/usr/lib/python3/dist-packages/mypy/nodes.py is in python3-mypy 0.560-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 | """Abstract syntax tree node classes (i.e. parse tree)."""
import os
from abc import abstractmethod
from collections import OrderedDict
from typing import (
Any, TypeVar, List, Tuple, cast, Set, Dict, Union, Optional, Callable, Sequence,
)
import mypy.strconv
from mypy.util import short_type
from mypy.visitor import NodeVisitor, StatementVisitor, ExpressionVisitor
class Context:
"""Base type for objects that are valid as error message locations."""
line = -1
column = -1
def __init__(self, line: int = -1, column: int = -1) -> None:
self.line = line
self.column = column
def set_line(self, target: Union['Context', int], column: Optional[int] = None) -> None:
"""If target is a node, pull line (and column) information
into this node. If column is specified, this will override any column
information coming from a node.
"""
if isinstance(target, int):
self.line = target
else:
self.line = target.line
self.column = target.column
if column is not None:
self.column = column
def get_line(self) -> int:
"""Don't use. Use x.line."""
return self.line
def get_column(self) -> int:
"""Don't use. Use x.column."""
return self.column
if False:
# break import cycle only needed for mypy
import mypy.types
T = TypeVar('T')
JsonDict = Dict[str, Any]
# Symbol table node kinds
#
# TODO rename to use more descriptive names
LDEF = 0 # type: int
GDEF = 1 # type: int
MDEF = 2 # type: int
MODULE_REF = 3 # type: int
# Type variable declared using TypeVar(...) has kind TVAR. It's not
# valid as a type unless bound in a TypeVarScope. That happens within:
# (1) a generic class that uses the type variable as a type argument or
# (2) a generic function that refers to the type variable in its signature.
TVAR = 4 # type: int
TYPE_ALIAS = 6 # type: int
# Placeholder for a name imported via 'from ... import'. Second phase of
# semantic will replace this the actual imported reference. This is
# needed so that we can detect whether a name has been imported during
# XXX what?
UNBOUND_IMPORTED = 7 # type: int
LITERAL_YES = 2
LITERAL_TYPE = 1
LITERAL_NO = 0
# Hard coded name of Enum baseclass.
ENUM_BASECLASS = "enum.Enum"
node_kinds = {
LDEF: 'Ldef',
GDEF: 'Gdef',
MDEF: 'Mdef',
MODULE_REF: 'ModuleRef',
TVAR: 'Tvar',
TYPE_ALIAS: 'TypeAlias',
UNBOUND_IMPORTED: 'UnboundImported',
}
inverse_node_kinds = {_kind: _name for _name, _kind in node_kinds.items()}
implicit_module_attrs = {'__name__': '__builtins__.str',
'__doc__': None, # depends on Python version, see semanal.py
'__file__': '__builtins__.str',
'__package__': '__builtins__.str'}
type_aliases = {
'typing.List': '__builtins__.list',
'typing.Dict': '__builtins__.dict',
'typing.Set': '__builtins__.set',
'typing.FrozenSet': '__builtins__.frozenset',
}
reverse_type_aliases = dict((name.replace('__builtins__', 'builtins'), alias)
for alias, name in type_aliases.items()) # type: Dict[str, str]
collections_type_aliases = {
'typing.ChainMap': '__mypy_collections__.ChainMap',
'typing.Counter': '__mypy_collections__.Counter',
'typing.DefaultDict': '__mypy_collections__.defaultdict',
'typing.Deque': '__mypy_collections__.deque',
}
reverse_collection_aliases = dict((name.replace('__mypy_collections__', 'collections'), alias)
for alias, name in
collections_type_aliases.items()) # type: Dict[str, str]
nongen_builtins = {'builtins.tuple': 'typing.Tuple',
'builtins.enumerate': ''}
nongen_builtins.update(reverse_type_aliases)
nongen_builtins.update(reverse_collection_aliases)
class Node(Context):
"""Common base class for all non-type parse tree nodes."""
def __str__(self) -> str:
ans = self.accept(mypy.strconv.StrConv())
if ans is None:
return repr(self)
return ans
def accept(self, visitor: NodeVisitor[T]) -> T:
raise RuntimeError('Not implemented')
class Statement(Node):
"""A statement node."""
def accept(self, visitor: StatementVisitor[T]) -> T:
raise RuntimeError('Not implemented')
class Expression(Node):
"""An expression node."""
def accept(self, visitor: ExpressionVisitor[T]) -> T:
raise RuntimeError('Not implemented')
# TODO:
# Lvalue = Union['NameExpr', 'MemberExpr', 'IndexExpr', 'SuperExpr', 'StarExpr'
# 'TupleExpr', 'ListExpr']; see #1783.
Lvalue = Expression
class SymbolNode(Node):
# Nodes that can be stored in a symbol table.
# TODO do not use methods for these
@abstractmethod
def name(self) -> str: pass
@abstractmethod
def fullname(self) -> str: pass
@abstractmethod
def serialize(self) -> JsonDict: pass
@classmethod
def deserialize(cls, data: JsonDict) -> 'SymbolNode':
classname = data['.class']
method = deserialize_map.get(classname)
if method is not None:
return method(data)
raise NotImplementedError('unexpected .class {}'.format(classname))
class MypyFile(SymbolNode):
"""The abstract syntax tree of a single source file."""
# Module name ('__main__' for initial file)
_name = None # type: str
# Fully qualified module name
_fullname = None # type: str
# Path to the file (None if not known)
path = ''
# Top-level definitions and statements
defs = None # type: List[Statement]
# Is there a UTF-8 BOM at the start?
is_bom = False
names = None # type: SymbolTable
# All import nodes within the file (also ones within functions etc.)
imports = None # type: List[ImportBase]
# Lines to ignore when checking
ignored_lines = None # type: Set[int]
# Is this file represented by a stub file (.pyi)?
is_stub = False
def __init__(self,
defs: List[Statement],
imports: List['ImportBase'],
is_bom: bool = False,
ignored_lines: Optional[Set[int]] = None) -> None:
self.defs = defs
self.line = 1 # Dummy line number
self.imports = imports
self.is_bom = is_bom
if ignored_lines:
self.ignored_lines = ignored_lines
else:
self.ignored_lines = set()
def name(self) -> str:
return self._name
def fullname(self) -> str:
return self._fullname
def accept(self, visitor: NodeVisitor[T]) -> T:
return visitor.visit_mypy_file(self)
def is_package_init_file(self) -> bool:
return not (self.path is None) and len(self.path) != 0 \
and os.path.basename(self.path).startswith('__init__.')
def serialize(self) -> JsonDict:
return {'.class': 'MypyFile',
'_name': self._name,
'_fullname': self._fullname,
'names': self.names.serialize(self._fullname),
'is_stub': self.is_stub,
'path': self.path,
}
@classmethod
def deserialize(cls, data: JsonDict) -> 'MypyFile':
assert data['.class'] == 'MypyFile', data
tree = MypyFile([], [])
tree._name = data['_name']
tree._fullname = data['_fullname']
tree.names = SymbolTable.deserialize(data['names'])
tree.is_stub = data['is_stub']
tree.path = data['path']
return tree
class ImportBase(Statement):
"""Base class for all import statements."""
is_unreachable = False # Set by semanal.SemanticAnalyzerPass1 if inside `if False` etc.
is_top_level = False # Ditto if outside any class or def
is_mypy_only = False # Ditto if inside `if TYPE_CHECKING` or `if MYPY`
# If an import replaces existing definitions, we construct dummy assignment
# statements that assign the imported names to the names in the current scope,
# for type checking purposes. Example:
#
# x = 1
# from m import x <-- add assignment representing "x = m.x"
assignments = None # type: List[AssignmentStmt]
def __init__(self) -> None:
self.assignments = []
class Import(ImportBase):
"""import m [as n]"""
ids = None # type: List[Tuple[str, Optional[str]]] # (module id, as id)
def __init__(self, ids: List[Tuple[str, Optional[str]]]) -> None:
super().__init__()
self.ids = ids
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_import(self)
class ImportFrom(ImportBase):
"""from m import x [as y], ..."""
id = None # type: str
relative = None # type: int
names = None # type: List[Tuple[str, Optional[str]]] # Tuples (name, as name)
def __init__(self, id: str, relative: int, names: List[Tuple[str, Optional[str]]]) -> None:
super().__init__()
self.id = id
self.names = names
self.relative = relative
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_import_from(self)
class ImportAll(ImportBase):
"""from m import *"""
id = None # type: str
relative = None # type: int
def __init__(self, id: str, relative: int) -> None:
super().__init__()
self.id = id
self.relative = relative
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_import_all(self)
class FuncBase(Node):
"""Abstract base class for function-like nodes"""
# Type signature. This is usually CallableType or Overloaded, but it can be something else for
# decorated functions/
type = None # type: Optional[mypy.types.Type]
# Original, not semantically analyzed type (used for reprocessing)
unanalyzed_type = None # type: Optional[mypy.types.Type]
# If method, reference to TypeInfo
info = None # type: TypeInfo
is_property = False
_fullname = None # type: str # Name with module prefix
@abstractmethod
def name(self) -> str: pass
def fullname(self) -> str:
return self._fullname
OverloadPart = Union['FuncDef', 'Decorator']
class OverloadedFuncDef(FuncBase, SymbolNode, Statement):
"""A logical node representing all the variants of a multi-declaration function.
