/usr/lib/python3/dist-packages/mypy/semanal.py is in python3-mypy 0.560-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 | """The semantic analyzer passes 1 and 2.
Bind names to definitions and do various other simple consistency
checks. For example, consider this program:
x = 1
y = x
Here semantic analysis would detect that the assignment 'x = 1'
defines a new variable, the type of which is to be inferred (in a
later pass; type inference or type checking is not part of semantic
analysis). Also, it would bind both references to 'x' to the same
module-level variable (Var) node. The second assignment would also
be analyzed, and the type of 'y' marked as being inferred.
Semantic analysis is the first analysis pass after parsing, and it is
subdivided into three passes:
* SemanticAnalyzerPass1 is defined in mypy.semanal_pass1.
* SemanticAnalyzerPass2 is the second pass. It does the bulk of the work.
It assumes that dependent modules have been semantically analyzed,
up to the second pass, unless there is a import cycle.
* SemanticAnalyzerPass3 is the third pass. It's in mypy.semanal_pass3.
Semantic analysis of types is implemented in module mypy.typeanal.
TODO: Check if the third pass slows down type checking significantly.
We could probably get rid of it -- for example, we could collect all
analyzed types in a collection and check them without having to
traverse the entire AST.
"""
from collections import OrderedDict
from contextlib import contextmanager
from typing import (
List, Dict, Set, Tuple, cast, TypeVar, Union, Optional, Callable, Iterator, Iterable
)
from mypy.nodes import (
MypyFile, TypeInfo, Node, AssignmentStmt, FuncDef, OverloadedFuncDef,
ClassDef, Var, GDEF, MODULE_REF, FuncItem, Import, Expression, Lvalue,
ImportFrom, ImportAll, Block, LDEF, NameExpr, MemberExpr,
IndexExpr, TupleExpr, ListExpr, ExpressionStmt, ReturnStmt,
RaiseStmt, AssertStmt, OperatorAssignmentStmt, WhileStmt,
ForStmt, BreakStmt, ContinueStmt, IfStmt, TryStmt, WithStmt, DelStmt, PassStmt,
GlobalDecl, SuperExpr, DictExpr, CallExpr, RefExpr, OpExpr, UnaryExpr,
SliceExpr, CastExpr, RevealTypeExpr, TypeApplication, Context, SymbolTable,
SymbolTableNode, TVAR, ListComprehension, GeneratorExpr,
LambdaExpr, MDEF, FuncBase, Decorator, SetExpr, TypeVarExpr, NewTypeExpr,
StrExpr, BytesExpr, PrintStmt, ConditionalExpr, PromoteExpr,
ComparisonExpr, StarExpr, ARG_POS, ARG_NAMED, ARG_NAMED_OPT, MroError, type_aliases,
YieldFromExpr, NamedTupleExpr, TypedDictExpr, NonlocalDecl, SymbolNode,
SetComprehension, DictionaryComprehension, TYPE_ALIAS, TypeAliasExpr,
YieldExpr, ExecStmt, Argument, BackquoteExpr, ImportBase, AwaitExpr,
IntExpr, FloatExpr, UnicodeExpr, EllipsisExpr, TempNode, EnumCallExpr,
COVARIANT, CONTRAVARIANT, INVARIANT, UNBOUND_IMPORTED, LITERAL_YES, ARG_OPT, nongen_builtins,
collections_type_aliases, get_member_expr_fullname,
)
from mypy.literals import literal
from mypy.tvar_scope import TypeVarScope
from mypy.typevars import fill_typevars
from mypy.visitor import NodeVisitor
from mypy.traverser import TraverserVisitor
from mypy.errors import Errors, report_internal_error
from mypy.messages import CANNOT_ASSIGN_TO_TYPE, MessageBuilder
from mypy.types import (
FunctionLike, UnboundType, TypeVarDef, TypeType, TupleType, UnionType, StarType, function_type,
TypedDictType, NoneTyp, CallableType, Overloaded, Instance, Type, TypeVarType, AnyType,
TypeTranslator, TypeOfAny, TypeVisitor, UninhabitedType, ErasedType, DeletedType
)
from mypy.nodes import implicit_module_attrs
from mypy.typeanal import (
TypeAnalyser, analyze_type_alias, no_subscript_builtin_alias,
TypeVariableQuery, TypeVarList, remove_dups, has_any_from_unimported_type,
check_for_explicit_any
)
from mypy.exprtotype import expr_to_unanalyzed_type, TypeTranslationError
from mypy.sametypes import is_same_type
from mypy.options import Options
from mypy import experiments
from mypy.plugin import Plugin
from mypy import join
from mypy.util import get_prefix
T = TypeVar('T')
# Inferred truth value of an expression.
ALWAYS_TRUE = 1
MYPY_TRUE = 2 # True in mypy, False at runtime
ALWAYS_FALSE = 3
MYPY_FALSE = 4 # False in mypy, True at runtime
TRUTH_VALUE_UNKNOWN = 5
inverted_truth_mapping = {
ALWAYS_TRUE: ALWAYS_FALSE,
ALWAYS_FALSE: ALWAYS_TRUE,
TRUTH_VALUE_UNKNOWN: TRUTH_VALUE_UNKNOWN,
MYPY_TRUE: MYPY_FALSE,
MYPY_FALSE: MYPY_TRUE,
}
# Map from obsolete name to the current spelling.
obsolete_name_mapping = {
'typing.Function': 'typing.Callable',
'typing.typevar': 'typing.TypeVar',
}
# Hard coded type promotions (shared between all Python versions).
# These add extra ad-hoc edges to the subtyping relation. For example,
# int is considered a subtype of float, even though there is no
# subclass relationship.
TYPE_PROMOTIONS = {
'builtins.int': 'builtins.float',
'builtins.float': 'builtins.complex',
}
# Hard coded type promotions for Python 3.
#
# Note that the bytearray -> bytes promotion is a little unsafe
# as some functions only accept bytes objects. Here convenience
# trumps safety.
TYPE_PROMOTIONS_PYTHON3 = TYPE_PROMOTIONS.copy()
TYPE_PROMOTIONS_PYTHON3.update({
'builtins.bytearray': 'builtins.bytes',
})
# Hard coded type promotions for Python 2.
#
# These promotions are unsafe, but we are doing them anyway
# for convenience and also for Python 3 compatibility
# (bytearray -> str).
TYPE_PROMOTIONS_PYTHON2 = TYPE_PROMOTIONS.copy()
TYPE_PROMOTIONS_PYTHON2.update({
'builtins.str': 'builtins.unicode',
'builtins.bytearray': 'builtins.str',
})
# When analyzing a function, should we analyze the whole function in one go, or
# should we only perform one phase of the analysis? The latter is used for
# nested functions. In the first phase we add the function to the symbol table
# but don't process body. In the second phase we process function body. This
# way we can have mutually recursive nested functions.
FUNCTION_BOTH_PHASES = 0 # Everything in one go
FUNCTION_FIRST_PHASE_POSTPONE_SECOND = 1 # Add to symbol table but postpone body
FUNCTION_SECOND_PHASE = 2 # Only analyze body
# Matches "_prohibited" in typing.py, but adds __annotations__, which works at runtime but can't
# easily be supported in a static checker.
NAMEDTUPLE_PROHIBITED_NAMES = ('__new__', '__init__', '__slots__', '__getnewargs__',
'_fields', '_field_defaults', '_field_types',
'_make', '_replace', '_asdict', '_source',
'__annotations__')
# Map from the full name of a missing definition to the test fixture (under
# test-data/unit/fixtures/) that provides the definition. This is used for
# generating better error messages when running mypy tests only.
SUGGESTED_TEST_FIXTURES = {
'typing.List': 'list.pyi',
'typing.Dict': 'dict.pyi',
'typing.Set': 'set.pyi',
'builtins.bool': 'bool.pyi',
'builtins.Exception': 'exception.pyi',
'builtins.BaseException': 'exception.pyi',
'builtins.isinstance': 'isinstancelist.pyi',
'builtins.property': 'property.pyi',
'builtins.classmethod': 'classmethod.pyi',
}
class SemanticAnalyzerPass2(NodeVisitor[None]):
"""Semantically analyze parsed mypy files.
The analyzer binds names and does various consistency checks for a
parse tree. Note that type checking is performed as a separate
pass.
This is the second phase of semantic analysis.
"""
# Library search paths
lib_path = None # type: List[str]
# Module name space
modules = None # type: Dict[str, MypyFile]
# Global name space for current module
globals = None # type: SymbolTable
# Names declared using "global" (separate set for each scope)
global_decls = None # type: List[Set[str]]
# Names declated using "nonlocal" (separate set for each scope)
nonlocal_decls = None # type: List[Set[str]]
# Local names of function scopes; None for non-function scopes.
locals = None # type: List[Optional[SymbolTable]]
# Nested block depths of scopes
block_depth = None # type: List[int]
# TypeInfo of directly enclosing class (or None)
type = None # type: Optional[TypeInfo]
# Stack of outer classes (the second tuple item contains tvars).
type_stack = None # type: List[Optional[TypeInfo]]
# Type variables that are bound by the directly enclosing class
bound_tvars = None # type: List[SymbolTableNode]
# Type variables bound by the current scope, be it class or function
tvar_scope = None # type: TypeVarScope
# Per-module options
options = None # type: Options
# Stack of functions being analyzed
function_stack = None # type: List[FuncItem]
# Status of postponing analysis of nested function bodies. By using this we
# can have mutually recursive nested functions. Values are FUNCTION_x
# constants. Note that separate phasea are not used for methods.
postpone_nested_functions_stack = None # type: List[int]
# Postponed functions collected if
# postpone_nested_functions_stack[-1] == FUNCTION_FIRST_PHASE_POSTPONE_SECOND.
postponed_functions_stack = None # type: List[List[Node]]
loop_depth = 0 # Depth of breakable loops
cur_mod_id = '' # Current module id (or None) (phase 2)
is_stub_file = False # Are we analyzing a stub file?
is_typeshed_stub_file = False # Are we analyzing a typeshed stub file?
imports = None # type: Set[str] # Imported modules (during phase 2 analysis)
errors = None # type: Errors # Keeps track of generated errors
plugin = None # type: Plugin # Mypy plugin for special casing of library features
def __init__(self,
modules: Dict[str, MypyFile],
missing_modules: Set[str],
lib_path: List[str], errors: Errors,
plugin: Plugin) -> None:
"""Construct semantic analyzer.
Use lib_path to search for modules, and report analysis errors
using the Errors instance.
"""
self.locals = [None]
self.imports = set()
self.type = None
self.type_stack = []
self.tvar_scope = TypeVarScope()
self.function_stack = []
self.block_depth = [0]
self.loop_depth = 0
self.lib_path = lib_path
self.errors = errors
self.modules = modules
self.msg = MessageBuilder(errors, modules)
self.missing_modules = missing_modules
self.postpone_nested_functions_stack = [FUNCTION_BOTH_PHASES]
self.postponed_functions_stack = []
self.all_exports = set() # type: Set[str]
self.plugin = plugin
def visit_file(self, file_node: MypyFile, fnam: str, options: Options,
patches: List[Callable[[], None]]) -> None:
"""Run semantic analysis phase 2 over a file.
Add callbacks by mutating the patches list argument. They will be called
after all semantic analysis phases but before type checking.
"""
self.options = options
self.errors.set_file(fnam, file_node.fullname())
self.cur_mod_node = file_node
self.cur_mod_id = file_node.fullname()
self.is_stub_file = fnam.lower().endswith('.pyi')
self.is_typeshed_stub_file = self.errors.is_typeshed_file(file_node.path)
self.globals = file_node.names
self.patches = patches
with experiments.strict_optional_set(options.strict_optional):
if 'builtins' in self.modules:
self.globals['__builtins__'] = SymbolTableNode(MODULE_REF,
self.modules['builtins'])
for name in implicit_module_attrs:
v = self.globals[name].node
if isinstance(v, Var):
assert v.type is not None, "Type of implicit attribute not set"
v.type = self.anal_type(v.type)
v.is_ready = True
defs = file_node.defs
for d in defs:
self.accept(d)
if self.cur_mod_id == 'builtins':
remove_imported_names_from_symtable(self.globals, 'builtins')
for alias_name in type_aliases:
self.globals.pop(alias_name.split('.')[-1], None)
if '__all__' in self.globals:
for name, g in self.globals.items():
if name not in self.all_exports:
g.module_public = False
del self.options
del self.patches
def refresh_partial(self, node: Union[MypyFile, FuncItem]) -> None:
"""Refresh a stale target in fine-grained incremental mode."""
if isinstance(node, MypyFile):
self.refresh_top_level(node)
else:
self.accept(node)
def refresh_top_level(self, file_node: MypyFile) -> None:
"""Reanalyze a stale module top-level in fine-grained incremental mode."""
