_bound)
        else:
            return AnyType(TypeOfAny.special_form)


def join_instances(t: Instance, s: Instance) -> Type:
    """Calculate the join of two instance types.
    """
    if t.type == s.type:
        # Simplest case: join two types with the same base type (but
        # potentially different arguments).
        if is_subtype(t, s) or is_subtype(s, t):
            # Compatible; combine type arguments.
            args = []  # type: List[Type]
            for i in range(len(t.args)):
                args.append(join_types(t.args[i], s.args[i]))
            return Instance(t.type, args)
        else:
            # Incompatible; return trivial result object.
            return object_from_instance(t)
    elif t.type.bases and is_subtype_ignoring_tvars(t, s):
        return join_instances_via_supertype(t, s)
    else:
        # Now t is not a subtype of s, and t != s. Now s could be a subtype
        # of t; alternatively, we need to find a common supertype. This works
        # in of the both cases.
        return join_instances_via_supertype(s, t)


def join_instances_via_supertype(t: Instance, s: Instance) -> Type:
    # Give preference to joins via duck typing relationship, so that
    # join(int, float) == float, for example.
    if t.type._promote and is_subtype(t.type._promote, s):
        return join_types(t.type._promote, s)
    elif s.type._promote and is_subtype(s.type._promote, t):
        return join_types(t, s.type._promote)
    # Compute the "best" supertype of t when joined with s.
    # The definition of "best" may evolve; for now it is the one with
    # the longest MRO.  Ties are broken by using the earlier base.
    best = None  # type: Optional[Type]
    for base in t.type.bases:
        mapped = map_instance_to_supertype(t, base.type)
        res = join_instances(mapped, s)
        if best is None or is_better(res, best):
            best = res
    assert best is not None
    return best


def is_better(t: Type, s: Type) -> bool:
    # Given two possible results from join_instances_via_supertype(),
    # indicate whether t is the better one.
    if isinstance(t, Instance):
        if not isinstance(s, Instance):
            return True
        # Use len(mro) as a proxy for the better choice.
        if len(t.type.mro) > len(s.type.mro):
            return True
    return False


def is_similar_callables(t: CallableType, s: CallableType) -> bool:
    """Return True if t and s have identical numbers of
    arguments, default arguments and varargs.
    """

    return (len(t.arg_types) == len(s.arg_types) and t.min_args == s.min_args and
            t.is_var_arg == s.is_var_arg)


def join_similar_callables(t: CallableType, s: CallableType) -> CallableType:
    from mypy.meet import meet_types
    arg_types = []  # type: List[Type]
    for i in range(len(t.arg_types)):
        arg_types.append(meet_types(t.arg_types[i], s.arg_types[i]))
    # TODO in combine_similar_callables also applies here (names and kinds)
    # The fallback type can be either 'function' or 'type'. The result should have 'type' as
    # fallback only if both operands have it as 'type'.
    if t.fallback.type.fullname() != 'builtins.type':
        fallback = t.fallback
    else:
        fallback = s.fallback
    return t.copy_modified(arg_types=arg_types,
                           ret_type=join_types(t.ret_type, s.ret_type),
                           fallback=fallback,
                           name=None)


def combine_similar_callables(t: CallableType, s: CallableType) -> CallableType:
    arg_types = []  # type: List[Type]
    for i in range(len(t.arg_types)):
        arg_types.append(join_types(t.arg_types[i], s.arg_types[i]))
    # TODO kinds and argument names
    # The fallback type can be either 'function' or 'type'. The result should have 'type' as
    # fallback only if both operands have it as 'type'.
    if t.fallback.type.fullname() != 'builtins.type':
        fallback = t.fallback
    else:
        fallback = s.fallback
    return t.copy_modified(arg_types=arg_types,
                           ret_type=join_types(t.ret_type, s.ret_type),
                           fallback=fallback,
                           name=None)


def object_from_instance(instance: Instance) -> Instance:
    """Construct the type 'builtins.object' from an instance type."""
    # Use the fact that 'object' is always the last class in the mro.
    res = Instance(instance.type.mro[-1], [])
    return res


def join_type_list(types: List[Type]) -> Type:
    if not types:
        # This is a little arbitrary but reasonable. Any empty tuple should be compatible
        # with all variable length tuples, and this makes it possible.
        return UninhabitedType()
    joined = types[0]
    for t in types[1:]:
        joined = join_types(joined, t)
    return joined