A multi-declaration function is often an @overload, but can also be a
@property with a setter and a/or a deleter.
This node has no explicit representation in the source program.
Overloaded variants must be consecutive in the source file.
"""
items = None # type: List[OverloadPart]
impl = None # type: Optional[OverloadPart]
def __init__(self, items: List['OverloadPart']) -> None:
assert len(items) > 0
self.items = items
self.impl = None
self.set_line(items[0].line)
def name(self) -> str:
return self.items[0].name()
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_overloaded_func_def(self)
def serialize(self) -> JsonDict:
return {'.class': 'OverloadedFuncDef',
'items': [i.serialize() for i in self.items],
'type': None if self.type is None else self.type.serialize(),
'fullname': self._fullname,
'is_property': self.is_property,
'impl': None if self.impl is None else self.impl.serialize()
}
@classmethod
def deserialize(cls, data: JsonDict) -> 'OverloadedFuncDef':
assert data['.class'] == 'OverloadedFuncDef'
res = OverloadedFuncDef([
cast(OverloadPart, SymbolNode.deserialize(d))
for d in data['items']])
if data.get('impl') is not None:
res.impl = cast(OverloadPart, SymbolNode.deserialize(data['impl']))
if data.get('type') is not None:
res.type = mypy.types.deserialize_type(data['type'])
res._fullname = data['fullname']
res.is_property = data['is_property']
# NOTE: res.info will be set in the fixup phase.
return res
class Argument(Node):
"""A single argument in a FuncItem."""
variable = None # type: Var
type_annotation = None # type: Optional[mypy.types.Type]
initializer = None # type: Optional[Expression]
kind = None # type: int # must be an ARG_* constant
def __init__(self, variable: 'Var', type_annotation: 'Optional[mypy.types.Type]',
initializer: Optional[Expression], kind: int) -> None:
self.variable = variable
self.type_annotation = type_annotation
self.initializer = initializer
self.kind = kind
def set_line(self, target: Union[Context, int], column: Optional[int] = None) -> None:
super().set_line(target, column)
if self.initializer:
self.initializer.set_line(self.line, self.column)
self.variable.set_line(self.line, self.column)
class FuncItem(FuncBase):
arguments = [] # type: List[Argument]
arg_names = [] # type: List[str]
arg_kinds = [] # type: List[int]
# Minimum number of arguments
min_args = 0
# Maximum number of positional arguments, -1 if no explicit limit (*args not included)
max_pos = 0
body = None # type: Block
# Is this an overload variant of function with more than one overload variant?
is_overload = False
is_generator = False # Contains a yield statement?
is_coroutine = False # Defined using 'async def' syntax?
is_async_generator = False # Is an async def generator?
is_awaitable_coroutine = False # Decorated with '@{typing,asyncio}.coroutine'?
is_static = False # Uses @staticmethod?
is_class = False # Uses @classmethod?
# Variants of function with type variables with values expanded
expanded = None # type: List[FuncItem]
FLAGS = [
'is_overload', 'is_generator', 'is_coroutine', 'is_async_generator',
'is_awaitable_coroutine', 'is_static', 'is_class',
]
def __init__(self, arguments: List[Argument], body: 'Block',
typ: 'Optional[mypy.types.FunctionLike]' = None) -> None:
self.arguments = arguments
self.arg_names = [arg.variable.name() for arg in self.arguments]
self.arg_kinds = [arg.kind for arg in self.arguments]
self.max_pos = self.arg_kinds.count(ARG_POS) + self.arg_kinds.count(ARG_OPT)
self.body = body
self.type = typ
self.unanalyzed_type = typ
self.expanded = []
self.min_args = 0
for i in range(len(self.arguments)):
if self.arguments[i] is None and i < self.max_fixed_argc():
self.min_args = i + 1
def max_fixed_argc(self) -> int:
return self.max_pos
def set_line(self, target: Union[Context, int], column: Optional[int] = None) -> None:
super().set_line(target, column)
for arg in self.arguments:
arg.set_line(self.line, self.column)
def is_dynamic(self) -> bool:
return self.type is None
class FuncDef(FuncItem, SymbolNode, Statement):
"""Function definition.
This is a non-lambda function defined using 'def'.
"""
is_decorated = False
is_conditional = False # Defined conditionally (within block)?
is_abstract = False
is_property = False
# Original conditional definition
original_def = None # type: Union[None, FuncDef, Var, Decorator]
FLAGS = FuncItem.FLAGS + [
'is_decorated', 'is_conditional', 'is_abstract', 'is_property'
]
def __init__(self,
name: str, # Function name
arguments: List[Argument],
body: 'Block',
typ: 'Optional[mypy.types.FunctionLike]' = None) -> None:
super().__init__(arguments, body, typ)
self._name = name
def name(self) -> str:
return self._name
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_func_def(self)
def serialize(self) -> JsonDict:
# We're deliberating omitting arguments and storing only arg_names and
# arg_kinds for space-saving reasons (arguments is not used in later
# stages of mypy).
# TODO: After a FuncDef is deserialized, the only time we use `arg_names`
# and `arg_kinds` is when `type` is None and we need to infer a type. Can
# we store the inferred type ahead of time?
return {'.class': 'FuncDef',
'name': self._name,
'fullname': self._fullname,
'arg_names': self.arg_names,
'arg_kinds': self.arg_kinds,
'type': None if self.type is None else self.type.serialize(),
'flags': get_flags(self, FuncDef.FLAGS),
# TODO: Do we need expanded, original_def?
}
@classmethod
def deserialize(cls, data: JsonDict) -> 'FuncDef':
assert data['.class'] == 'FuncDef'
body = Block([])
ret = FuncDef(data['name'],
[],
body,
(None if data['type'] is None
else cast(mypy.types.FunctionLike,
mypy.types.deserialize_type(data['type']))))
ret._fullname = data['fullname']
set_flags(ret, data['flags'])
# NOTE: ret.info is set in the fixup phase.
ret.arg_names = data['arg_names']
ret.arg_kinds = data['arg_kinds']
# Mark these as 'None' so that future uses will trigger an error
_dummy = None # type: Any
ret.arguments = _dummy
ret.max_pos = _dummy
ret.min_args = _dummy
return ret
class Decorator(SymbolNode, Statement):
"""A decorated function.
A single Decorator object can include any number of function decorators.
"""
func = None # type: FuncDef # Decorated function
decorators = None # type: List[Expression] # Decorators (may be empty)
# TODO: This is mostly used for the type; consider replacing with a 'type' attribute
var = None # type: Var # Represents the decorated function obj
is_overload = False
def __init__(self, func: FuncDef, decorators: List[Expression],
var: 'Var') -> None:
self.func = func
self.decorators = decorators
self.var = var
self.is_overload = False
def name(self) -> str:
return self.func.name()
def fullname(self) -> str:
return self.func.fullname()
@property
def info(self) -> 'TypeInfo':
return self.func.info
@property
def type(self) -> 'Optional[mypy.types.Type]':
return self.var.type
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_decorator(self)
def serialize(self) -> JsonDict:
return {'.class': 'Decorator',
'func': self.func.serialize(),
'var': self.var.serialize(),
'is_overload': self.is_overload,
}
@classmethod
def deserialize(cls, data: JsonDict) -> 'Decorator':
assert data['.class'] == 'Decorator'
dec = Decorator(FuncDef.deserialize(data['func']),
[],
Var.deserialize(data['var']))
dec.is_overload = data['is_overload']
return dec
class Var(SymbolNode):
"""A variable.
It can refer to global/local variable or a data attribute.
"""
_name = None # type: str # Name without module prefix
_fullname = None # type: str # Name with module prefix
info = None # type: TypeInfo # Defining class (for member variables)
type = None # type: Optional[mypy.types.Type] # Declared or inferred type, or None
# Is this the first argument to an ordinary method (usually "self")?
is_self = False
is_ready = False # If inferred, is the inferred type available?