# TODO: Recursion into block statements.
for d in file_node.defs:
if isinstance(d, ClassDef):
self.refresh_class_def(d)
elif not isinstance(d, (FuncItem, Decorator)):
self.accept(d)
def refresh_class_def(self, defn: ClassDef) -> None:
# TODO: Recursion into block statements.
with self.analyze_class_body(defn) as should_continue:
if should_continue:
for d in defn.defs.body:
# TODO: Make sure refreshing class bodies works.
if isinstance(d, ClassDef):
self.refresh_class_def(d)
elif not isinstance(d, (FuncItem, Decorator)):
self.accept(d)
@contextmanager
def file_context(self, file_node: MypyFile, fnam: str, options: Options,
active_type: Optional[TypeInfo]) -> Iterator[None]:
# TODO: Use this above in visit_file
self.options = options
self.errors.set_file(fnam, file_node.fullname())
self.cur_mod_node = file_node
self.cur_mod_id = file_node.fullname()
self.is_stub_file = fnam.lower().endswith('.pyi')
self.is_typeshed_stub_file = self.errors.is_typeshed_file(file_node.path)
self.globals = file_node.names
if active_type:
self.enter_class(active_type.defn.info)
# TODO: Bind class type vars
yield
if active_type:
self.leave_class()
self.type = None
del self.options
def visit_func_def(self, defn: FuncDef) -> None:
phase_info = self.postpone_nested_functions_stack[-1]
if phase_info != FUNCTION_SECOND_PHASE:
self.function_stack.append(defn)
# First phase of analysis for function.
self.errors.push_function(defn.name())
if not defn._fullname:
defn._fullname = self.qualified_name(defn.name())
if defn.type:
assert isinstance(defn.type, CallableType)
self.update_function_type_variables(defn.type, defn)
self.errors.pop_function()
self.function_stack.pop()
defn.is_conditional = self.block_depth[-1] > 0
# TODO(jukka): Figure out how to share the various cases. It doesn't
# make sense to have (almost) duplicate code (here and elsewhere) for
# 3 cases: module-level, class-level and local names. Maybe implement
# a common stack of namespaces. As the 3 kinds of namespaces have
# different semantics, this wouldn't always work, but it might still
# be a win.
if self.is_class_scope():
# Method definition
assert self.type is not None, "Type not set at class scope"
defn.info = self.type
if not defn.is_decorated and not defn.is_overload:
if (defn.name() in self.type.names and
self.type.names[defn.name()].node != defn):
# Redefinition. Conditional redefinition is okay.
n = self.type.names[defn.name()].node
if not self.set_original_def(n, defn):
self.name_already_defined(defn.name(), defn)
self.type.names[defn.name()] = SymbolTableNode(MDEF, defn)
self.prepare_method_signature(defn, self.type)
elif self.is_func_scope():
# Nested function
assert self.locals[-1] is not None, "No locals at function scope"
if not defn.is_decorated and not defn.is_overload:
if defn.name() in self.locals[-1]:
# Redefinition. Conditional redefinition is okay.
n = self.locals[-1][defn.name()].node
if not self.set_original_def(n, defn):
self.name_already_defined(defn.name(), defn)
else:
self.add_local(defn, defn)
else:
# Top-level function
if not defn.is_decorated and not defn.is_overload:
symbol = self.globals[defn.name()]
if isinstance(symbol.node, FuncDef) and symbol.node != defn:
# This is redefinition. Conditional redefinition is okay.
if not self.set_original_def(symbol.node, defn):
# Report error.
self.check_no_global(defn.name(), defn, True)
if phase_info == FUNCTION_FIRST_PHASE_POSTPONE_SECOND:
# Postpone this function (for the second phase).
self.postponed_functions_stack[-1].append(defn)
return
if phase_info != FUNCTION_FIRST_PHASE_POSTPONE_SECOND:
# Second phase of analysis for function.
self.errors.push_function(defn.name())
self.analyze_function(defn)
if defn.is_coroutine and isinstance(defn.type, CallableType):
if defn.is_async_generator:
# Async generator types are handled elsewhere
pass
else:
# A coroutine defined as `async def foo(...) -> T: ...`
# has external return type `Awaitable[T]`.
ret_type = self.named_type_or_none('typing.Awaitable', [defn.type.ret_type])
assert ret_type is not None, "Internal error: typing.Awaitable not found"
defn.type = defn.type.copy_modified(ret_type=ret_type)
self.errors.pop_function()
def prepare_method_signature(self, func: FuncDef, info: TypeInfo) -> None:
"""Check basic signature validity and tweak annotation of self/cls argument."""
# Only non-static methods are special.
functype = func.type
if not func.is_static:
if not func.arguments:
self.fail('Method must have at least one argument', func)
elif isinstance(functype, CallableType):
self_type = functype.arg_types[0]
if isinstance(self_type, AnyType):
if func.is_class or func.name() in ('__new__', '__init_subclass__'):
leading_type = self.class_type(info)
else:
leading_type = fill_typevars(info)
func.type = replace_implicit_first_type(functype, leading_type)
def set_original_def(self, previous: Optional[Node], new: FuncDef) -> bool:
"""If 'new' conditionally redefine 'previous', set 'previous' as original
We reject straight redefinitions of functions, as they are usually
a programming error. For example:
. def f(): ...
. def f(): ... # Error: 'f' redefined
"""
if isinstance(previous, (FuncDef, Var, Decorator)) and new.is_conditional:
new.original_def = previous
return True
else:
return False
def update_function_type_variables(self, fun_type: CallableType, defn: FuncItem) -> None:
"""Make any type variables in the signature of defn explicit.
Update the signature of defn to contain type variable definitions
if defn is generic.
"""
with self.tvar_scope_frame(self.tvar_scope.method_frame()):
a = self.type_analyzer()
fun_type.variables = a.bind_function_type_variables(fun_type, defn)
def visit_overloaded_func_def(self, defn: OverloadedFuncDef) -> None:
# OverloadedFuncDef refers to any legitimate situation where you have
# more than one declaration for the same function in a row. This occurs
# with a @property with a setter or a deleter, and for a classic
# @overload.
# Decide whether to analyze this as a property or an overload. If an
# overload, and we're outside a stub, find the impl and set it. Remove
# the impl from the item list, it's special.
types = [] # type: List[CallableType]
non_overload_indexes = []
# See if the first item is a property (and not an overload)
first_item = defn.items[0]
first_item.is_overload = True
first_item.accept(self)
if isinstance(first_item, Decorator) and first_item.func.is_property:
first_item.func.is_overload = True
self.analyze_property_with_multi_part_definition(defn)
typ = function_type(first_item.func, self.builtin_type('builtins.function'))
assert isinstance(typ, CallableType)
types = [typ]
else:
for i, item in enumerate(defn.items):
if i != 0:
# The first item was already visited
item.is_overload = True
item.accept(self)
# TODO support decorated overloaded functions properly
if isinstance(item, Decorator):
callable = function_type(item.func, self.builtin_type('builtins.function'))
assert isinstance(callable, CallableType)
if not any(refers_to_fullname(dec, 'typing.overload')
for dec in item.decorators):
if i == len(defn.items) - 1 and not self.is_stub_file:
# Last item outside a stub is impl
defn.impl = item
else:
# Oops it wasn't an overload after all. A clear error
# will vary based on where in the list it is, record
# that.
non_overload_indexes.append(i)
else:
item.func.is_overload = True
types.append(callable)
elif isinstance(item, FuncDef):
if i == len(defn.items) - 1 and not self.is_stub_file:
defn.impl = item
else:
non_overload_indexes.append(i)
if non_overload_indexes:
if types:
# Some of them were overloads, but not all.
for idx in non_overload_indexes:
if self.is_stub_file:
self.fail("An implementation for an overloaded function "
"is not allowed in a stub file", defn.items[idx])
else:
self.fail("The implementation for an overloaded function "
"must come last", defn.items[idx])
else:
for idx in non_overload_indexes[1:]:
self.name_already_defined(defn.name(), defn.items[idx])
if defn.impl:
self.name_already_defined(defn.name(), defn.impl)
# Remove the non-overloads
for idx in reversed(non_overload_indexes):
del defn.items[idx]
# If we found an implementation, remove it from the overloads to
# consider.
if defn.impl is not None:
assert defn.impl is defn.items[-1]
defn.items = defn.items[:-1]
elif not self.is_stub_file and not non_overload_indexes:
if not (self.type and not self.is_func_scope() and self.type.is_protocol):
self.fail(
"An overloaded function outside a stub file must have an implementation",
defn)
else:
for item in defn.items:
if isinstance(item, Decorator):
item.func.is_abstract = True
else:
item.is_abstract = True
if types:
defn.type = Overloaded(types)
defn.type.line = defn.line
if not defn.items:
# It was not any kind of overload def after all. We've visited the
# redfinitions already.
return
if self.type and not self.is_func_scope():
self.type.names[defn.name()] = SymbolTableNode(MDEF, defn,
typ=defn.type)
defn.info = self.type
elif self.is_func_scope():
self.add_local(defn, defn)
def analyze_property_with_multi_part_definition(self, defn: OverloadedFuncDef) -> None:
"""Analyze a property defined using multiple methods (e.g., using @x.setter).
Assume that the first method (@property) has already been analyzed.
"""
defn.is_property = True
items = defn.items
first_item = cast(Decorator, defn.items[0])
for item in items[1:]:
if isinstance(item, Decorator) and len(item.decorators) == 1:
node = item.decorators[0]
if isinstance(node, MemberExpr):
if node.name == 'setter':
# The first item represents the entire property.
first_item.var.is_settable_property = True
# Get abstractness from the original definition.
item.func.is_abstract = first_item.func.is_abstract
else:
self.fail("Decorated property not supported", item)
if isinstance(item, Decorator):
item.func.accept(self)
def analyze_function(self, defn: FuncItem) -> None:
is_method = self.is_class_scope()
with self.tvar_scope_frame(self.tvar_scope.method_frame()):
if defn.type:
self.check_classvar_in_signature(defn.type)
assert isinstance(defn.type, CallableType)
# Signature must be analyzed in the surrounding scope so that
# class-level imported names and type variables are in scope.
defn.type = self.type_analyzer().visit_callable_type(defn.type, nested=False)
self.check_function_signature(defn)
if isinstance(defn, FuncDef):
defn.type = set_callable_name(defn.type, defn)
for arg in defn.arguments:
if arg.initializer:
arg.initializer.accept(self)
# Bind the type variables again to visit the body.
if defn.type:
a = self.type_analyzer()
a.bind_function_type_variables(cast(CallableType, defn.type), defn)
self.function_stack.append(defn)
self.enter()
for arg in defn.arguments:
self.add_local(arg.variable, defn)
# The first argument of a non-static, non-class method is like 'self'
# (though the name could be different), having the enclosing class's
# instance type.
if is_method and not defn.is_static and not defn.is_class and defn.arguments:
defn.arguments[0].variable.is_self = True
# First analyze body of the function but ignore nested functions.
self.postpone_nested_functions_stack.append(FUNCTION_FIRST_PHASE_POSTPONE_SECOND)
self.postponed_functions_stack.append([])
defn.body.accept(self)
# Analyze nested functions (if any) as a second phase.
self.postpone_nested_functions_stack[-1] = FUNCTION_SECOND_PHASE
for postponed in self.postponed_functions_stack[-1]:
postponed.accept(self)
self.postpone_nested_functions_stack.pop()
self.postponed_functions_stack.pop()
self.leave()
self.function_stack.pop()
def check_classvar_in_signature(self, typ: Type) -> None:
if isinstance(typ, Overloaded):
for t in typ.items(): # type: Type
self.check_classvar_in_signature(t)
return
if not isinstance(typ, CallableType):
return
for t in typ.arg_types + [typ.ret_type]:
if self.is_classvar(t):
self.fail_invalid_classvar(t)
# Show only one error per signature
break
def check_function_signature(self, fdef: FuncItem) -> None:
sig = fdef.type
assert isinstance(sig, CallableType)
if len(sig.arg_types) < len(fdef.arguments):
self.fail('Type signature has too few arguments', fdef)
# Add dummy Any arguments to prevent crashes later.
num_extra_anys = len(fdef.arguments) - len(sig.arg_types)
extra_anys = [AnyType(TypeOfAny.from_error)] * num_extra_anys
sig.arg_types.extend(extra_anys)
elif len(sig.arg_types) > len(fdef.arguments):
self.fail('Type signature has too many arguments', fdef, blocker=True)
def visit_class_def(self, defn: ClassDef) -> None:
with self.analyze_class_body(defn) as should_continue:
if should_continue:
# Analyze class body.
defn.defs.accept(self)
@contextmanager
def analyze_class_body(self, defn: ClassDef) -> Iterator[bool]:
with self.tvar_scope_frame(self.tvar_scope.class_frame()):
is_protocol = self.detect_protocol_base(defn)
self.update_metaclass(defn)
self.clean_up_bases_and_infer_type_variables(defn)
self.analyze_class_keywords(defn)
if self.analyze_typeddict_classdef(defn):
yield False
return
named_tuple_info = self.analyze_namedtuple_classdef(defn)
if named_tuple_info is not None:
# Temporarily clear the names dict so we don't get errors about duplicate names
# that were already set in build_namedtuple_typeinfo.
nt_names = named_tuple_info.names
named_tuple_info.names = SymbolTable()
# This is needed for the cls argument to classmethods to get bound correctly.
named_tuple_info.names['__init__'] = nt_names['__init__']
self.enter_class(named_tuple_info)
yield True
self.leave_class()
# make sure we didn't use illegal names, then reset the names in the typeinfo
for prohibited in NAMEDTUPLE_PROHIBITED_NAMES:
if prohibited in named_tuple_info.names:
if nt_names.get(prohibited) is named_tuple_info.names[prohibited]:
continue
ctx = named_tuple_info.names[prohibited].node
assert ctx is not None
self.fail('Cannot overwrite NamedTuple attribute "{}"'.format(prohibited),
ctx)
# Restore the names in the original symbol table. This ensures that the symbol
# table contains the field objects created by build_namedtuple_typeinfo. Exclude
# __doc__, which can legally be overwritten by the class.
named_tuple_info.names.update({
key: value for key, value in nt_names.items()
if key not in named_tuple_info.names or key != '__doc__'
})
else:
self.setup_class_def_analysis(defn)
self.analyze_base_classes(defn)
self.analyze_metaclass(defn)
defn.info.is_protocol = is_protocol
defn.info.runtime_protocol = False
for decorator in defn.decorators:
self.analyze_class_decorator(defn, decorator)
self.enter_class(defn.info)
yield True
self.calculate_abstract_status(defn.info)
self.setup_type_promotion(defn)
self.leave_class()
def analyze_class_keywords(self, defn: ClassDef) -> None:
for value in defn.keywords.values():
value.accept(self)
def enter_class(self, info: TypeInfo) -> None:
# Remember previous active class
self.type_stack.append(self.type)
self.locals.append(None) # Add class scope
self.block_depth.append(-1) # The class body increments this to 0
self.postpone_nested_functions_stack.append(FUNCTION_BOTH_PHASES)
self.type = info
def leave_class(self) -> None:
""" Restore analyzer state. """
self.postpone_nested_functions_stack.pop()
self.block_depth.pop()
self.locals.pop()
self.type = self.type_stack.pop()
def analyze_class_decorator(self, defn: ClassDef, decorator: Expression) -> None:
decorator.accept(self)
if (isinstance(decorator, RefExpr) and
decorator.fullname in ('typing.runtime', 'typing_extensions.runtime')):
if defn.info.is_protocol:
defn.info.runtime_protocol = True
else:
self.fail('@runtime can only be used with protocol classes', defn)
def calculate_abstract_status(self, typ: TypeInfo) -> None:
"""Calculate abstract status of a class.
Set is_abstract of the type to True if the type has an unimplemented
abstract attribute. Also compute a list of abstract attributes.
"""
concrete = set() # type: Set[str]
abstract = [] # type: List[str]
for base in typ.mro:
for name, symnode in base.names.items():
node = symnode.node
if isinstance(node, OverloadedFuncDef):
# Unwrap an overloaded function definition. We can just
# check arbitrarily the first overload item. If the
# different items have a different abstract status, there
# should be an error reported elsewhere.
func = node.items[0] # type: Optional[Node]
else:
func = node
if isinstance(func, Decorator):
fdef = func.func
if fdef.is_abstract and name not in concrete:
typ.is_abstract = True
abstract.append(name)
elif isinstance(node, Var):
if node.is_abstract_var and name not in concrete:
typ.is_abstract = True
abstract.append(name)
concrete.add(name)
typ.abstract_attributes = sorted(abstract)
def setup_type_promotion(self, defn: ClassDef) -> None:
"""Setup extra, ad-hoc subtyping relationships between classes (promotion).
This includes things like 'int' being compatible with 'float'.
"""
promote_target = None # type: Optional[Type]
for decorator in defn.decorators:
if isinstance(decorator, CallExpr):
analyzed = decorator.analyzed
if isinstance(analyzed, PromoteExpr):
# _promote class decorator (undocumented faeture).
promote_target = analyzed.type
if not promote_target:
promotions = (TYPE_PROMOTIONS_PYTHON3 if self.options.python_version[0] >= 3
else TYPE_PROMOTIONS_PYTHON2)
if defn.fullname in promotions:
promote_target = self.named_type_or_none(promotions[defn.fullname])
defn.info._promote = promote_target
def detect_protocol_base(self, defn: ClassDef) -> bool:
for base_expr in defn.base_type_exprs:
try:
base = expr_to_unanalyzed_type(base_expr)
except TypeTranslationError:
continue # This will be reported later
if not isinstance(base, UnboundType):
continue
sym = self.lookup_qualified(base.name, base)
if sym is None or sym.node is None:
continue
if sym.node.fullname() in ('typing.Protocol', 'typing_extensions.Protocol'):
return True
return False
def clean_up_bases_and_infer_type_variables(self, defn: ClassDef) -> None:
"""Remove extra base classes such as Generic and infer type vars.
For example, consider this class:
. class Foo(Bar, Generic[T]): ...
Now we will remove Generic[T] from bases of Foo and infer that the
type variable 'T' is a type argument of Foo.
Note that this is performed *before* semantic analysis.
"""
removed = [] # type: List[int]
declared_tvars = [] # type: TypeVarList
for i, base_expr in enumerate(defn.base_type_exprs):
try:
base = expr_to_unanalyzed_type(base_expr)
except TypeTranslationError:
# This error will be caught later.
continue
tvars = self.analyze_typevar_declaration(base)
if tvars is not None:
if declared_tvars:
self.fail('Only single Generic[...] or Protocol[...] can be in bases', defn)
removed.append(i)
declared_tvars.extend(tvars)
if isinstance(base, UnboundType):
sym = self.lookup_qualified(base.name, base)
if sym is not None and sym.node is not None:
if (sym.node.fullname() in ('typing.Protocol',
'typing_extensions.Protocol') and
i not in removed):
# also remove bare 'Protocol' bases
removed.append(i)
all_tvars = self.get_all_bases_tvars(defn, removed)
if declared_tvars:
if len(remove_dups(declared_tvars)) < len(declared_tvars):
self.fail("Duplicate type variables in Generic[...] or Protocol[...]", defn)
declared_tvars = remove_dups(declared_tvars)
if not set(all_tvars).issubset(set(declared_tvars)):
self.fail("If Generic[...] or Protocol[...] is present"
" it should list all type variables", defn)
# In case of error, Generic tvars will go first
declared_tvars = remove_dups(declared_tvars + all_tvars)
else:
declared_tvars = all_tvars
if declared_tvars:
if defn.info:
defn.info.type_vars = [name for name, _ in declared_tvars]
for i in reversed(removed):
del defn.base_type_exprs[i]
tvar_defs = [] # type: List[TypeVarDef]
for name, tvar_expr in declared_tvars:
tvar_defs.append(self.tvar_scope.bind(name, tvar_expr))
defn.type_vars = tvar_defs
def analyze_typevar_declaration(self, t: Type) -> Optional[TypeVarList]:
if not isinstance(t, UnboundType):
return None
unbound = t
sym = self.lookup_qualified(unbound.name, unbound)
if sym is None or sym.node is None:
return None
if (sym.node.fullname() == 'typing.Generic' or
sym.node.fullname() == 'typing.Protocol' and t.args or
sym.node.fullname() == 'typing_extensions.Protocol' and t.args):
tvars = [] # type: TypeVarList
for arg in unbound.args:
tvar = self.analyze_unbound_tvar(arg)
if tvar:
tvars.append(tvar)
else:
self.fail('Free type variable expected in %s[...]' %
sym.node.name(), t)
return tvars
return None
def analyze_unbound_tvar(self, t: Type) -> Optional[Tuple[str, TypeVarExpr]]:
if not isinstance(t, UnboundType):
return None
unbound = t
sym = self.lookup_qualified(unbound.name, unbound)
if sym is None or sym.kind != TVAR:
return None
elif sym.fullname and not self.tvar_scope.allow_binding(sym.fullname):
# It's bound by our type variable scope
return None
else:
assert isinstance(sym.node, TypeVarExpr)
return unbound.name, sym.node
def get_all_bases_tvars(self, defn: ClassDef, removed: List[int]) -> TypeVarList:
tvars = [] # type: TypeVarList
for i, base_expr in enumerate(defn.base_type_exprs):
if i not in removed:
try:
base = expr_to_unanalyzed_type(base_expr)
except TypeTranslationError:
# This error will be caught later.
continue
base_tvars = base.accept(TypeVariableQuery(self.lookup_qualified, self.tvar_scope))
tvars.extend(base_tvars)
return remove_dups(tvars)
def analyze_namedtuple_classdef(self, defn: ClassDef) -> Optional[TypeInfo]:
# special case for NamedTuple
for base_expr in defn.base_type_exprs:
if isinstance(base_expr, RefExpr):
base_expr.accept(self)
if base_expr.fullname == 'typing.NamedTuple':
node = self.lookup(defn.name, defn)
if node is not None:
node.kind = GDEF # TODO in process_namedtuple_definition also applies here
items, types, default_items = self.check_namedtuple_classdef(defn)
info = self.build_namedtuple_typeinfo(
defn.name, items, types, default_items)
node.node = info
defn.info.replaced = info
defn.info = info
defn.analyzed = NamedTupleExpr(info)
defn.analyzed.line = defn.line
defn.analyzed.column = defn.column
return info
return None
def check_namedtuple_classdef(
self, defn: ClassDef) -> Tuple[List[str], List[Type], Dict[str, Expression]]:
NAMEDTUP_CLASS_ERROR = ('Invalid statement in NamedTuple definition; '
'expected "field_name: field_type [= default]"')
if self.options.python_version < (3, 6):
self.fail('NamedTuple class syntax is only supported in Python 3.6', defn)
return [], [], {}
if len(defn.base_type_exprs) > 1:
self.fail('NamedTuple should be a single base', defn)
items = [] # type: List[str]
types = [] # type: List[Type]
default_items = {} # type: Dict[str, Expression]
for stmt in defn.defs.body:
if not isinstance(stmt, AssignmentStmt):
# Still allow pass or ... (for empty namedtuples).
if (isinstance(stmt, PassStmt) or
(isinstance(stmt, ExpressionStmt) and
isinstance(stmt.expr, EllipsisExpr))):
continue
# Also allow methods, including decorated ones.
if isinstance(stmt, (Decorator, FuncBase)):
continue
# And docstrings.
if (isinstance(stmt, ExpressionStmt) and
isinstance(stmt.expr, StrExpr)):
continue
self.fail(NAMEDTUP_CLASS_ERROR, stmt)
elif len(stmt.lvalues) > 1 or not isinstance(stmt.lvalues[0], NameExpr):
# An assignment, but an invalid one.
self.fail(NAMEDTUP_CLASS_ERROR, stmt)
else:
# Append name and type in this case...
name = stmt.lvalues[0].name
items.append(name)
types.append(AnyType(TypeOfAny.unannotated)
if stmt.type is None
else self.anal_type(stmt.type))
# ...despite possible minor failures that allow further analyzis.
if name.startswith('_'):
self.fail('NamedTuple field name cannot start with an underscore: {}'
.format(name), stmt)
if stmt.type is None or hasattr(stmt, 'new_syntax') and not stmt.new_syntax:
self.fail(NAMEDTUP_CLASS_ERROR, stmt)
elif isinstance(stmt.rvalue, TempNode):
# x: int assigns rvalue to TempNode(AnyType())
if default_items:
self.fail('Non-default NamedTuple fields cannot follow default fields',
stmt)
else:
default_items[name] = stmt.rvalue
return items, types, default_items
def setup_class_def_analysis(self, defn: ClassDef) -> None:
"""Prepare for the analysis of a class definition."""
if not defn.info:
defn.info = TypeInfo(SymbolTable(), defn, self.cur_mod_id)
defn.info._fullname = defn.info.name()
if self.is_func_scope() or self.type:
kind = MDEF
if self.is_func_scope():
kind = LDEF
node = SymbolTableNode(kind, defn.info)
self.add_symbol(defn.name, node, defn)
if kind == LDEF:
# We need to preserve local classes, let's store them
# in globals under mangled unique names
local_name = defn.info._fullname + '@' + str(defn.line)
defn.info._fullname = self.cur_mod_id + '.' + local_name
defn.fullname = defn.info._fullname
self.globals[local_name] = node
def analyze_base_classes(self, defn: ClassDef) -> None:
"""Analyze and set up base classes.
This computes several attributes on the corresponding TypeInfo defn.info
related to the base classes: defn.info.bases, defn.info.mro, and
miscellaneous others (at least tuple_type, fallback_to_any, and is_enum.)
"""
base_types = [] # type: List[Instance]
info = defn.info
for base_expr in defn.base_type_exprs:
try:
base = self.expr_to_analyzed_type(base_expr)
except TypeTranslationError:
self.fail('Invalid base class', base_expr)
info.fallback_to_any = True
continue
if isinstance(base, TupleType):
if info.tuple_type:
self.fail("Class has two incompatible bases derived from tuple", defn)
defn.has_incompatible_baseclass = True
info.tuple_type = base
base_types.append(base.fallback)
if isinstance(base_expr, CallExpr):
defn.analyzed = NamedTupleExpr(base.fallback.type)
defn.analyzed.line = defn.line
defn.analyzed.column = defn.column
elif isinstance(base, Instance):
if base.type.is_newtype:
self.fail("Cannot subclass NewType", defn)
base_types.append(base)
elif isinstance(base, AnyType):
if self.options.disallow_subclassing_any:
if isinstance(base_expr, (NameExpr, MemberExpr)):
msg = "Class cannot subclass '{}' (has type 'Any')".format(base_expr.name)
else:
msg = "Class cannot subclass value of type 'Any'"
self.fail(msg, base_expr)
info.fallback_to_any = True
else:
self.fail('Invalid base class', base_expr)
info.fallback_to_any = True
if self.options.disallow_any_unimported and has_any_from_unimported_type(base):
if isinstance(base_expr, (NameExpr, MemberExpr)):
prefix = "Base type {}".format(base_expr.name)
else:
prefix = "Base type"
self.msg.unimported_type_becomes_any(prefix, base, base_expr)
check_for_explicit_any(base, self.options, self.is_typeshed_stub_file, self.msg,
context=base_expr)
# Add 'object' as implicit base if there is no other base class.
if (not base_types and defn.fullname != 'builtins.object'):
base_types.append(self.object_type())
info.bases = base_types
# Calculate the MRO. It might be incomplete at this point if
# the bases of defn include classes imported from other
# modules in an import loop. We'll recompute it in SemanticAnalyzerPass3.
if not self.verify_base_classes(defn):
# Give it an MRO consisting of just the class itself and object.
defn.info.mro = [defn.info, self.object_type().type]
return
calculate_class_mro(defn, self.fail_blocker)
# If there are cyclic imports, we may be missing 'object' in
# the MRO. Fix MRO if needed.
if info.mro and info.mro[-1].fullname() != 'builtins.object':
info.mro.append(self.object_type().type)
if defn.info.is_enum and defn.type_vars:
self.fail("Enum class cannot be generic", defn)
def update_metaclass(self, defn: ClassDef) -> None:
"""Lookup for special metaclass declarations, and update defn fields accordingly.
* __metaclass__ attribute in Python 2
* six.with_metaclass(M, B1, B2, ...)
* @six.add_metaclass(M)
"""
# Look for "__metaclass__ = <metaclass>" in Python 2
python2_meta_expr = None # type: Optional[Expression]
if self.options.python_version[0] == 2:
for body_node in defn.defs.body:
if isinstance(body_node, ClassDef) and body_node.name == "__metaclass__":
self.fail("Metaclasses defined as inner classes are not supported", body_node)
break
elif isinstance(body_node, AssignmentStmt) and len(body_node.lvalues) == 1:
lvalue = body_node.lvalues[0]
if isinstance(lvalue, NameExpr) and lvalue.name == "__metaclass__":
python2_meta_expr = body_node.rvalue
# Look for six.with_metaclass(M, B1, B2, ...)
with_meta_expr = None # type: Optional[Expression]
if len(defn.base_type_exprs) == 1:
base_expr = defn.base_type_exprs[0]
if isinstance(base_expr, CallExpr) and isinstance(base_expr.callee, RefExpr):
base_expr.callee.accept(self)
if (base_expr.callee.fullname == 'six.with_metaclass'
and len(base_expr.args) >= 1
and all(kind == ARG_POS for kind in base_expr.arg_kinds)):
with_meta_expr = base_expr.args[0]
defn.base_type_exprs = base_expr.args[1:]
# Look for @six.add_metaclass(M)
add_meta_expr = None # type: Optional[Expression]
for dec_expr in defn.decorators:
if isinstance(dec_expr, CallExpr) and isinstance(dec_expr.callee, RefExpr):
dec_expr.callee.accept(self)
if (dec_expr.callee.fullname == 'six.add_metaclass'
and len(dec_expr.args) == 1
and dec_expr.arg_kinds[0] == ARG_POS):
add_meta_expr = dec_expr.args[0]
break
metas = {defn.metaclass, python2_meta_expr, with_meta_expr, add_meta_expr} - {None}
if len(metas) == 0:
return
if len(metas) > 1:
self.fail("Multiple metaclass definitions", defn)
return
defn.metaclass = metas.pop()
def expr_to_analyzed_type(self, expr: Expression) -> Type:
if isinstance(expr, CallExpr):
expr.accept(self)
info = self.check_namedtuple(expr)
if info is None:
# Some form of namedtuple is the only valid type that looks like a call
# expression. This isn't a valid type.
raise TypeTranslationError()
assert info.tuple_type, "NamedTuple without tuple type"
fallback = Instance(info, [])
return TupleType(info.tuple_type.items, fallback=fallback)
typ = expr_to_unanalyzed_type(expr)
return self.anal_type(typ)
def verify_base_classes(self, defn: ClassDef) -> bool:
info = defn.info
for base in info.bases:
baseinfo = base.type
if self.is_base_class(info, baseinfo):
self.fail('Cycle in inheritance hierarchy', defn, blocker=True)
# Clear bases to forcefully get rid of the cycle.
info.bases = []
if baseinfo.fullname() == 'builtins.bool':
self.fail("'%s' is not a valid base class" %
baseinfo.name(), defn, blocker=True)
return False
dup = find_duplicate(info.direct_base_classes())
if dup:
self.fail('Duplicate base class "%s"' % dup.name(), defn, blocker=True)
return False
return True
def is_base_class(self, t: TypeInfo, s: TypeInfo) -> bool:
"""Determine if t is a base class of s (but do not use mro)."""
# Search the base class graph for t, starting from s.
worklist = [s]
visited = {s}
while worklist:
nxt = worklist.pop()
if nxt == t:
return True
for base in nxt.bases:
if base.type not in visited:
worklist.append(base.type)
visited.add(base.type)
return False
def analyze_metaclass(self, defn: ClassDef) -> None:
if defn.metaclass:
metaclass_name = None
if isinstance(defn.metaclass, NameExpr):
metaclass_name = defn.metaclass.name
elif isinstance(defn.metaclass, MemberExpr):
metaclass_name = get_member_expr_fullname(defn.metaclass)
if metaclass_name is None:
self.fail("Dynamic metaclass not supported for '%s'" % defn.name, defn.metaclass)
return
sym = self.lookup_qualified(metaclass_name, defn.metaclass)
if sym is None:
# Probably a name error - it is already handled elsewhere
return
if isinstance(sym.node, Var) and isinstance(sym.node.type, AnyType):
# 'Any' metaclass -- just ignore it.
#
# TODO: A better approach would be to record this information
# and assume that the type object supports arbitrary
# attributes, similar to an 'Any' base class.
return
if not isinstance(sym.node, TypeInfo) or sym.node.tuple_type is not None:
self.fail("Invalid metaclass '%s'" % metaclass_name, defn.metaclass)
return
if not sym.node.is_metaclass():
self.fail("Metaclasses not inheriting from 'type' are not supported",
defn.metaclass)
return
inst = fill_typevars(sym.node)
assert isinstance(inst, Instance)
defn.info.declared_metaclass = inst
defn.info.metaclass_type = defn.info.calculate_metaclass_type()
if defn.info.metaclass_type is None:
# Inconsistency may happen due to multiple baseclasses even in classes that
# do not declare explicit metaclass, but it's harder to catch at this stage
if defn.metaclass is not None:
self.fail("Inconsistent metaclass structure for '%s'" % defn.name, defn)
def object_type(self) -> Instance:
return self.named_type('__builtins__.object')
def str_type(self) -> Instance:
return self.named_type('__builtins__.str')
def class_type(self, info: TypeInfo) -> Type:
# Construct a function type whose fallback is cls.
from mypy import checkmember # To avoid import cycle.
leading_type = checkmember.type_object_type(info, self.builtin_type)
if isinstance(leading_type, Overloaded):
# Overloaded __init__ is too complex to handle. Plus it's stubs only.
return AnyType(TypeOfAny.special_form)
else:
return leading_type
def named_type(self, qualified_name: str, args: Optional[List[Type]] = None) -> Instance:
sym = self.lookup_qualified(qualified_name, Context())
assert sym, "Internal error: attempted to construct unknown type"
node = sym.node
assert isinstance(node, TypeInfo)
if args:
# TODO: assert len(args) == len(node.defn.type_vars)
return Instance(node, args)
return Instance(node, [AnyType(TypeOfAny.special_form)] * len(node.defn.type_vars))
def named_type_or_none(self, qualified_name: str,
args: Optional[List[Type]] = None) -> Optional[Instance]:
sym = self.lookup_fully_qualified_or_none(qualified_name)
if not sym:
return None
node = sym.node
assert isinstance(node, TypeInfo)
if args:
# TODO: assert len(args) == len(node.defn.type_vars)
return Instance(node, args)
return Instance(node, [AnyType(TypeOfAny.unannotated)] * len(node.defn.type_vars))
def is_typeddict(self, expr: Expression) -> bool:
return (isinstance(expr, RefExpr) and isinstance(expr.node, TypeInfo) and
expr.node.typeddict_type is not None)
def analyze_typeddict_classdef(self, defn: ClassDef) -> bool:
# special case for TypedDict
possible = False
for base_expr in defn.base_type_exprs:
if isinstance(base_expr, RefExpr):
base_expr.accept(self)
if (base_expr.fullname == 'mypy_extensions.TypedDict' or
self.is_typeddict(base_expr)):
possible = True
if possible:
node = self.lookup(defn.name, defn)
if node is not None:
node.kind = GDEF # TODO in process_namedtuple_definition also applies here
if (len(defn.base_type_exprs) == 1 and
isinstance(defn.base_type_exprs[0], RefExpr) and
defn.base_type_exprs[0].fullname == 'mypy_extensions.TypedDict'):
# Building a new TypedDict
fields, types, required_keys = self.check_typeddict_classdef(defn)
info = self.build_typeddict_typeinfo(defn.name, fields, types, required_keys)
defn.info.replaced = info
node.node = info
defn.analyzed = TypedDictExpr(info)
defn.analyzed.line = defn.line
defn.analyzed.column = defn.column
return True
# Extending/merging existing TypedDicts
if any(not isinstance(expr, RefExpr) or
expr.fullname != 'mypy_extensions.TypedDict' and
not self.is_typeddict(expr) for expr in defn.base_type_exprs):
self.fail("All bases of a new TypedDict must be TypedDict types", defn)
typeddict_bases = list(filter(self.is_typeddict, defn.base_type_exprs))
keys = [] # type: List[str]
types = []
required_keys = set()
for base in typeddict_bases:
assert isinstance(base, RefExpr)
assert isinstance(base.node, TypeInfo)
assert isinstance(base.node.typeddict_type, TypedDictType)
base_typed_dict = base.node.typeddict_type
base_items = base_typed_dict.items
valid_items = base_items.copy()
for key in base_items:
if key in keys:
self.fail('Cannot overwrite TypedDict field "{}" while merging'
.format(key), defn)
valid_items.pop(key)
keys.extend(valid_items.keys())
types.extend(valid_items.values())
required_keys.update(base_typed_dict.required_keys)
new_keys, new_types, new_required_keys = self.check_typeddict_classdef(defn, keys)
keys.extend(new_keys)
types.extend(new_types)
required_keys.update(new_required_keys)
info = self.build_typeddict_typeinfo(defn.name, keys, types, required_keys)
defn.info.replaced = info
node.node = info
defn.analyzed = TypedDictExpr(info)
defn.analyzed.line = defn.line
defn.analyzed.column = defn.column
return True
return False
def check_typeddict_classdef(self, defn: ClassDef,
oldfields: Optional[List[str]] = None) -> Tuple[List[str],
List[Type],
Set[str]]:
TPDICT_CLASS_ERROR = ('Invalid statement in TypedDict definition; '
'expected "field_name: field_type"')
if self.options.python_version < (3, 6):
self.fail('TypedDict class syntax is only supported in Python 3.6', defn)
return [], [], set()
fields = [] # type: List[str]
types = [] # type: List[Type]
for stmt in defn.defs.body:
if not isinstance(stmt, AssignmentStmt):