# Is this initialized explicitly to a non-None value in class body?
is_inferred = False
is_initialized_in_class = False
is_staticmethod = False
is_classmethod = False
is_property = False
is_settable_property = False
is_classvar = False
is_abstract_var = False
# Set to true when this variable refers to a module we were unable to
# parse for some reason (eg a silenced module)
is_suppressed_import = False
FLAGS = [
'is_self', 'is_ready', 'is_initialized_in_class', 'is_staticmethod',
'is_classmethod', 'is_property', 'is_settable_property', 'is_suppressed_import',
'is_classvar', 'is_abstract_var'
]
def __init__(self, name: str, type: 'Optional[mypy.types.Type]' = None) -> None:
self._name = name
self.type = type
if self.type is None:
self.is_inferred = True
self.is_self = False
self.is_ready = True
self.is_initialized_in_class = False
def name(self) -> str:
return self._name
def fullname(self) -> str:
return self._fullname
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_var(self)
def serialize(self) -> JsonDict:
# TODO: Leave default values out?
# NOTE: Sometimes self.is_ready is False here, but we don't care.
data = {'.class': 'Var',
'name': self._name,
'fullname': self._fullname,
'type': None if self.type is None else self.type.serialize(),
'flags': get_flags(self, Var.FLAGS),
} # type: JsonDict
return data
@classmethod
def deserialize(cls, data: JsonDict) -> 'Var':
assert data['.class'] == 'Var'
name = data['name']
type = None if data['type'] is None else mypy.types.deserialize_type(data['type'])
v = Var(name, type)
v._fullname = data['fullname']
set_flags(v, data['flags'])
return v
class ClassDef(Statement):
"""Class definition"""
name = None # type: str # Name of the class without module prefix
fullname = None # type: str # Fully qualified name of the class
defs = None # type: Block
type_vars = None # type: List[mypy.types.TypeVarDef]
# Base class expressions (not semantically analyzed -- can be arbitrary expressions)
base_type_exprs = None # type: List[Expression]
info = None # type: TypeInfo # Related TypeInfo
metaclass = None # type: Optional[Expression]
decorators = None # type: List[Expression]
keywords = None # type: OrderedDict[str, Expression]
analyzed = None # type: Optional[Expression]
has_incompatible_baseclass = False
def __init__(self,
name: str,
defs: 'Block',
type_vars: Optional[List['mypy.types.TypeVarDef']] = None,
base_type_exprs: Optional[List[Expression]] = None,
metaclass: Optional[Expression] = None,
keywords: Optional[List[Tuple[str, Expression]]] = None) -> None:
self.name = name
self.defs = defs
self.type_vars = type_vars or []
self.base_type_exprs = base_type_exprs or []
self.metaclass = metaclass
self.decorators = []
self.keywords = OrderedDict(keywords or [])
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_class_def(self)
def is_generic(self) -> bool:
return self.info.is_generic()
def serialize(self) -> JsonDict:
# Not serialized: defs, base_type_exprs, metaclass, decorators,
# analyzed (for named tuples etc.)
return {'.class': 'ClassDef',
'name': self.name,
'fullname': self.fullname,
'type_vars': [v.serialize() for v in self.type_vars],
}
@classmethod
def deserialize(self, data: JsonDict) -> 'ClassDef':
assert data['.class'] == 'ClassDef'
res = ClassDef(data['name'],
Block([]),
[mypy.types.TypeVarDef.deserialize(v) for v in data['type_vars']],
)
res.fullname = data['fullname']
return res
class GlobalDecl(Statement):
"""Declaration global x, y, ..."""
names = None # type: List[str]
def __init__(self, names: List[str]) -> None:
self.names = names
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_global_decl(self)
class NonlocalDecl(Statement):
"""Declaration nonlocal x, y, ..."""
names = None # type: List[str]
def __init__(self, names: List[str]) -> None:
self.names = names
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_nonlocal_decl(self)
class Block(Statement):
body = None # type: List[Statement]
# True if we can determine that this block is not executed. For example,
# this applies to blocks that are protected by something like "if PY3:"
# when using Python 2.
is_unreachable = False
def __init__(self, body: List[Statement]) -> None:
self.body = body
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_block(self)
# Statements
class ExpressionStmt(Statement):
"""An expression as a statement, such as print(s)."""
expr = None # type: Expression
def __init__(self, expr: Expression) -> None:
self.expr = expr
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_expression_stmt(self)
class AssignmentStmt(Statement):
"""Assignment statement
The same node class is used for single assignment, multiple assignment
(e.g. x, y = z) and chained assignment (e.g. x = y = z), assignments
that define new names, and assignments with explicit types (# type).
An lvalue can be NameExpr, TupleExpr, ListExpr, MemberExpr, IndexExpr.
"""
lvalues = None # type: List[Lvalue]
rvalue = None # type: Expression
# Declared type in a comment, may be None.
type = None # type: Optional[mypy.types.Type]
# Original, not semantically analyzed type in annotation (used for reprocessing)
unanalyzed_type = None # type: Optional[mypy.types.Type]
# This indicates usage of PEP 526 type annotation syntax in assignment.
new_syntax = False # type: bool
def __init__(self, lvalues: List[Lvalue], rvalue: Expression,
type: 'Optional[mypy.types.Type]' = None, new_syntax: bool = False) -> None:
self.lvalues = lvalues
self.rvalue = rvalue
self.type = type
self.unanalyzed_type = type
self.new_syntax = new_syntax
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_assignment_stmt(self)
class OperatorAssignmentStmt(Statement):
"""Operator assignment statement such as x += 1"""
op = ''
lvalue = None # type: Lvalue
rvalue = None # type: Expression
def __init__(self, op: str, lvalue: Lvalue, rvalue: Expression) -> None:
self.op = op
self.lvalue = lvalue
self.rvalue = rvalue
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_operator_assignment_stmt(self)
class WhileStmt(Statement):
expr = None # type: Expression
body = None # type: Block
else_body = None # type: Optional[Block]
def __init__(self, expr: Expression, body: Block, else_body: Optional[Block]) -> None:
self.expr = expr
self.body = body
self.else_body = else_body
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_while_stmt(self)
class ForStmt(Statement):
# Index variables
index = None # type: Lvalue
# Type given by type comments for index, can be None
index_type = None # type: Optional[mypy.types.Type]
# Inferred iterable item type
inferred_item_type = None # type: Optional[mypy.types.Type]
# Expression to iterate
expr = None # type: Expression
body = None # type: Block
else_body = None # type: Optional[Block]
is_async = False # True if `async for ...` (PEP 492, Python 3.5)
def __init__(self,
index: Lvalue,
expr: Expression,
body: Block,
else_body: Optional[Block],
index_type: 'Optional[mypy.types.Type]' = None) -> None:
self.index = index
self.index_type = index_type
self.expr = expr
self.body = body
self.else_body = else_body
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_for_stmt(self)
class ReturnStmt(Statement):
expr = None # type: Optional[Expression]
def __init__(self, expr: Optional[Expression]) -> None:
self.expr = expr
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_return_stmt(self)
class AssertStmt(Statement):
expr = None # type: Expression
msg = None # type: Optional[Expression]
def __init__(self, expr: Expression, msg: Optional[Expression] = None) -> None:
self.expr = expr
self.msg = msg
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_assert_stmt(self)
class DelStmt(Statement):
expr = None # type: Lvalue
def __init__(self, expr: Lvalue) -> None:
self.expr = expr
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_del_stmt(self)
class BreakStmt(Statement):
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_break_stmt(self)
class ContinueStmt(Statement):
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_continue_stmt(self)
class PassStmt(Statement):
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_pass_stmt(self)
class IfStmt(Statement):
expr = None # type: List[Expression]
body = None # type: List[Block]
else_body = None # type: Optional[Block]
def __init__(self, expr: List[Expression], body: List[Block],
else_body: Optional[Block]) -> None:
self.expr = expr
self.body = body
self.else_body = else_body
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_if_stmt(self)
class RaiseStmt(Statement):
# Plain 'raise' is a valid statement.
expr = None # type: Optional[Expression]
from_expr = None # type: Optional[Expression]
def __init__(self, expr: Optional[Expression], from_expr: Optional[Expression]) -> None:
self.expr = expr
self.from_expr = from_expr
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_raise_stmt(self)
class TryStmt(Statement):
body = None # type: Block # Try body
# Plain 'except:' also possible
types = None # type: List[Optional[Expression]] # Except type expressions
vars = None # type: List[Optional[NameExpr]] # Except variable names
handlers = None # type: List[Block] # Except bodies
else_body = None # type: Optional[Block]
finally_body = None # type: Optional[Block]
def __init__(self, body: Block, vars: List['Optional[NameExpr]'],
types: List[Optional[Expression]],
handlers: List[Block], else_body: Optional[Block],
finally_body: Optional[Block]) -> None:
self.body = body
self.vars = vars
self.types = types
self.handlers = handlers
self.else_body = else_body
self.finally_body = finally_body
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_try_stmt(self)
class WithStmt(Statement):
expr = None # type: List[Expression]
target = None # type: List[Optional[Lvalue]]
# Type given by type comments for target, can be None
target_type = None # type: Optional[mypy.types.Type]
body = None # type: Block
is_async = False # True if `async with ...` (PEP 492, Python 3.5)
def __init__(self, expr: List[Expression], target: List[Optional[Lvalue]],
body: Block, target_type: 'Optional[mypy.types.Type]' = None) -> None:
self.expr = expr
self.target = target
self.target_type = target_type
self.body = body
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_with_stmt(self)
class PrintStmt(Statement):
"""Python 2 print statement"""
args = None # type: List[Expression]