# Still allow pass or ... (for empty TypedDict's).
if (not isinstance(stmt, PassStmt) and
not (isinstance(stmt, ExpressionStmt) and
isinstance(stmt.expr, (EllipsisExpr, StrExpr)))):
self.fail(TPDICT_CLASS_ERROR, stmt)
elif len(stmt.lvalues) > 1 or not isinstance(stmt.lvalues[0], NameExpr):
# An assignment, but an invalid one.
self.fail(TPDICT_CLASS_ERROR, stmt)
else:
name = stmt.lvalues[0].name
if name in (oldfields or []):
self.fail('Cannot overwrite TypedDict field "{}" while extending'
.format(name), stmt)
continue
if name in fields:
self.fail('Duplicate TypedDict field "{}"'.format(name), stmt)
continue
# Append name and type in this case...
fields.append(name)
types.append(AnyType(TypeOfAny.unannotated)
if stmt.type is None
else self.anal_type(stmt.type))
# ...despite possible minor failures that allow further analyzis.
if stmt.type is None or hasattr(stmt, 'new_syntax') and not stmt.new_syntax:
self.fail(TPDICT_CLASS_ERROR, stmt)
elif not isinstance(stmt.rvalue, TempNode):
# x: int assigns rvalue to TempNode(AnyType())
self.fail('Right hand side values are not supported in TypedDict', stmt)
total = True # type: Optional[bool]
if 'total' in defn.keywords:
total = self.parse_bool(defn.keywords['total'])
if total is None:
self.fail('Value of "total" must be True or False', defn)
total = True
required_keys = set(fields) if total else set()
return fields, types, required_keys
def visit_import(self, i: Import) -> None:
for id, as_id in i.ids:
if as_id is not None:
self.add_module_symbol(id, as_id, module_public=True, context=i)
else:
# Modules imported in a stub file without using 'as x' won't get exported
module_public = not self.is_stub_file
base = id.split('.')[0]
self.add_module_symbol(base, base, module_public=module_public,
context=i, module_hidden=not module_public)
self.add_submodules_to_parent_modules(id, module_public)
def add_submodules_to_parent_modules(self, id: str, module_public: bool) -> None:
"""Recursively adds a reference to a newly loaded submodule to its parent.
When you import a submodule in any way, Python will add a reference to that
submodule to its parent. So, if you do something like `import A.B` or
`from A import B` or `from A.B import Foo`, Python will add a reference to
module A.B to A's namespace.
Note that this "parent patching" process is completely independent from any
changes made to the *importer's* namespace. For example, if you have a file
named `foo.py` where you do `from A.B import Bar`, then foo's namespace will
be modified to contain a reference to only Bar. Independently, A's namespace
will be modified to contain a reference to `A.B`.
"""
while '.' in id:
parent, child = id.rsplit('.', 1)
parent_mod = self.modules.get(parent)
if parent_mod and child not in parent_mod.names:
child_mod = self.modules.get(id)
if child_mod:
sym = SymbolTableNode(MODULE_REF, child_mod,
module_public=module_public)
parent_mod.names[child] = sym
id = parent
def add_module_symbol(self, id: str, as_id: str, module_public: bool,
context: Context, module_hidden: bool = False) -> None:
if id in self.modules:
m = self.modules[id]
self.add_symbol(as_id, SymbolTableNode(MODULE_REF, m,
module_public=module_public,
module_hidden=module_hidden), context)
else:
self.add_unknown_symbol(as_id, context, is_import=True)
def visit_import_from(self, imp: ImportFrom) -> None:
import_id = self.correct_relative_import(imp)
self.add_submodules_to_parent_modules(import_id, True)
module = self.modules.get(import_id)
for id, as_id in imp.names:
node = module.names.get(id) if module else None
missing = False
possible_module_id = import_id + '.' + id
# If the module does not contain a symbol with the name 'id',
# try checking if it's a module instead.
if not node or node.kind == UNBOUND_IMPORTED:
mod = self.modules.get(possible_module_id)
if mod is not None:
node = SymbolTableNode(MODULE_REF, mod)
self.add_submodules_to_parent_modules(possible_module_id, True)
elif possible_module_id in self.missing_modules:
missing = True
# If it is still not resolved, and the module is a stub
# check for a module level __getattr__
if module and not node and module.is_stub and '__getattr__' in module.names:
getattr_defn = module.names['__getattr__']
if isinstance(getattr_defn.node, FuncDef):
if isinstance(getattr_defn.node.type, CallableType):
typ = getattr_defn.node.type.ret_type
else:
typ = AnyType(TypeOfAny.from_error)
if as_id:
name = as_id
else:
name = id
ast_node = Var(name, type=typ)
symbol = SymbolTableNode(GDEF, ast_node)
self.add_symbol(name, symbol, imp)
return
if node and node.kind != UNBOUND_IMPORTED and not node.module_hidden:
node = self.normalize_type_alias(node, imp)
if not node:
return
imported_id = as_id or id
existing_symbol = self.globals.get(imported_id)
if existing_symbol:
# Import can redefine a variable. They get special treatment.
if self.process_import_over_existing_name(
imported_id, existing_symbol, node, imp):
continue
# 'from m import x as x' exports x in a stub file.
module_public = not self.is_stub_file or as_id is not None
module_hidden = not module_public and possible_module_id not in self.modules
symbol = SymbolTableNode(node.kind, node.node,
node.type_override,
module_public=module_public,
normalized=node.normalized,
alias_tvars=node.alias_tvars,
module_hidden=module_hidden)
self.add_symbol(imported_id, symbol, imp)
elif module and not missing:
# Missing attribute.
message = "Module '{}' has no attribute '{}'".format(import_id, id)
extra = self.undefined_name_extra_info('{}.{}'.format(import_id, id))
if extra:
message += " {}".format(extra)
self.fail(message, imp)
self.add_unknown_symbol(as_id or id, imp, is_import=True)
else:
# Missing module.
self.add_unknown_symbol(as_id or id, imp, is_import=True)
def process_import_over_existing_name(self,
imported_id: str, existing_symbol: SymbolTableNode,
module_symbol: SymbolTableNode,
import_node: ImportBase) -> bool:
if (existing_symbol.kind in (LDEF, GDEF, MDEF) and
isinstance(existing_symbol.node, (Var, FuncDef, TypeInfo, Decorator))):
# This is a valid import over an existing definition in the file. Construct a dummy
# assignment that we'll use to type check the import.
lvalue = NameExpr(imported_id)
lvalue.kind = existing_symbol.kind
lvalue.node = existing_symbol.node
rvalue = NameExpr(imported_id)
rvalue.kind = module_symbol.kind
rvalue.node = module_symbol.node
assignment = AssignmentStmt([lvalue], rvalue)
for node in assignment, lvalue, rvalue:
node.set_line(import_node)
import_node.assignments.append(assignment)
return True
return False
def normalize_type_alias(self, node: SymbolTableNode,
ctx: Context) -> Optional[SymbolTableNode]:
normalized = False
fullname = node.fullname
if fullname in type_aliases:
# Node refers to an aliased type such as typing.List; normalize.
new_node = self.lookup_qualified(type_aliases[fullname], ctx)
if new_node is None:
self.add_fixture_note(fullname, ctx)
return None
normalized = True
if fullname in collections_type_aliases:
# Similar, but for types from the collections module like typing.DefaultDict
self.add_module_symbol('collections', '__mypy_collections__', False, ctx)
new_node = self.lookup_qualified(collections_type_aliases[fullname], ctx)
normalized = True
if normalized:
assert new_node is not None, "Collection node not found"
node = SymbolTableNode(new_node.kind, new_node.node, new_node.type_override,
normalized=True, alias_tvars=new_node.alias_tvars)
return node
def add_fixture_note(self, fullname: str, ctx: Context) -> None:
self.note('Maybe your test fixture does not define "{}"?'.format(fullname), ctx)
if fullname in SUGGESTED_TEST_FIXTURES:
self.note(
'Consider adding [builtins fixtures/{}] to your test description'.format(
SUGGESTED_TEST_FIXTURES[fullname]), ctx)
def correct_relative_import(self, node: Union[ImportFrom, ImportAll]) -> str:
if node.relative == 0:
return node.id
parts = self.cur_mod_id.split(".")
cur_mod_id = self.cur_mod_id
rel = node.relative
if self.cur_mod_node.is_package_init_file():
rel -= 1
if len(parts) < rel:
self.fail("Relative import climbs too many namespaces", node)
if rel != 0:
cur_mod_id = ".".join(parts[:-rel])
return cur_mod_id + (("." + node.id) if node.id else "")
def visit_import_all(self, i: ImportAll) -> None:
i_id = self.correct_relative_import(i)
if i_id in self.modules:
m = self.modules[i_id]
self.add_submodules_to_parent_modules(i_id, True)
for name, node in m.names.items():
new_node = self.normalize_type_alias(node, i)
# if '__all__' exists, all nodes not included have had module_public set to
# False, and we can skip checking '_' because it's been explicitly included.
if (new_node and new_node.module_public and
(not name.startswith('_') or '__all__' in m.names)):
existing_symbol = self.globals.get(name)
if existing_symbol:
# Import can redefine a variable. They get special treatment.
if self.process_import_over_existing_name(
name, existing_symbol, new_node, i):
continue
self.add_symbol(name, SymbolTableNode(new_node.kind, new_node.node,
new_node.type_override,
normalized=new_node.normalized,
alias_tvars=new_node.alias_tvars), i)
else:
# Don't add any dummy symbols for 'from x import *' if 'x' is unknown.
pass
def add_unknown_symbol(self, name: str, context: Context, is_import: bool = False) -> None:
var = Var(name)
if self.type:
var._fullname = self.type.fullname() + "." + name
else:
var._fullname = self.qualified_name(name)
var.is_ready = True
if is_import:
any_type = AnyType(TypeOfAny.from_unimported_type)
else:
any_type = AnyType(TypeOfAny.from_error)
var.type = any_type
var.is_suppressed_import = is_import
self.add_symbol(name, SymbolTableNode(GDEF, var), context)
#
# Statements
#
def visit_block(self, b: Block) -> None:
if b.is_unreachable:
return
self.block_depth[-1] += 1
for s in b.body:
self.accept(s)
self.block_depth[-1] -= 1
def visit_block_maybe(self, b: Optional[Block]) -> None:
if b:
self.visit_block(b)
def type_analyzer(self, *,
tvar_scope: Optional[TypeVarScope] = None,
allow_tuple_literal: bool = False,
aliasing: bool = False,
third_pass: bool = False) -> TypeAnalyser:
if tvar_scope is None:
tvar_scope = self.tvar_scope
tpan = TypeAnalyser(self.lookup_qualified,
self.lookup_fully_qualified,
tvar_scope,
self.fail,
self.note,
self.plugin,
self.options,
self.is_typeshed_stub_file,
aliasing=aliasing,
allow_tuple_literal=allow_tuple_literal,
allow_unnormalized=self.is_stub_file,
third_pass=third_pass)
tpan.in_dynamic_func = bool(self.function_stack and self.function_stack[-1].is_dynamic())
tpan.global_scope = not self.type and not self.function_stack
return tpan
def anal_type(self, t: Type, *,
tvar_scope: Optional[TypeVarScope] = None,
allow_tuple_literal: bool = False,
aliasing: bool = False,
third_pass: bool = False) -> Type:
a = self.type_analyzer(tvar_scope=tvar_scope,
aliasing=aliasing,
allow_tuple_literal=allow_tuple_literal,
third_pass=third_pass)
return t.accept(a)
def visit_assignment_stmt(self, s: AssignmentStmt) -> None:
for lval in s.lvalues:
self.analyze_lvalue(lval, explicit_type=s.type is not None)
self.check_classvar(s)
s.rvalue.accept(self)
if s.type:
allow_tuple_literal = isinstance(s.lvalues[-1], (TupleExpr, ListExpr))
s.type = self.anal_type(s.type, allow_tuple_literal=allow_tuple_literal)
if (self.type and self.type.is_protocol and isinstance(lval, NameExpr) and
isinstance(s.rvalue, TempNode) and s.rvalue.no_rhs):
if isinstance(lval.node, Var):
lval.node.is_abstract_var = True
else:
if (any(isinstance(lv, NameExpr) and lv.is_inferred_def for lv in s.lvalues) and
self.type and self.type.is_protocol and not self.is_func_scope()):
self.fail('All protocol members must have explicitly declared types', s)
# Set the type if the rvalue is a simple literal (even if the above error occurred).
if len(s.lvalues) == 1 and isinstance(s.lvalues[0], NameExpr):
if s.lvalues[0].is_inferred_def:
s.type = self.analyze_simple_literal_type(s.rvalue)
if s.type:
# Store type into nodes.
for lvalue in s.lvalues:
self.store_declared_types(lvalue, s.type)
self.check_and_set_up_type_alias(s)
self.process_newtype_declaration(s)
self.process_typevar_declaration(s)
self.process_namedtuple_definition(s)
self.process_typeddict_definition(s)
self.process_enum_call(s)
if not s.type:
self.process_module_assignment(s.lvalues, s.rvalue, s)
if (len(s.lvalues) == 1 and isinstance(s.lvalues[0], NameExpr) and
s.lvalues[0].name == '__all__' and s.lvalues[0].kind == GDEF and
isinstance(s.rvalue, (ListExpr, TupleExpr))):
self.add_exports(*s.rvalue.items)
def analyze_simple_literal_type(self, rvalue: Expression) -> Optional[Type]:
"""Return builtins.int if rvalue is an int literal, etc."""
if self.options.semantic_analysis_only or self.function_stack:
# Skip this if we're only doing the semantic analysis pass.
# This is mostly to avoid breaking unit tests.
# Also skip inside a function; this is to avoid confusing
# the code that handles dead code due to isinstance()
# inside type variables with value restrictions (like
# AnyStr).
return None
if isinstance(rvalue, IntExpr):
return self.named_type_or_none('builtins.int')
if isinstance(rvalue, FloatExpr):
return self.named_type_or_none('builtins.float')
if isinstance(rvalue, StrExpr):
return self.named_type_or_none('builtins.str')
if isinstance(rvalue, BytesExpr):
return self.named_type_or_none('builtins.bytes')
if isinstance(rvalue, UnicodeExpr):
return self.named_type_or_none('builtins.unicode')
return None
def alias_fallback(self, tp: Type) -> Instance:
"""Make a dummy Instance with no methods. It is used as a fallback type
to detect errors for non-Instance aliases (i.e. Unions, Tuples, Callables).
"""
kind = (' to Callable' if isinstance(tp, CallableType) else
' to Tuple' if isinstance(tp, TupleType) else
' to Union' if isinstance(tp, UnionType) else '')
cdef = ClassDef('Type alias' + kind, Block([]))
fb_info = TypeInfo(SymbolTable(), cdef, self.cur_mod_id)
fb_info.bases = [self.object_type()]
fb_info.mro = [fb_info, self.object_type().type]
return Instance(fb_info, [])
def analyze_alias(self, rvalue: Expression,
warn_bound_tvar: bool = False) -> Tuple[Optional[Type], List[str]]:
"""Check if 'rvalue' represents a valid type allowed for aliasing
(e.g. not a type variable). If yes, return the corresponding type and a list of
qualified type variable names for generic aliases.
"""
dynamic = bool(self.function_stack and self.function_stack[-1].is_dynamic())
global_scope = not self.type and not self.function_stack
res = analyze_type_alias(rvalue,
self.lookup_qualified,
self.lookup_fully_qualified,
self.tvar_scope,
self.fail,
self.note,
self.plugin,
self.options,
self.is_typeshed_stub_file,
allow_unnormalized=True,
in_dynamic_func=dynamic,
global_scope=global_scope,
warn_bound_tvar=warn_bound_tvar)
if res:
alias_tvars = [name for (name, _) in
res.accept(TypeVariableQuery(self.lookup_qualified, self.tvar_scope))]
else:
alias_tvars = []
return res, alias_tvars
def check_and_set_up_type_alias(self, s: AssignmentStmt) -> None:
"""Check if assignment creates a type alias and set it up as needed.
For simple aliases like L = List we use a simpler mechanism, just copying TypeInfo.
For subscripted (including generic) aliases the resulting types are stored
in rvalue.analyzed.
"""
lvalue = s.lvalues[0]
if len(s.lvalues) > 1 or not isinstance(lvalue, NameExpr):
# First rule: Only simple assignments like Alias = ... create aliases.
return
if s.type:
# Second rule: Explicit type (cls: Type[A] = A) always creates variable, not alias.
return
non_global_scope = self.type or self.is_func_scope()
if isinstance(s.rvalue, NameExpr) and non_global_scope and lvalue.is_inferred_def:
# Third rule: Non-subscripted right hand side creates a variable
# at class and function scopes. For example:
#
# class Model:
# ...
# class C:
# model = Model # this is automatically a variable with type 'Type[Model]'
#
# without this rule, this typical use case will require a lot of explicit
# annotations (see the second rule).
return
rvalue = s.rvalue
res, alias_tvars = self.analyze_alias(rvalue, warn_bound_tvar=True)
if not res:
return
node = self.lookup(lvalue.name, lvalue)
assert node is not None
if not lvalue.is_inferred_def:
# Type aliases can't be re-defined.
if node and (node.kind == TYPE_ALIAS or isinstance(node.node, TypeInfo)):
self.fail('Cannot assign multiple types to name "{}"'
' without an explicit "Type[...]" annotation'
.format(lvalue.name), lvalue)
return
check_for_explicit_any(res, self.options, self.is_typeshed_stub_file, self.msg,
context=s)
# when this type alias gets "inlined", the Any is not explicit anymore,
# so we need to replace it with non-explicit Anys
res = make_any_non_explicit(res)
if isinstance(res, Instance) and not res.args and isinstance(rvalue, RefExpr):
# For simple (on-generic) aliases we use aliasing TypeInfo's
# to allow using them in runtime context where it makes sense.
node.node = res.type
if isinstance(rvalue, RefExpr):
sym = self.lookup_type_node(rvalue)
if sym:
node.normalized = sym.normalized
return
node.kind = TYPE_ALIAS
node.type_override = res
node.alias_tvars = alias_tvars
if isinstance(rvalue, (IndexExpr, CallExpr)):
# We only need this for subscripted aliases, since simple aliases
# are already processed using aliasing TypeInfo's above.
rvalue.analyzed = TypeAliasExpr(res, node.alias_tvars,
fallback=self.alias_fallback(res))
rvalue.analyzed.line = rvalue.line
rvalue.analyzed.column = rvalue.column
def analyze_lvalue(self, lval: Lvalue, nested: bool = False,
add_global: bool = False,
explicit_type: bool = False) -> None:
"""Analyze an lvalue or assignment target.
Args:
lval: The target lvalue
nested: If true, the lvalue is within a tuple or list lvalue expression
add_global: Add name to globals table only if this is true (used in first pass)
explicit_type: Assignment has type annotation
"""
if isinstance(lval, NameExpr):
# Top-level definitions within some statements (at least while) are
# not handled in the first pass, so they have to be added now.
nested_global = (not self.is_func_scope() and
self.block_depth[-1] > 0 and
not self.type)
if (add_global or nested_global) and lval.name not in self.globals:
# Define new global name.
v = Var(lval.name)
v.set_line(lval)
v._fullname = self.qualified_name(lval.name)
v.is_ready = False # Type not inferred yet
lval.node = v
lval.is_new_def = True
lval.is_inferred_def = True
lval.kind = GDEF
lval.fullname = v._fullname
self.globals[lval.name] = SymbolTableNode(GDEF, v)
elif isinstance(lval.node, Var) and lval.is_new_def:
if lval.kind == GDEF:
# Since the is_new_def flag is set, this must have been analyzed
# already in the first pass and added to the symbol table.
assert lval.node.name() in self.globals
elif (self.locals[-1] is not None and lval.name not in self.locals[-1] and
lval.name not in self.global_decls[-1] and
lval.name not in self.nonlocal_decls[-1]):
# Define new local name.
v = Var(lval.name)
v.set_line(lval)
lval.node = v
lval.is_new_def = True
lval.is_inferred_def = True
lval.kind = LDEF
lval.fullname = lval.name
self.add_local(v, lval)
elif not self.is_func_scope() and (self.type and
lval.name not in self.type.names):
# Define a new attribute within class body.
v = Var(lval.name)
v.info = self.type
v.is_initialized_in_class = True
v.set_line(lval)
v._fullname = self.qualified_name(lval.name)
lval.node = v
lval.is_new_def = True
lval.is_inferred_def = True
lval.kind = MDEF
lval.fullname = lval.name
self.type.names[lval.name] = SymbolTableNode(MDEF, v)
elif explicit_type:
# Don't re-bind types
self.name_already_defined(lval.name, lval)
else:
# Bind to an existing name.
lval.accept(self)
self.check_lvalue_validity(lval.node, lval)
elif isinstance(lval, MemberExpr):
if not add_global:
self.analyze_member_lvalue(lval)
if explicit_type and not self.is_self_member_ref(lval):
self.fail('Type cannot be declared in assignment to non-self '
'attribute', lval)
elif isinstance(lval, IndexExpr):
if explicit_type:
self.fail('Unexpected type declaration', lval)
if not add_global:
lval.accept(self)
elif (isinstance(lval, TupleExpr) or
isinstance(lval, ListExpr)):
items = lval.items
if len(items) == 0 and isinstance(lval, TupleExpr):
self.fail("can't assign to ()", lval)
self.analyze_tuple_or_list_lvalue(lval, add_global, explicit_type)
elif isinstance(lval, StarExpr):
if nested:
self.analyze_lvalue(lval.expr, nested, add_global, explicit_type)
else:
self.fail('Starred assignment target must be in a list or tuple', lval)
else:
self.fail('Invalid assignment target', lval)
def analyze_tuple_or_list_lvalue(self, lval: Union[ListExpr, TupleExpr],
add_global: bool = False,
explicit_type: bool = False) -> None:
"""Analyze an lvalue or assignment target that is a list or tuple."""
items = lval.items
star_exprs = [item for item in items if isinstance(item, StarExpr)]
if len(star_exprs) > 1:
self.fail('Two starred expressions in assignment', lval)
else:
if len(star_exprs) == 1:
star_exprs[0].valid = True
for i in items:
self.analyze_lvalue(i, nested=True, add_global=add_global,
explicit_type = explicit_type)
def analyze_member_lvalue(self, lval: MemberExpr) -> None:
lval.accept(self)
if self.is_self_member_ref(lval):
assert self.type, "Self member outside a class"
node = self.type.get(lval.name)
if node is None or isinstance(node.node, Var) and node.node.is_abstract_var:
if self.type.is_protocol and node is None:
self.fail("Protocol members cannot be defined via assignment to self", lval)
else:
# Implicit attribute definition in __init__.
lval.is_new_def = True
lval.is_inferred_def = True
v = Var(lval.name)
v.set_line(lval)
v._fullname = self.qualified_name(lval.name)
v.info = self.type
v.is_ready = False
lval.def_var = v
lval.node = v
self.type.names[lval.name] = SymbolTableNode(MDEF, v, implicit=True)
self.check_lvalue_validity(lval.node, lval)
def is_self_member_ref(self, memberexpr: MemberExpr) -> bool:
"""Does memberexpr to refer to an attribute of self?"""
if not isinstance(memberexpr.expr, NameExpr):
return False
node = memberexpr.expr.node
return isinstance(node, Var) and node.is_self
def check_lvalue_validity(self, node: Union[Expression, SymbolNode, None],
ctx: Context) -> None:
if isinstance(node, TypeVarExpr):
self.fail('Invalid assignment target', ctx)
elif isinstance(node, TypeInfo):
self.fail(CANNOT_ASSIGN_TO_TYPE, ctx)
def store_declared_types(self, lvalue: Lvalue, typ: Type) -> None:
if isinstance(typ, StarType) and not isinstance(lvalue, StarExpr):
self.fail('Star type only allowed for starred expressions', lvalue)
if isinstance(lvalue, RefExpr):
lvalue.is_inferred_def = False
if isinstance(lvalue.node, Var):
var = lvalue.node
var.type = typ
var.is_ready = True
# If node is not a variable, we'll catch it elsewhere.
elif isinstance(lvalue, TupleExpr):
if isinstance(typ, TupleType):
if len(lvalue.items) != len(typ.items):
self.fail('Incompatible number of tuple items', lvalue)
return
for item, itemtype in zip(lvalue.items, typ.items):
self.store_declared_types(item, itemtype)
else:
self.fail('Tuple type expected for multiple variables',
lvalue)
elif isinstance(lvalue, StarExpr):
# Historical behavior for the old parser
if isinstance(typ, StarType):
self.store_declared_types(lvalue.expr, typ.type)
else:
self.store_declared_types(lvalue.expr, typ)
else:
# This has been flagged elsewhere as an error, so just ignore here.
pass
def process_newtype_declaration(self, s: AssignmentStmt) -> None:
"""Check if s declares a NewType; if yes, store it in symbol table."""