newline = False
# The file-like target object (given using >>).
target = None # type: Optional[Expression]
def __init__(self,
args: List[Expression],
newline: bool,
target: Optional[Expression] = None) -> None:
self.args = args
self.newline = newline
self.target = target
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_print_stmt(self)
class ExecStmt(Statement):
"""Python 2 exec statement"""
expr = None # type: Expression
globals = None # type: Optional[Expression]
locals = None # type: Optional[Expression]
def __init__(self, expr: Expression,
globals: Optional[Expression],
locals: Optional[Expression]) -> None:
self.expr = expr
self.globals = globals
self.locals = locals
def accept(self, visitor: StatementVisitor[T]) -> T:
return visitor.visit_exec_stmt(self)
# Expressions
class IntExpr(Expression):
"""Integer literal"""
value = 0
def __init__(self, value: int) -> None:
self.value = value
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_int_expr(self)
# How mypy uses StrExpr, BytesExpr, and UnicodeExpr:
# In Python 2 mode:
# b'x', 'x' -> StrExpr
# u'x' -> UnicodeExpr
# BytesExpr is unused
#
# In Python 3 mode:
# b'x' -> BytesExpr
# 'x', u'x' -> StrExpr
# UnicodeExpr is unused
class StrExpr(Expression):
"""String literal"""
value = ''
def __init__(self, value: str) -> None:
self.value = value
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_str_expr(self)
class BytesExpr(Expression):
"""Bytes literal"""
value = '' # TODO use bytes
def __init__(self, value: str) -> None:
self.value = value
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_bytes_expr(self)
class UnicodeExpr(Expression):
"""Unicode literal (Python 2.x)"""
value = '' # TODO use bytes
def __init__(self, value: str) -> None:
self.value = value
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_unicode_expr(self)
class FloatExpr(Expression):
"""Float literal"""
value = 0.0
def __init__(self, value: float) -> None:
self.value = value
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_float_expr(self)
class ComplexExpr(Expression):
"""Complex literal"""
value = 0.0j
def __init__(self, value: complex) -> None:
self.value = value
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_complex_expr(self)
class EllipsisExpr(Expression):
"""Ellipsis (...)"""
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_ellipsis(self)
class StarExpr(Expression):
"""Star expression"""
expr = None # type: Expression
def __init__(self, expr: Expression) -> None:
self.expr = expr
# Whether this starred expression is used in a tuple/list and as lvalue
self.valid = False
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_star_expr(self)
class RefExpr(Expression):
"""Abstract base class for name-like constructs"""
kind = None # type: Optional[int] # LDEF/GDEF/MDEF/... (None if not available)
node = None # type: Optional[SymbolNode] # Var, FuncDef or TypeInfo that describes this
fullname = None # type: Optional[str] # Fully qualified name (or name if not global)
# Does this define a new name?
is_new_def = False
# Does this define a new name with inferred type?
#
# For members, after semantic analysis, this does not take base
# classes into consideration at all; the type checker deals with these.
is_inferred_def = False
class NameExpr(RefExpr):
"""Name expression
This refers to a local name, global name or a module.
"""
name = None # type: str # Name referred to (may be qualified)
def __init__(self, name: str) -> None:
self.name = name
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_name_expr(self)
def serialize(self) -> JsonDict:
# TODO: Find out where and why NameExpr is being serialized (if at all).
assert False, "Serializing NameExpr: %s" % (self,)
return {'.class': 'NameExpr',
'kind': self.kind,
'node': None if self.node is None else self.node.serialize(),
'fullname': self.fullname,
'is_new_def': self.is_new_def,
'is_inferred_def': self.is_inferred_def,
'name': self.name,
}
@classmethod
def deserialize(cls, data: JsonDict) -> 'NameExpr':
assert data['.class'] == 'NameExpr'
ret = NameExpr(data['name'])
ret.kind = data['kind']
ret.node = None if data['node'] is None else SymbolNode.deserialize(data['node'])
ret.fullname = data['fullname']
ret.is_new_def = data['is_new_def']
ret.is_inferred_def = data['is_inferred_def']
return ret
class MemberExpr(RefExpr):
"""Member access expression x.y"""
expr = None # type: Expression
name = None # type: str
# The variable node related to a definition through 'self.x = <initializer>'.
# The nodes of other kinds of member expressions are resolved during type checking.
def_var = None # type: Optional[Var]
def __init__(self, expr: Expression, name: str) -> None:
self.expr = expr
self.name = name
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_member_expr(self)
# Kinds of arguments
# Positional argument
ARG_POS = 0 # type: int
# Positional, optional argument (functions only, not calls)
ARG_OPT = 1 # type: int
# *arg argument
ARG_STAR = 2 # type: int
# Keyword argument x=y in call, or keyword-only function arg
ARG_NAMED = 3 # type: int
# **arg argument
ARG_STAR2 = 4 # type: int
# In an argument list, keyword-only and also optional
ARG_NAMED_OPT = 5
class CallExpr(Expression):
"""Call expression.
This can also represent several special forms that are syntactically calls
such as cast(...) and None # type: ....
"""
callee = None # type: Expression
args = None # type: List[Expression]
arg_kinds = None # type: List[int] # ARG_ constants
# Each name can be None if not a keyword argument.
arg_names = None # type: List[Optional[str]]
# If not None, the node that represents the meaning of the CallExpr. For
# cast(...) this is a CastExpr.
analyzed = None # type: Optional[Expression]
def __init__(self,
callee: Expression,
args: List[Expression],
arg_kinds: List[int],
arg_names: List[Optional[str]],
analyzed: Optional[Expression] = None) -> None:
if not arg_names:
arg_names = [None] * len(args)
self.callee = callee
self.args = args
self.arg_kinds = arg_kinds
self.arg_names = arg_names
self.analyzed = analyzed
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_call_expr(self)
class YieldFromExpr(Expression):
expr = None # type: Expression
def __init__(self, expr: Expression) -> None:
self.expr = expr
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_yield_from_expr(self)
class YieldExpr(Expression):
expr = None # type: Optional[Expression]
def __init__(self, expr: Optional[Expression]) -> None:
self.expr = expr
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_yield_expr(self)
class IndexExpr(Expression):
"""Index expression x[y].
Also wraps type application such as List[int] as a special form.
"""
base = None # type: Expression
index = None # type: Expression
# Inferred __getitem__ method type
method_type = None # type: mypy.types.Type
# If not None, this is actually semantically a type application
# Class[type, ...] or a type alias initializer.
analyzed = None # type: Union[TypeApplication, TypeAliasExpr, None]
def __init__(self, base: Expression, index: Expression) -> None:
self.base = base
self.index = index
self.analyzed = None
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_index_expr(self)
class UnaryExpr(Expression):
"""Unary operation"""
op = ''
expr = None # type: Expression
# Inferred operator method type
method_type = None # type: Optional[mypy.types.Type]
def __init__(self, op: str, expr: Expression) -> None:
self.op = op
self.expr = expr
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_unary_expr(self)
# Map from binary operator id to related method name (in Python 3).
op_methods = {
'+': '__add__',
'-': '__sub__',
'*': '__mul__',
'/': '__truediv__',
'%': '__mod__',
'//': '__floordiv__',
'**': '__pow__',
'@': '__matmul__',
'&': '__and__',
'|': '__or__',
'^': '__xor__',
'<<': '__lshift__',
'>>': '__rshift__',
'==': '__eq__',
'!=': '__ne__',
'<': '__lt__',
'>=': '__ge__',
'>': '__gt__',
'<=': '__le__',
'in': '__contains__',
} # type: Dict[str, str]
comparison_fallback_method = '__cmp__'
ops_falling_back_to_cmp = {'__ne__', '__eq__',
'__lt__', '__le__',
'__gt__', '__ge__'}
ops_with_inplace_method = {
'+', '-', '*', '/', '%', '//', '**', '@', '&', '|', '^', '<<', '>>'}
inplace_operator_methods = set(
'__i' + op_methods[op][2:] for op in ops_with_inplace_method)
reverse_op_methods = {
'__add__': '__radd__',
'__sub__': '__rsub__',
'__mul__': '__rmul__',
'__truediv__': '__rtruediv__',
'__mod__': '__rmod__',
'__floordiv__': '__rfloordiv__',
'__pow__': '__rpow__',
'__matmul__': '__rmatmul__',
'__and__': '__rand__',
'__or__': '__ror__',
'__xor__': '__rxor__',
'__lshift__': '__rlshift__',
'__rshift__': '__rrshift__',
'__eq__': '__eq__',
'__ne__': '__ne__',
'__lt__': '__gt__',
'__ge__': '__le__',
'__gt__': '__lt__',
'__le__': '__ge__',
}
normal_from_reverse_op = dict((m, n) for n, m in reverse_op_methods.items())
reverse_op_method_set = set(reverse_op_methods.values())
unary_op_methods = {
'-': '__neg__',
'+': '__pos__',
'~': '__invert__',
}
class OpExpr(Expression):
"""Binary operation (other than . or [] or comparison operators,
which have specific nodes)."""
op = ''
left = None # type: Expression
right = None # type: Expression
# Inferred type for the operator method type (when relevant).
method_type = None # type: Optional[mypy.types.Type]
# Is the right side going to be evaluated every time?
right_always = False
# Is the right side unreachable?
right_unreachable = False
def __init__(self, op: str, left: Expression, right: Expression) -> None:
self.op = op
self.left = left
self.right = right
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_op_expr(self)
class ComparisonExpr(Expression):
"""Comparison expression (e.g. a < b > c < d)."""
operators = None # type: List[str]
operands = None # type: List[Expression]
# Inferred type for the operator methods (when relevant; None for 'is').
method_types = None # type: List[Optional[mypy.types.Type]]
def __init__(self, operators: List[str], operands: List[Expression]) -> None:
self.operators = operators
self.operands = operands
self.method_types = []
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_comparison_expr(self)
class SliceExpr(Expression):
"""Slice expression (e.g. 'x:y', 'x:', '::2' or ':').