# Extract and check all information from newtype declaration
name, call = self.analyze_newtype_declaration(s)
if name is None or call is None:
return
old_type = self.check_newtype_args(name, call, s)
call.analyzed = NewTypeExpr(name, old_type, line=call.line)
if old_type is None:
return
# Create the corresponding class definition if the aliased type is subtypeable
if isinstance(old_type, TupleType):
newtype_class_info = self.build_newtype_typeinfo(name, old_type, old_type.fallback)
newtype_class_info.tuple_type = old_type
elif isinstance(old_type, Instance):
if old_type.type.is_protocol:
self.fail("NewType cannot be used with protocol classes", s)
newtype_class_info = self.build_newtype_typeinfo(name, old_type, old_type)
else:
message = "Argument 2 to NewType(...) must be subclassable (got {})"
self.fail(message.format(self.msg.format(old_type)), s)
return
check_for_explicit_any(old_type, self.options, self.is_typeshed_stub_file, self.msg,
context=s)
if self.options.disallow_any_unimported and has_any_from_unimported_type(old_type):
self.msg.unimported_type_becomes_any("Argument 2 to NewType(...)", old_type, s)
# If so, add it to the symbol table.
node = self.lookup(name, s)
if node is None:
self.fail("Could not find {} in current namespace".format(name), s)
return
# TODO: why does NewType work in local scopes despite always being of kind GDEF?
node.kind = GDEF
call.analyzed.info = node.node = newtype_class_info
def analyze_newtype_declaration(self,
s: AssignmentStmt) -> Tuple[Optional[str], Optional[CallExpr]]:
"""Return the NewType call expression if `s` is a newtype declaration or None otherwise."""
name, call = None, None
if (len(s.lvalues) == 1
and isinstance(s.lvalues[0], NameExpr)
and isinstance(s.rvalue, CallExpr)
and isinstance(s.rvalue.callee, RefExpr)
and s.rvalue.callee.fullname == 'typing.NewType'):
lvalue = s.lvalues[0]
name = s.lvalues[0].name
if not lvalue.is_inferred_def:
if s.type:
self.fail("Cannot declare the type of a NewType declaration", s)
else:
self.fail("Cannot redefine '%s' as a NewType" % name, s)
# This dummy NewTypeExpr marks the call as sufficiently analyzed; it will be
# overwritten later with a fully complete NewTypeExpr if there are no other
# errors with the NewType() call.
call = s.rvalue
return name, call
def check_newtype_args(self, name: str, call: CallExpr, context: Context) -> Optional[Type]:
has_failed = False
args, arg_kinds = call.args, call.arg_kinds
if len(args) != 2 or arg_kinds[0] != ARG_POS or arg_kinds[1] != ARG_POS:
self.fail("NewType(...) expects exactly two positional arguments", context)
return None
# Check first argument
if not isinstance(args[0], (StrExpr, BytesExpr, UnicodeExpr)):
self.fail("Argument 1 to NewType(...) must be a string literal", context)
has_failed = True
elif args[0].value != name:
msg = "String argument 1 '{}' to NewType(...) does not match variable name '{}'"
self.fail(msg.format(args[0].value, name), context)
has_failed = True
# Check second argument
try:
unanalyzed_type = expr_to_unanalyzed_type(args[1])
except TypeTranslationError:
self.fail("Argument 2 to NewType(...) must be a valid type", context)
return None
old_type = self.anal_type(unanalyzed_type)
return None if has_failed else old_type
def build_newtype_typeinfo(self, name: str, old_type: Type, base_type: Instance) -> TypeInfo:
info = self.basic_new_typeinfo(name, base_type)
info.is_newtype = True
# Add __init__ method
args = [Argument(Var('self'), NoneTyp(), None, ARG_POS),
self.make_argument('item', old_type)]
signature = CallableType(
arg_types=[Instance(info, []), old_type],
arg_kinds=[arg.kind for arg in args],
arg_names=['self', 'item'],
ret_type=old_type,
fallback=self.named_type('__builtins__.function'),
name=name)
init_func = FuncDef('__init__', args, Block([]), typ=signature)
init_func.info = info
info.names['__init__'] = SymbolTableNode(MDEF, init_func)
return info
def process_typevar_declaration(self, s: AssignmentStmt) -> None:
"""Check if s declares a TypeVar; it yes, store it in symbol table."""
call = self.get_typevar_declaration(s)
if not call:
return
lvalue = s.lvalues[0]
assert isinstance(lvalue, NameExpr)
name = lvalue.name
if not lvalue.is_inferred_def:
if s.type:
self.fail("Cannot declare the type of a type variable", s)
else:
self.fail("Cannot redefine '%s' as a type variable" % name, s)
return
if not self.check_typevar_name(call, name, s):
return
# Constraining types
n_values = call.arg_kinds[1:].count(ARG_POS)
values = self.analyze_types(call.args[1:1 + n_values])
res = self.process_typevar_parameters(call.args[1 + n_values:],
call.arg_names[1 + n_values:],
call.arg_kinds[1 + n_values:],
n_values,
s)
if res is None:
return
variance, upper_bound = res
if self.options.disallow_any_unimported:
for idx, constraint in enumerate(values, start=1):
if has_any_from_unimported_type(constraint):
prefix = "Constraint {}".format(idx)
self.msg.unimported_type_becomes_any(prefix, constraint, s)
if has_any_from_unimported_type(upper_bound):
prefix = "Upper bound of type variable"
self.msg.unimported_type_becomes_any(prefix, upper_bound, s)
for t in values + [upper_bound]:
check_for_explicit_any(t, self.options, self.is_typeshed_stub_file, self.msg,
context=s)
# Yes, it's a valid type variable definition! Add it to the symbol table.
node = self.lookup(name, s)
assert node is not None
assert node.fullname is not None
node.kind = TVAR
TypeVar = TypeVarExpr(name, node.fullname, values, upper_bound, variance)
TypeVar.line = call.line
call.analyzed = TypeVar
node.node = TypeVar
def check_typevar_name(self, call: CallExpr, name: str, context: Context) -> bool:
if len(call.args) < 1:
self.fail("Too few arguments for TypeVar()", context)
return False
if (not isinstance(call.args[0], (StrExpr, BytesExpr, UnicodeExpr))
or not call.arg_kinds[0] == ARG_POS):
self.fail("TypeVar() expects a string literal as first argument", context)
return False
elif call.args[0].value != name:
msg = "String argument 1 '{}' to TypeVar(...) does not match variable name '{}'"
self.fail(msg.format(call.args[0].value, name), context)
return False
return True
def get_typevar_declaration(self, s: AssignmentStmt) -> Optional[CallExpr]:
"""Returns the TypeVar() call expression if `s` is a type var declaration
or None otherwise.
"""
if len(s.lvalues) != 1 or not isinstance(s.lvalues[0], NameExpr):
return None
if not isinstance(s.rvalue, CallExpr):
return None
call = s.rvalue
callee = call.callee
if not isinstance(callee, RefExpr):
return None
if callee.fullname != 'typing.TypeVar':
return None
return call
def process_typevar_parameters(self, args: List[Expression],
names: List[Optional[str]],
kinds: List[int],
num_values: int,
context: Context) -> Optional[Tuple[int, Type]]:
has_values = (num_values > 0)
covariant = False
contravariant = False
upper_bound = self.object_type() # type: Type
for param_value, param_name, param_kind in zip(args, names, kinds):
if not param_kind == ARG_NAMED:
self.fail("Unexpected argument to TypeVar()", context)
return None
if param_name == 'covariant':
if isinstance(param_value, NameExpr):
if param_value.name == 'True':
covariant = True
else:
self.fail("TypeVar 'covariant' may only be 'True'", context)
return None
else:
self.fail("TypeVar 'covariant' may only be 'True'", context)
return None
elif param_name == 'contravariant':
if isinstance(param_value, NameExpr):
if param_value.name == 'True':
contravariant = True
else:
self.fail("TypeVar 'contravariant' may only be 'True'", context)
return None
else:
self.fail("TypeVar 'contravariant' may only be 'True'", context)
return None
elif param_name == 'bound':
if has_values:
self.fail("TypeVar cannot have both values and an upper bound", context)
return None
try:
upper_bound = self.expr_to_analyzed_type(param_value)
except TypeTranslationError:
self.fail("TypeVar 'bound' must be a type", param_value)
return None
elif param_name == 'values':
# Probably using obsolete syntax with values=(...). Explain the current syntax.
self.fail("TypeVar 'values' argument not supported", context)
self.fail("Use TypeVar('T', t, ...) instead of TypeVar('T', values=(t, ...))",
context)
return None
else:
self.fail("Unexpected argument to TypeVar(): {}".format(param_name), context)
return None
if covariant and contravariant:
self.fail("TypeVar cannot be both covariant and contravariant", context)
return None
elif num_values == 1:
self.fail("TypeVar cannot have only a single constraint", context)
return None
elif covariant:
variance = COVARIANT
elif contravariant:
variance = CONTRAVARIANT
else:
variance = INVARIANT
return (variance, upper_bound)
def process_namedtuple_definition(self, s: AssignmentStmt) -> None:
"""Check if s defines a namedtuple; if yes, store the definition in symbol table."""
if len(s.lvalues) != 1 or not isinstance(s.lvalues[0], NameExpr):
return
lvalue = s.lvalues[0]
name = lvalue.name
named_tuple = self.check_namedtuple(s.rvalue, name)
if named_tuple is None:
return
# Yes, it's a valid namedtuple definition. Add it to the symbol table.
node = self.lookup(name, s)
assert node is not None
node.kind = GDEF # TODO locally defined namedtuple
node.node = named_tuple
def check_namedtuple(self, node: Expression,
var_name: Optional[str] = None) -> Optional[TypeInfo]:
"""Check if a call defines a namedtuple.
The optional var_name argument is the name of the variable to
which this is assigned, if any.
If it does, return the corresponding TypeInfo. Return None otherwise.
If the definition is invalid but looks like a namedtuple,
report errors but return (some) TypeInfo.
"""
if not isinstance(node, CallExpr):
return None
call = node
callee = call.callee
if not isinstance(callee, RefExpr):
return None
fullname = callee.fullname
if fullname not in ('collections.namedtuple', 'typing.NamedTuple'):
return None
items, types, ok = self.parse_namedtuple_args(call, fullname)
if not ok:
# Error. Construct dummy return value.
return self.build_namedtuple_typeinfo('namedtuple', [], [], {})
name = cast(StrExpr, call.args[0]).value
if name != var_name or self.is_func_scope():
# Give it a unique name derived from the line number.
name += '@' + str(call.line)
info = self.build_namedtuple_typeinfo(name, items, types, {})