This is only valid as index in index expressions.
"""
begin_index = None # type: Optional[Expression]
end_index = None # type: Optional[Expression]
stride = None # type: Optional[Expression]
def __init__(self, begin_index: Optional[Expression],
end_index: Optional[Expression],
stride: Optional[Expression]) -> None:
self.begin_index = begin_index
self.end_index = end_index
self.stride = stride
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_slice_expr(self)
class CastExpr(Expression):
"""Cast expression cast(type, expr)."""
expr = None # type: Expression
type = None # type: mypy.types.Type
def __init__(self, expr: Expression, typ: 'mypy.types.Type') -> None:
self.expr = expr
self.type = typ
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_cast_expr(self)
class RevealTypeExpr(Expression):
"""Reveal type expression reveal_type(expr)."""
expr = None # type: Expression
def __init__(self, expr: Expression) -> None:
self.expr = expr
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_reveal_type_expr(self)
class SuperExpr(Expression):
"""Expression super().name"""
name = ''
info = None # type: TypeInfo # Type that contains this super expression
call = None # type: CallExpr # The expression super(...)
def __init__(self, name: str, call: CallExpr) -> None:
self.name = name
self.call = call
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_super_expr(self)
class LambdaExpr(FuncItem, Expression):
"""Lambda expression"""
def name(self) -> str:
return '<lambda>'
def expr(self) -> Expression:
"""Return the expression (the body) of the lambda."""
ret = cast(ReturnStmt, self.body.body[-1])
expr = ret.expr
assert expr is not None # lambda can't have empty body
return expr
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_lambda_expr(self)
def is_dynamic(self) -> bool:
return False
class ListExpr(Expression):
"""List literal expression [...]."""
items = None # type: List[Expression]
def __init__(self, items: List[Expression]) -> None:
self.items = items
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_list_expr(self)
class DictExpr(Expression):
"""Dictionary literal expression {key: value, ...}."""
items = None # type: List[Tuple[Expression, Expression]]
def __init__(self, items: List[Tuple[Expression, Expression]]) -> None:
self.items = items
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_dict_expr(self)
class TupleExpr(Expression):
"""Tuple literal expression (..., ...)"""
items = None # type: List[Expression]
def __init__(self, items: List[Expression]) -> None:
self.items = items
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_tuple_expr(self)
class SetExpr(Expression):
"""Set literal expression {value, ...}."""
items = None # type: List[Expression]
def __init__(self, items: List[Expression]) -> None:
self.items = items
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_set_expr(self)
class GeneratorExpr(Expression):
"""Generator expression ... for ... in ... [ for ... in ... ] [ if ... ]."""
left_expr = None # type: Expression
sequences = None # type: List[Expression]
condlists = None # type: List[List[Expression]]
is_async = None # type: List[bool]
indices = None # type: List[Lvalue]
def __init__(self, left_expr: Expression, indices: List[Lvalue],
sequences: List[Expression], condlists: List[List[Expression]],
is_async: List[bool]) -> None:
self.left_expr = left_expr
self.sequences = sequences
self.condlists = condlists
self.indices = indices
self.is_async = is_async
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_generator_expr(self)
class ListComprehension(Expression):
"""List comprehension (e.g. [x + 1 for x in a])"""
generator = None # type: GeneratorExpr
def __init__(self, generator: GeneratorExpr) -> None:
self.generator = generator
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_list_comprehension(self)
class SetComprehension(Expression):
"""Set comprehension (e.g. {x + 1 for x in a})"""
generator = None # type: GeneratorExpr
def __init__(self, generator: GeneratorExpr) -> None:
self.generator = generator
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_set_comprehension(self)
class DictionaryComprehension(Expression):
"""Dictionary comprehension (e.g. {k: v for k, v in a}"""
key = None # type: Expression
value = None # type: Expression
sequences = None # type: List[Expression]
condlists = None # type: List[List[Expression]]
is_async = None # type: List[bool]
indices = None # type: List[Lvalue]
def __init__(self, key: Expression, value: Expression, indices: List[Lvalue],
sequences: List[Expression], condlists: List[List[Expression]],
is_async: List[bool]) -> None:
self.key = key
self.value = value
self.sequences = sequences
self.condlists = condlists
self.indices = indices
self.is_async = is_async
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_dictionary_comprehension(self)
class ConditionalExpr(Expression):
"""Conditional expression (e.g. x if y else z)"""
cond = None # type: Expression
if_expr = None # type: Expression
else_expr = None # type: Expression
def __init__(self, cond: Expression, if_expr: Expression, else_expr: Expression) -> None:
self.cond = cond
self.if_expr = if_expr
self.else_expr = else_expr
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_conditional_expr(self)
class BackquoteExpr(Expression):
"""Python 2 expression `...`."""
expr = None # type: Expression
def __init__(self, expr: Expression) -> None:
self.expr = expr
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_backquote_expr(self)
class TypeApplication(Expression):
"""Type application expr[type, ...]"""
expr = None # type: Expression
types = None # type: List[mypy.types.Type]
def __init__(self, expr: Expression, types: List['mypy.types.Type']) -> None:
self.expr = expr
self.types = types
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_type_application(self)
# Variance of a type variable. For example, T in the definition of
# List[T] is invariant, so List[int] is not a subtype of List[object],
# and also List[object] is not a subtype of List[int].
#
# The T in Iterable[T] is covariant, so Iterable[int] is a subtype of
# Iterable[object], but not vice versa.
#
# If T is contravariant in Foo[T], Foo[object] is a subtype of
# Foo[int], but not vice versa.
INVARIANT = 0 # type: int
COVARIANT = 1 # type: int
CONTRAVARIANT = 2 # type: int
class TypeVarExpr(SymbolNode, Expression):
"""Type variable expression TypeVar(...)."""
_name = ''
_fullname = ''
# Value restriction: only types in the list are valid as values. If the
# list is empty, there is no restriction.
values = None # type: List[mypy.types.Type]
# Upper bound: only subtypes of upper_bound are valid as values. By default
# this is 'object', meaning no restriction.
upper_bound = None # type: mypy.types.Type
# Variance of the type variable. Invariant is the default.
# TypeVar(..., covariant=True) defines a covariant type variable.
# TypeVar(..., contravariant=True) defines a contravariant type
# variable.
variance = INVARIANT
def __init__(self, name: str, fullname: str,
values: List['mypy.types.Type'],
upper_bound: 'mypy.types.Type',
variance: int=INVARIANT) -> None:
self._name = name
self._fullname = fullname
self.values = values
self.upper_bound = upper_bound
self.variance = variance
def name(self) -> str:
return self._name
def fullname(self) -> str:
return self._fullname
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_type_var_expr(self)
def serialize(self) -> JsonDict:
return {'.class': 'TypeVarExpr',
'name': self._name,
'fullname': self._fullname,
'values': [t.serialize() for t in self.values],
'upper_bound': self.upper_bound.serialize(),
'variance': self.variance,
}
@classmethod
def deserialize(cls, data: JsonDict) -> 'TypeVarExpr':
assert data['.class'] == 'TypeVarExpr'
return TypeVarExpr(data['name'],
data['fullname'],
[mypy.types.deserialize_type(v) for v in data['values']],
mypy.types.deserialize_type(data['upper_bound']),
data['variance'])
class TypeAliasExpr(Expression):
"""Type alias expression (rvalue)."""
type = None # type: mypy.types.Type
# Simple fallback type for aliases that are invalid in runtime expressions
# (for example Union, Tuple, Callable).
fallback = None # type: mypy.types.Type
# This type alias is subscripted in a runtime expression like Alias[int](42)
# (not in a type context like type annotation or base class).
in_runtime = False # type: bool
def __init__(self, type: 'mypy.types.Type', tvars: List[str],
fallback: 'mypy.types.Type', in_runtime: bool = False) -> None:
self.type = type
self.fallback = fallback
self.in_runtime = in_runtime
self.tvars = tvars
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_type_alias_expr(self)
class NamedTupleExpr(Expression):
"""Named tuple expression namedtuple(...) or NamedTuple(...)."""
# The class representation of this named tuple (its tuple_type attribute contains
# the tuple item types)
info = None # type: TypeInfo
def __init__(self, info: 'TypeInfo') -> None:
self.info = info
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_namedtuple_expr(self)
class TypedDictExpr(Expression):
"""Typed dict expression TypedDict(...)."""
# The class representation of this typed dict
info = None # type: TypeInfo
def __init__(self, info: 'TypeInfo') -> None:
self.info = info
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_typeddict_expr(self)
class EnumCallExpr(Expression):
"""Named tuple expression Enum('name', 'val1 val2 ...')."""
# The class representation of this enumerated type
info = None # type: TypeInfo
# The item names (for debugging)
items = None # type: List[str]
values = None # type: List[Optional[Expression]]
def __init__(self, info: 'TypeInfo', items: List[str],
values: List[Optional[Expression]]) -> None:
self.info = info
self.items = items
self.values = values
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_enum_call_expr(self)
class PromoteExpr(Expression):
"""Ducktype class decorator expression _promote(...)."""
type = None # type: mypy.types.Type
def __init__(self, type: 'mypy.types.Type') -> None:
self.type = type
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit__promote_expr(self)
class NewTypeExpr(Expression):
"""NewType expression NewType(...)."""
name = None # type: str
# The base type (the second argument to NewType)
old_type = None # type: Optional[mypy.types.Type]
# The synthesized class representing the new type (inherits old_type)
info = None # type: Optional[TypeInfo]
def __init__(self, name: str, old_type: 'Optional[mypy.types.Type]', line: int) -> None:
self.name = name
self.old_type = old_type
self.line = line
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_newtype_expr(self)
class AwaitExpr(Expression):
"""Await expression (await ...)."""
expr = None # type: Expression
def __init__(self, expr: Expression) -> None:
self.expr = expr
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_await_expr(self)
# Constants
class TempNode(Expression):
"""Temporary dummy node used during type checking.
This node is not present in the original program; it is just an artifact
of the type checker implementation. It only represents an opaque node with
some fixed type.
"""
type = None # type: mypy.types.Type
# Is this TempNode used to indicate absence of a right hand side in an annotated assignment?
# (e.g. for 'x: int' the rvalue is TempNode(AnyType(TypeOfAny.special_form), no_rhs=True))
no_rhs = False # type: bool
def __init__(self, typ: 'mypy.types.Type', no_rhs: bool = False) -> None:
self.type = typ
self.no_rhs = no_rhs
def __repr__(self) -> str:
return 'TempNode(%s)' % str(self.type)
def accept(self, visitor: ExpressionVisitor[T]) -> T:
return visitor.visit_temp_node(self)
class TypeInfo(SymbolNode):
"""The type structure of a single class.
Each TypeInfo corresponds one-to-one to a ClassDef, which
represents the AST of the class.
In type-theory terms, this is a "type constructor", and if the
class is generic then it will be a type constructor of higher kind.
Where the class is used in an actual type, it's in the form of an
Instance, which amounts to a type application of the tycon to
the appropriate number of arguments.
"""
_fullname = None # type: str # Fully qualified name
# Fully qualified name for the module this type was defined in. This
# information is also in the fullname, but is harder to extract in the
# case of nested class definitions.
module_name = None # type: str
defn = None # type: ClassDef # Corresponding ClassDef
# Method Resolution Order: the order of looking up attributes. The first
# value always to refers to this class.
mro = None # type: List[TypeInfo]
declared_metaclass = None # type: Optional[mypy.types.Instance]
metaclass_type = None # type: Optional[mypy.types.Instance]
names = None # type: SymbolTable # Names defined directly in this type
is_abstract = False # Does the class have any abstract attributes?
is_protocol = False # Is this a protocol class?
runtime_protocol = False # Does this protocol support isinstance checks?
abstract_attributes = None # type: List[str]
# Protocol members are names of all attributes/methods defined in a protocol
# and in all its supertypes (except for 'object').
protocol_members = None # type: List[str]
# The attributes 'assuming' and 'assuming_proper' represent structural subtype matrices.
#
# In languages with structural subtyping, one can keep a global subtype matrix like this:
# . A B C .
# A 1 0 0
# B 1 1 1
# C 1 0 1
# .
# where 1 indicates that the type in corresponding row is a subtype of the type
# in corresponding column. This matrix typically starts filled with all 1's and
# a typechecker tries to "disprove" every subtyping relation using atomic (or nominal) types.
# However, we don't want to keep this huge global state. Instead, we keep the subtype
# information in the form of list of pairs (subtype, supertype) shared by all 'Instance's
# with given supertype's TypeInfo. When we enter a subtype check we push a pair in this list
# thus assuming that we started with 1 in corresponding matrix element. Such algorithm allows
# to treat recursive and mutually recursive protocols and other kinds of complex situations.
#
# If concurrent/parallel type checking will be added in future,
# then there should be one matrix per thread/process to avoid false negatives
# during the type checking phase.
assuming = None # type: List[Tuple[mypy.types.Instance, mypy.types.Instance]]
assuming_proper = None # type: List[Tuple[mypy.types.Instance, mypy.types.Instance]]
# Ditto for temporary 'inferring' stack of recursive constraint inference.
# It contains Instance's of protocol types that appeared as an argument to
# constraints.infer_constraints(). We need 'inferring' to avoid infinite recursion for
# recursive and mutually recursive protocols.
#
# We make 'assuming' and 'inferring' attributes here instead of passing they as kwargs,
# since this would require to pass them in many dozens of calls. In particular,
# there is a dependency infer_constraint -> is_subtype -> is_callable_subtype ->
# -> infer_constraints.
inferring = None # type: List[mypy.types.Instance]
# '_cache' and '_cache_proper' are subtype caches, implemented as sets of pairs
# of (subtype, supertype), where supertypes are instances of given TypeInfo.
# We need the caches, since subtype checks for structural types are very slow.
_cache = None # type: Set[Tuple[mypy.types.Type, mypy.types.Type]]
_cache_proper = None # type: Set[Tuple[mypy.types.Type, mypy.types.Type]]
# 'inferring' and 'assuming' can't be also made sets, since we need to use
# is_same_type to correctly treat unions.
# Classes inheriting from Enum shadow their true members with a __getattr__, so we
# have to treat them as a special case.
is_enum = False
# If true, any unknown attributes should have type 'Any' instead
# of generating a type error. This would be true if there is a
# base class with type 'Any', but other use cases may be
# possible. This is similar to having __getattr__ that returns Any
# (and __setattr__), but without the __getattr__ method.
fallback_to_any = False
# Information related to type annotations.
# Generic type variable names (full names)
type_vars = None # type: List[str]
# Direct base classes.
bases = None # type: List[mypy.types.Instance]
# Another type which this type will be treated as a subtype of,
# even though it's not a subclass in Python. The non-standard
# `@_promote` decorator introduces this, and there are also
# several builtin examples, in particular `int` -> `float`.
_promote = None # type: Optional[mypy.types.Type]
# Representation of a Tuple[...] base class, if the class has any
# (e.g., for named tuples). If this is not None, the actual Type
# object used for this class is not an Instance but a TupleType;
# the corresponding Instance is set as the fallback type of the
# tuple type.
tuple_type = None # type: Optional[mypy.types.TupleType]
# Is this a named tuple type?
is_named_tuple = False
# If this class is defined by the TypedDict type constructor,
# then this is not None.
typeddict_type = None # type: Optional[mypy.types.TypedDictType]
# Is this a newtype type?
is_newtype = False
# If during analysis of ClassDef associated with this TypeInfo a syntethic
# type (NamedTuple or TypedDict) was generated, store the corresponding
# TypeInfo here. (This attribute does not need to be serialized, it is only
# needed during the semantic passes.)
replaced = None # type: TypeInfo
FLAGS = [
'is_abstract', 'is_enum', 'fallback_to_any', 'is_named_tuple',
'is_newtype', 'is_protocol', 'runtime_protocol'
]
def __init__(self, names: 'SymbolTable', defn: ClassDef, module_name: str) -> None:
"""Initialize a TypeInfo."""
self.names = names
self.defn = defn
self.module_name = module_name
self.type_vars = []
self.bases = []
# Leave self.mro uninitialized until we compute it for real,
# so we don't accidentally try to use it prematurely.
self._fullname = defn.fullname
self.is_abstract = False
self.abstract_attributes = []
self.assuming = []
self.assuming_proper = []
self.inferring = []
self._cache = set()
self._cache_proper = set()
self.add_type_vars()
def add_type_vars(self) -> None:
if self.defn.type_vars:
for vd in self.defn.type_vars:
self.type_vars.append(vd.fullname)
def name(self) -> str:
"""Short name."""
return self.defn.name
def fullname(self) -> str:
return self._fullname
def is_generic(self) -> bool:
"""Is the type generic (i.e. does it have type variables)?"""
return len(self.type_vars) > 0
def get(self, name: str) -> 'Optional[SymbolTableNode]':
if self.mro is None: # Might be because of a previous error.
return None
for cls in self.mro:
n = cls.names.get(name)
if n:
return n
return None
def get_containing_type_info(self, name: str) -> 'Optional[TypeInfo]':
for cls in self.mro:
if name in cls.names:
return cls
return None
def record_subtype_cache_entry(self, left: 'mypy.types.Instance',
right: 'mypy.types.Instance',
proper_subtype: bool = False) -> None:
if proper_subtype:
self._cache_proper.add((left, right))
else:
self._cache.add((left, right))
def is_cached_subtype_check(self, left: 'mypy.types.Instance',
right: 'mypy.types.Instance',
proper_subtype: bool = False) -> bool:
if not proper_subtype:
return (left, right) in self._cache
return (left, right) in self._cache_proper
def __getitem__(self, name: str) -> 'SymbolTableNode':
n = self.get(name)
if n:
return n
else:
raise KeyError(name)
def __repr__(self) -> str:
return '<TypeInfo %s>' % self.fullname()
# IDEA: Refactor the has* methods to be more consistent and document
# them.
def has_readable_member(self, name: str) -> bool:
return self.get(name) is not None
def has_method(self, name: str) -> bool:
return self.get_method(name) is not None
def get_method(self, name: str) -> Optional[FuncBase]:
if self.mro is None: # Might be because of a previous error.
return None
for cls in self.mro:
if name in cls.names:
node = cls.names[name].node
if isinstance(node, FuncBase):
return node
else:
return None
return None
def calculate_mro(self) -> None:
"""Calculate and set mro (method resolution order).
Raise MroError if cannot determine mro.
"""
mro = linearize_hierarchy(self)
assert mro, "Could not produce a MRO at all for %s" % (self,)
self.mro = mro
self.is_enum = self._calculate_is_enum()
def calculate_metaclass_type(self) -> 'Optional[mypy.types.Instance]':
declared = self.declared_metaclass
if declared is not None and not declared.type.has_base('builtins.type'):
return declared
if self._fullname == 'builtins.type':
return mypy.types.Instance(self, [])
candidates = [s.declared_metaclass
for s in self.mro
if s.declared_metaclass is not None
and s.declared_metaclass.type is not None]
for c in candidates:
if c.type.mro is None:
continue
if all(other.type in c.type.mro for other in candidates):
return c
return None
def is_metaclass(self) -> bool:
return (self.has_base('builtins.type') or self.fullname() == 'abc.ABCMeta' or
self.fallback_to_any)
def _calculate_is_enum(self) -> bool:
"""
If this is "enum.Enum" itself, then yes, it's an enum.
If the flag .is_enum has been set on anything in the MRO, it's an enum.
"""
if self.fullname() == ENUM_BASECLASS:
return True
if self.mro:
return any(type_info.is_enum for type_info in self.mro)
return False
def has_base(self, fullname: str) -> bool:
"""Return True if type has a base type with the specified name.
This can be either via extension or via implementation.
"""
if self.mro:
for cls in self.mro:
if cls.fullname() == fullname:
return True
return False
def direct_base_classes(self) -> 'List[TypeInfo]':
"""Return a direct base classes.
Omit base classes of other base classes.
"""
return [base.type for base in self.bases]
def __str__(self) -> str:
"""Return a string representation of the type.
This includes the most important information about the type.
"""
return self.dump()
def dump(self,
str_conv: 'Optional[mypy.strconv.StrConv]' = None,
type_str_conv: 'Optional[mypy.types.TypeStrVisitor]' = None) -> str:
"""Return a string dump of the contents of the TypeInfo."""
if not str_conv:
str_conv = mypy.strconv.StrConv()
base = '' # type: str
def type_str(typ: 'mypy.types.Type') -> str:
if type_str_conv:
return typ.accept(type_str_conv)
return str(typ)
head = 'TypeInfo' + str_conv.format_id(self)
if self.bases:
base = 'Bases({})'.format(', '.join(type_str(base)
for base in self.bases))
mro = 'Mro({})'.format(', '.join(item.fullname() + str_conv.format_id(item)
for item in self.mro))
names = []
for name in sorted(self.names):
description = name + str_conv.format_id(self.names[name].node)
node = self.names[name].node
if isinstance(node, Var) and node.type:
description += ' ({})'.format(type_str(node.type))
names.append(description)
return mypy.strconv.dump_tagged(
['Name({})'.format(self.fullname()),
base,
mro,
('Names', names)],
head,
str_conv=str_conv)
def serialize(self) -> JsonDict:
# NOTE: This is where all ClassDefs originate, so there shouldn't be duplicates.
data = {'.class': 'TypeInfo',
'module_name': self.module_name,
'fullname': self.fullname(),
'names': self.names.serialize(self.fullname()),
'defn': self.defn.serialize(),
'abstract_attributes': self.abstract_attributes,
'protocol_members': self.protocol_members,
'type_vars': self.type_vars,
'bases': [b.serialize() for b in self.bases],
'_promote': None if self._promote is None else self._promote.serialize(),
'declared_metaclass': (None if self.declared_metaclass is None
else self.declared_metaclass.serialize()),
'metaclass_type':
None if self.metaclass_type is None else self.metaclass_type.serialize(),
'tuple_type': None if self.tuple_type is None else self.tuple_type.serialize(),
'typeddict_type':
None if self.typeddict_type is None else self.typeddict_type.serialize(),
'flags': get_flags(self, TypeInfo.FLAGS),
}
return data
@classmethod
def deserialize(cls, data: JsonDict) -> 'TypeInfo':
names = SymbolTable.deserialize(data['names'])
defn = ClassDef.deserialize(data['defn'])
module_name = data['module_name']
ti = TypeInfo(names, defn, module_name)
ti._fullname = data['fullname']
# TODO: Is there a reason to reconstruct ti.subtypes?
ti.abstract_attributes = data['abstract_attributes']
ti.protocol_members = data['protocol_members']
ti.type_vars = data['type_vars']
ti.bases = [mypy.types.Instance.deserialize(b) for b in data['bases']]
ti._promote = (None if data['_promote'] is None
else mypy.types.deserialize_type(data['_promote']))
ti.declared_metaclass = (None if data['declared_metaclass'] is None
else mypy.types.Instance.deserialize(data['declared_metaclass']))
ti.metaclass_type = (None if data['metaclass_type'] is None
else mypy.types.Instance.deserialize(data['metaclass_type']))
# NOTE: ti.mro will be set in the fixup phase.
ti.tuple_type = (None if data['tuple_type'] is None
else mypy.types.TupleType.deserialize(data['tuple_type']))
ti.typeddict_type = (None if data['typeddict_type'] is None
else mypy.types.TypedDictType.deserialize(data['typeddict_type']))
set_flags(ti, data['flags'])
return ti
class FakeInfo(TypeInfo):
# types.py defines a single instance of this class, called types.NOT_READY.
# This instance is used as a temporary placeholder in the process of de-serialization
# of 'Instance' types. The de-serialization happens in two steps: In the first step,
# Instance.type is set to NOT_READY. In the second step (in fixup.py) it is replaced by
# an actual TypeInfo. If you see the assertion error below, then most probably something
# went wrong during the second step and an 'Instance' that raised this error was not fixed.
# Note:
# 'None' is not used as a dummy value for two reasons:
# 1. This will require around 80-100 asserts to make 'mypy --strict-optional mypy'
# pass cleanly.
# 2. If NOT_READY value is accidentally used somewhere, it will be obvious where the value
# is from, whereas a 'None' value could come from anywhere.
def __init__(self, *args: Any, **kwargs: Any) -> None:
pass
def __getattribute__(self, attr: str) -> None:
raise AssertionError('De-serialization failure: TypeInfo not fixed')
class SymbolTableNode:
"""Description of a name binding in a symbol table.
These are only used as values in module (global), function (local)
and class symbol tables (see SymbolTable). The name that is bound is
the key in SymbolTable.
Symbol tables don't contain direct references to AST nodes primarily
because there can be multiple symbol table references to a single
AST node (due to imports and aliases), and different references can
behave differently. This class describes the unique properties of
each reference.
The most fundamental attributes are 'kind' and 'node'. The 'node'
attribute defines the AST node that the name refers to.
For many bindings, including those targeting variables, functions
and classes, the kind is one of LDEF, GDEF or MDEF, depending on the
scope of the definition. These three kinds can usually be used
interchangeably and the difference between local, global and class
scopes is mostly descriptive, with no semantic significance.
However, some tools that consume mypy ASTs may care about these so
they should be correct.
A few definitions get special kinds, including type variables (TVAR),
imported modules and module aliases (MODULE_REF), and type aliases
(TYPE_ALIAS).
Type aliases are very special and have additional attributes that
are only used for them ('type_override', 'alias_tvars' at least).
"""
# TODO: This is a mess. Refactor!
# TODO: Describe how type aliases work.
# Kind of node. Possible values:
# - LDEF: local definition
# - GDEF: global (module-level) definition
# - MDEF: class member definition
# - TVAR: TypeVar(...) definition in any scope
# - MODULE_REF: reference to a module
# - TYPE_ALIAS: type alias
# - UNBOUND_IMPORTED: temporary kind for imported names (we don't know the final kind yet)
kind = None # type: int
# AST node of definition (among others, this can be FuncDef/Var/TypeInfo/TypeVarExpr/MypyFile,
# or None for a bound type variable).
node = None # type: Optional[SymbolNode]
# If this not None, override the type of the 'node' attribute. This is only used for
# type aliases.
type_override = None # type: Optional[mypy.types.Type]
# For generic aliases this stores the (qualified) names of type variables.
# (For example see testGenericAliasWithTypeVarsFromDifferentModules.)
alias_tvars = None # type: Optional[List[str]]
# If False, this name won't be imported via 'from <module> import *'.
# This has no effect on names within classes.
module_public = True
# If True, the name will be never exported (needed for stub files)
module_hidden = False
# For deserialized MODULE_REF nodes, the referenced module name;
# for other nodes, optionally the name of the referenced object.
cross_ref = None # type: Optional[str]
# Used to distinguish between 'typing.List' and 'builtins.list'. This is
# True when the former has been normalized to the latter, and it allow us
# to reject 'list[str]' and similar.
normalized = False # type: bool
# Was this defined by assignment to self attribute?
implicit = False # type: bool
def __init__(self,
kind: int,
node: Optional[SymbolNode],
typ: 'Optional[mypy.types.Type]' = None,
module_public: bool = True,
normalized: bool = False,
alias_tvars: Optional[List[str]] = None,
implicit: bool = False,
module_hidden: bool = False) -> None:
self.kind = kind
self.node = node
self.type_override = typ
self.module_hidden = module_hidden
self.module_public = module_public
self.normalized = normalized
self.alias_tvars = alias_tvars
self.implicit = implicit
@property
def fullname(self) -> Optional[str]:
if self.node is not None:
return self.node.fullname()
else:
return None
@property
def type(self) -> 'Optional[mypy.types.Type]':
# IDEA: Get rid of the Any type.
node = self.node # type: Any
if self.type_override is not None:
return self.type_override
elif ((isinstance(node, Var) or isinstance(node, FuncDef))
and node.type is not None):
return node.type
elif isinstance(node, Decorator):
return node.var.type
else:
return None
def __str__(self) -> str:
s = '{}/{}'.format(node_kinds[self.kind], short_type(self.node))
if isinstance(self.node, SymbolNode):
s += ' ({})'.format(self.node.fullname())
# Include declared type of variables and functions.
if self.type is not None:
s += ' : {}'.format(self.type)
return s
def serialize(self, prefix: str, name: str) -> JsonDict:
"""Serialize a SymbolTableNode.
Args:
prefix: full name of the containing module or class; or None
name: name of this object relative to the containing object
"""
data = {'.class': 'SymbolTableNode',
'kind': node_kinds[self.kind],
} # type: JsonDict
if self.module_hidden:
data['module_hidden'] = True
if not self.module_public:
data['module_public'] = False
if self.normalized:
data['normalized'] = True
if self.implicit:
data['implicit'] = True
if self.kind == MODULE_REF:
assert self.node is not None, "Missing module cross ref in %s for %s" % (prefix, name)
data['cross_ref'] = self.node.fullname()
else:
if self.node is not None:
if prefix is not None:
fullname = self.node.fullname()
if (fullname is not None and '.' in fullname and
fullname != prefix + '.' + name):
data['cross_ref'] = fullname
return data
data['node'] = self.node.serialize()
if self.type_override is not None:
data['type_override'] = self.type_override.serialize()
data['alias_tvars'] = self.alias_tvars
return data
@classmethod
def deserialize(cls, data: JsonDict) -> 'SymbolTableNode':
assert data['.class'] == 'SymbolTableNode'
kind = inverse_node_kinds[data['kind']]
if 'cross_ref' in data:
# This will be fixed up later.
stnode = SymbolTableNode(kind, None)
stnode.cross_ref = data['cross_ref']
else:
node = None
if 'node' in data:
node = SymbolNode.deserialize(data['node'])
typ = None
if 'type_override' in data:
typ = mypy.types.deserialize_type(data['type_override'])
stnode = SymbolTableNode(kind, node, typ=typ)
if 'alias_tvars' in data:
stnode.alias_tvars = data['alias_tvars']
if 'module_hidden' in data:
stnode.module_hidden = data['module_hidden']
if 'module_public' in data:
stnode.module_public = data['module_public']
if 'normalized' in data:
stnode.normalized = data['normalized']
if 'implicit' in data:
stnode.implicit = data['implicit']
return stnode
class SymbolTable(Dict[str, SymbolTableNode]):
def __str__(self) -> str:
a = [] # type: List[str]
for key, value in self.items():
# Filter out the implicit import of builtins.
if isinstance(value, SymbolTableNode):
if (value.fullname != 'builtins' and
(value.fullname or '').split('.')[-1] not in
implicit_module_attrs):
a.append(' ' + str(key) + ' : ' + str(value))
else:
a.append(' <invalid item>')
a = sorted(a)
a.insert(0, 'SymbolTable(')
a[-1] += ')'
return '\n'.join(a)
def serialize(self, fullname: str) -> JsonDict:
data = {'.class': 'SymbolTable'} # type: JsonDict
for key, value in self.items():
# Skip __builtins__: it's a reference to the builtins
# module that gets added to every module by
# SemanticAnalyzerPass2.visit_file(), but it shouldn't be
# accessed by users of the module.
if key == '__builtins__':
continue
data[key] = value.serialize(fullname, key)
return data
@classmethod
def deserialize(cls, data: JsonDict) -> 'SymbolTable':
assert data['.class'] == 'SymbolTable'
st = SymbolTable()
for key, value in data.items():
if key != '.class':
st[key] = SymbolTableNode.deserialize(value)
return st
class MroError(Exception):
"""Raised if a consistent mro cannot be determined for a class."""
def linearize_hierarchy(info: TypeInfo) -> List[TypeInfo]:
# TODO describe
if info.mro:
return info.mro
bases = info.direct_base_classes()
lin_bases = []
for base in bases:
assert base is not None, "Cannot linearize bases for %s %s" % (info.fullname(), bases)
lin_bases.append(linearize_hierarchy(base))
lin_bases.append(bases)
return [info] + merge(lin_bases)
def merge(seqs: List[List[TypeInfo]]) -> List[TypeInfo]:
seqs = [s[:] for s in seqs]
result = [] # type: List[TypeInfo]
while True:
seqs = [s for s in seqs if s]
if not seqs:
return result
for seq in seqs:
head = seq[0]
if not [s for s in seqs if head in s[1:]]:
break
else:
raise MroError()
result.append(head)
for s in seqs:
if s[0] is head:
del s[0]
def get_flags(node: Node, names: List[str]) -> List[str]:
return [name for name in names if getattr(node, name)]
def set_flags(node: Node, flags: List[str]) -> None:
for name in flags:
setattr(node, name, True)
def get_member_expr_fullname(expr: MemberExpr) -> Optional[str]:
"""Return the qualified name representation of a member expression.
Return a string of form foo.bar, foo.bar.baz, or similar, or None if the
argument cannot be represented in this form.
"""
initial = None # type: Optional[str]
if isinstance(expr.expr, NameExpr):
initial = expr.expr.name
elif isinstance(expr.expr, MemberExpr):
initial = get_member_expr_fullname(expr.expr)
else:
return None
return '{}.{}'.format(initial, expr.name)
deserialize_map = {
key: obj.deserialize # type: ignore
for key, obj in globals().items()
if isinstance(obj, type) and issubclass(obj, SymbolNode) and obj is not SymbolNode
}
def check_arg_kinds(arg_kinds: List[int], nodes: List[T], fail: Callable[[str, T], None]) -> None:
is_var_arg = False
is_kw_arg = False
seen_named = False
seen_opt = False
for kind, node in zip(arg_kinds, nodes):
if kind == ARG_POS:
if is_var_arg or is_kw_arg or seen_named or seen_opt:
fail("Required positional args may not appear "
"after default, named or var args",
node)
break
elif kind == ARG_OPT:
if is_var_arg or is_kw_arg or seen_named:
fail("Positional default args may not appear after named or var args", node)
break
seen_opt = True
elif kind == ARG_STAR:
if is_var_arg or is_kw_arg or seen_named:
fail("Var args may not appear after named or var args", node)
break
is_var_arg = True
elif kind == ARG_NAMED or kind == ARG_NAMED_OPT:
seen_named = True
if is_kw_arg:
fail("A **kwargs argument must be the last argument", node)
break
elif kind == ARG_STAR2:
if is_kw_arg:
fail("You may only have one **kwargs argument", node)
break
is_kw_arg = True
def check_arg_names(names: Sequence[Optional[str]], nodes: List[T], fail: Callable[[str, T], None],
description: str = 'function definition') -> None:
seen_names = set() # type: Set[Optional[str]]
for name, node in zip(names, nodes):
if name is not None and name in seen_names:
fail("Duplicate argument '{}' in {}".format(name, description), node)
break
seen_names.add(name)
|