# Store it as a global just in case it would remain anonymous.
# (Or in the nearest class if there is one.)
stnode = SymbolTableNode(GDEF, info)
if self.type:
self.type.names[name] = stnode
else:
self.globals[name] = stnode
call.analyzed = NamedTupleExpr(info)
call.analyzed.set_line(call.line, call.column)
return info
def parse_namedtuple_args(self, call: CallExpr,
fullname: str) -> Tuple[List[str], List[Type], bool]:
# TODO: Share code with check_argument_count in checkexpr.py?
args = call.args
if len(args) < 2:
return self.fail_namedtuple_arg("Too few arguments for namedtuple()", call)
if len(args) > 2:
# FIX incorrect. There are two additional parameters
return self.fail_namedtuple_arg("Too many arguments for namedtuple()", call)
if call.arg_kinds != [ARG_POS, ARG_POS]:
return self.fail_namedtuple_arg("Unexpected arguments to namedtuple()", call)
if not isinstance(args[0], (StrExpr, BytesExpr, UnicodeExpr)):
return self.fail_namedtuple_arg(
"namedtuple() expects a string literal as the first argument", call)
types = [] # type: List[Type]
ok = True
if not isinstance(args[1], (ListExpr, TupleExpr)):
if (fullname == 'collections.namedtuple'
and isinstance(args[1], (StrExpr, BytesExpr, UnicodeExpr))):
str_expr = cast(StrExpr, args[1])
items = str_expr.value.replace(',', ' ').split()
else:
return self.fail_namedtuple_arg(
"List or tuple literal expected as the second argument to namedtuple()", call)
else:
listexpr = args[1]
if fullname == 'collections.namedtuple':
# The fields argument contains just names, with implicit Any types.
if any(not isinstance(item, (StrExpr, BytesExpr, UnicodeExpr))
for item in listexpr.items):
return self.fail_namedtuple_arg("String literal expected as namedtuple() item",
call)
items = [cast(StrExpr, item).value for item in listexpr.items]
else:
# The fields argument contains (name, type) tuples.
items, types, ok = self.parse_namedtuple_fields_with_types(listexpr.items, call)
if not types:
types = [AnyType(TypeOfAny.unannotated) for _ in items]
underscore = [item for item in items if item.startswith('_')]
if underscore:
self.fail("namedtuple() field names cannot start with an underscore: "
+ ', '.join(underscore), call)
return items, types, ok
def parse_namedtuple_fields_with_types(self, nodes: List[Expression],
context: Context) -> Tuple[List[str], List[Type], bool]:
items = [] # type: List[str]
types = [] # type: List[Type]
for item in nodes:
if isinstance(item, TupleExpr):
if len(item.items) != 2:
return self.fail_namedtuple_arg("Invalid NamedTuple field definition",
item)
name, type_node = item.items
if isinstance(name, (StrExpr, BytesExpr, UnicodeExpr)):
items.append(name.value)
else:
return self.fail_namedtuple_arg("Invalid NamedTuple() field name", item)
try:
type = expr_to_unanalyzed_type(type_node)
except TypeTranslationError:
return self.fail_namedtuple_arg('Invalid field type', type_node)
types.append(self.anal_type(type))
else:
return self.fail_namedtuple_arg("Tuple expected as NamedTuple() field", item)
return items, types, True
def fail_namedtuple_arg(self, message: str,
context: Context) -> Tuple[List[str], List[Type], bool]:
self.fail(message, context)
return [], [], False
def basic_new_typeinfo(self, name: str, basetype_or_fallback: Instance) -> TypeInfo:
class_def = ClassDef(name, Block([]))
class_def.fullname = self.qualified_name(name)
info = TypeInfo(SymbolTable(), class_def, self.cur_mod_id)
class_def.info = info
mro = basetype_or_fallback.type.mro
if mro is None:
# Forward reference, MRO should be recalculated in third pass.
mro = [basetype_or_fallback.type, self.object_type().type]
info.mro = [info] + mro
info.bases = [basetype_or_fallback]
return info
def build_namedtuple_typeinfo(self, name: str, items: List[str], types: List[Type],
default_items: Dict[str, Expression]) -> TypeInfo:
strtype = self.str_type()
implicit_any = AnyType(TypeOfAny.special_form)
basetuple_type = self.named_type('__builtins__.tuple', [implicit_any])
dictype = (self.named_type_or_none('builtins.dict', [strtype, implicit_any])
or self.object_type())
# Actual signature should return OrderedDict[str, Union[types]]
ordereddictype = (self.named_type_or_none('builtins.dict', [strtype, implicit_any])
or self.object_type())
fallback = self.named_type('__builtins__.tuple', [implicit_any])
# Note: actual signature should accept an invariant version of Iterable[UnionType[types]].
# but it can't be expressed. 'new' and 'len' should be callable types.
iterable_type = self.named_type_or_none('typing.Iterable', [implicit_any])
function_type = self.named_type('__builtins__.function')
info = self.basic_new_typeinfo(name, fallback)
info.is_named_tuple = True
info.tuple_type = TupleType(types, fallback)
def patch() -> None:
# Calculate the correct value type for the fallback tuple.
assert info.tuple_type, "TupleType type deleted before calling the patch"
fallback.args[0] = join.join_type_list(list(info.tuple_type.items))
# We can't calculate the complete fallback type until after semantic
# analysis, since otherwise MROs might be incomplete. Postpone a callback
# function that patches the fallback.
self.patches.append(patch)
def add_field(var: Var, is_initialized_in_class: bool = False,
is_property: bool = False) -> None:
var.info = info
var.is_initialized_in_class = is_initialized_in_class
var.is_property = is_property
var._fullname = '%s.%s' % (info.fullname(), var.name())
info.names[var.name()] = SymbolTableNode(MDEF, var)
vars = [Var(item, typ) for item, typ in zip(items, types)]
for var in vars:
add_field(var, is_property=True)
tuple_of_strings = TupleType([strtype for _ in items], basetuple_type)
add_field(Var('_fields', tuple_of_strings), is_initialized_in_class=True)
add_field(Var('_field_types', dictype), is_initialized_in_class=True)
add_field(Var('_field_defaults', dictype), is_initialized_in_class=True)
add_field(Var('_source', strtype), is_initialized_in_class=True)
add_field(Var('__annotations__', ordereddictype), is_initialized_in_class=True)
add_field(Var('__doc__', strtype), is_initialized_in_class=True)
tvd = TypeVarDef('NT', 'NT', 1, [], info.tuple_type)
selftype = TypeVarType(tvd)
def add_method(funcname: str,
ret: Type,
args: List[Argument],
name: Optional[str] = None,
is_classmethod: bool = False,
) -> None:
if is_classmethod:
first = [Argument(Var('cls'), TypeType.make_normalized(selftype), None, ARG_POS)]
else:
first = [Argument(Var('self'), selftype, None, ARG_POS)]
args = first + args
types = [arg.type_annotation for arg in args]
items = [arg.variable.name() for arg in args]
arg_kinds = [arg.kind for arg in args]
assert None not in types
signature = CallableType(cast(List[Type], types), arg_kinds, items, ret,
function_type)
signature.variables = [tvd]
func = FuncDef(funcname, args, Block([]))
func.info = info
func.is_class = is_classmethod
func.type = set_callable_name(signature, func)
func._fullname = info.fullname() + '.' + funcname
if is_classmethod:
v = Var(funcname, func.type)
v.is_classmethod = True
v.info = info
v._fullname = func._fullname
dec = Decorator(func, [NameExpr('classmethod')], v)
info.names[funcname] = SymbolTableNode(MDEF, dec)
else:
info.names[funcname] = SymbolTableNode(MDEF, func)
add_method('_replace', ret=selftype,
args=[Argument(var, var.type, EllipsisExpr(), ARG_NAMED_OPT) for var in vars])
def make_init_arg(var: Var) -> Argument:
default = default_items.get(var.name(), None)
kind = ARG_POS if default is None else ARG_OPT
return Argument(var, var.type, default, kind)
add_method('__init__', ret=NoneTyp(), name=info.name(),
args=[make_init_arg(var) for var in vars])
add_method('_asdict', args=[], ret=ordereddictype)
special_form_any = AnyType(TypeOfAny.special_form)
add_method('_make', ret=selftype, is_classmethod=True,
args=[Argument(Var('iterable', iterable_type), iterable_type, None, ARG_POS),
Argument(Var('new'), special_form_any, EllipsisExpr(), ARG_NAMED_OPT),
Argument(Var('len'), special_form_any, EllipsisExpr(), ARG_NAMED_OPT)])
return info
def make_argument(self, name: str, type: Type) -> Argument:
return Argument(Var(name), type, None, ARG_POS)
def analyze_types(self, items: List[Expression]) -> List[Type]:
result = [] # type: List[Type]
for node in items:
try:
result.append(self.anal_type(expr_to_unanalyzed_type(node)))
except TypeTranslationError:
self.fail('Type expected', node)
result.append(AnyType(TypeOfAny.from_error))
return result
def process_typeddict_definition(self, s: AssignmentStmt) -> None:
"""Check if s defines a TypedDict; if yes, store the definition in symbol table."""
if len(s.lvalues) != 1 or not isinstance(s.lvalues[0], NameExpr):
return
lvalue = s.lvalues[0]
name = lvalue.name
typed_dict = self.check_typeddict(s.rvalue, name)
if typed_dict is None:
return
# Yes, it's a valid TypedDict definition. Add it to the symbol table.
node = self.lookup(name, s)
if node:
node.kind = GDEF # TODO locally defined TypedDict
node.node = typed_dict
def check_typeddict(self, node: Expression,
var_name: Optional[str] = None) -> Optional[TypeInfo]:
"""Check if a call defines a TypedDict.
The optional var_name argument is the name of the variable to
which this is assigned, if any.
If it does, return the corresponding TypeInfo. Return None otherwise.
If the definition is invalid but looks like a TypedDict,
report errors but return (some) TypeInfo.
"""
if not isinstance(node, CallExpr):
return None
call = node
callee = call.callee
if not isinstance(callee, RefExpr):
return None
fullname = callee.fullname
if fullname != 'mypy_extensions.TypedDict':
return None
items, types, total, ok = self.parse_typeddict_args(call)
if not ok:
# Error. Construct dummy return value.
info = self.build_typeddict_typeinfo('TypedDict', [], [], set())
else:
name = cast(StrExpr, call.args[0]).value
if var_name is not None and name != var_name:
self.fail(
"First argument '{}' to TypedDict() does not match variable name '{}'".format(
name, var_name), node)
if name != var_name or self.is_func_scope():
# Give it a unique name derived from the line number.
name += '@' + str(call.line)
required_keys = set(items) if total else set()
info = self.build_typeddict_typeinfo(name, items, types, required_keys)
# Store it as a global just in case it would remain anonymous.
# (Or in the nearest class if there is one.)
stnode = SymbolTableNode(GDEF, info)
if self.type:
self.type.names[name] = stnode
else:
self.globals[name] = stnode
call.analyzed = TypedDictExpr(info)
call.analyzed.set_line(call.line, call.column)
return info
def parse_typeddict_args(self, call: CallExpr) -> Tuple[List[str], List[Type], bool, bool]:
# TODO: Share code with check_argument_count in checkexpr.py?
args = call.args
if len(args) < 2:
return self.fail_typeddict_arg("Too few arguments for TypedDict()", call)
if len(args) > 3:
return self.fail_typeddict_arg("Too many arguments for TypedDict()", call)
# TODO: Support keyword arguments
if call.arg_kinds not in ([ARG_POS, ARG_POS], [ARG_POS, ARG_POS, ARG_NAMED]):
return self.fail_typeddict_arg("Unexpected arguments to TypedDict()", call)
if len(args) == 3 and call.arg_names[2] != 'total':
return self.fail_typeddict_arg(
'Unexpected keyword argument "{}" for "TypedDict"'.format(call.arg_names[2]), call)
if not isinstance(args[0], (StrExpr, BytesExpr, UnicodeExpr)):
return self.fail_typeddict_arg(
"TypedDict() expects a string literal as the first argument", call)
if not isinstance(args[1], DictExpr):
return self.fail_typeddict_arg(
"TypedDict() expects a dictionary literal as the second argument", call)
total = True # type: Optional[bool]
if len(args) == 3:
total = self.parse_bool(call.args[2])
if total is None:
return self.fail_typeddict_arg(
'TypedDict() "total" argument must be True or False', call)
dictexpr = args[1]
items, types, ok = self.parse_typeddict_fields_with_types(dictexpr.items, call)
for t in types:
check_for_explicit_any(t, self.options, self.is_typeshed_stub_file, self.msg,
context=call)
if self.options.disallow_any_unimported:
for t in types:
if has_any_from_unimported_type(t):
self.msg.unimported_type_becomes_any("Type of a TypedDict key", t, dictexpr)
assert total is not None
return items, types, total, ok
def parse_bool(self, expr: Expression) -> Optional[bool]:
if isinstance(expr, NameExpr):
if expr.fullname == 'builtins.True':
return True
if expr.fullname == 'builtins.False':
return False
return None
def parse_typeddict_fields_with_types(self, dict_items: List[Tuple[Expression, Expression]],
context: Context) -> Tuple[List[str], List[Type], bool]:
items = [] # type: List[str]
types = [] # type: List[Type]
for (field_name_expr, field_type_expr) in dict_items:
if isinstance(field_name_expr, (StrExpr, BytesExpr, UnicodeExpr)):
items.append(field_name_expr.value)
else:
self.fail_typeddict_arg("Invalid TypedDict() field name", field_name_expr)
return [], [], False
try:
type = expr_to_unanalyzed_type(field_type_expr)
except TypeTranslationError:
self.fail_typeddict_arg('Invalid field type', field_type_expr)
return [], [], False
types.append(self.anal_type(type))
return items, types, True
def fail_typeddict_arg(self, message: str,
context: Context) -> Tuple[List[str], List[Type], bool, bool]:
self.fail(message, context)
return [], [], True, False
def build_typeddict_typeinfo(self, name: str, items: List[str],
types: List[Type],
required_keys: Set[str]) -> TypeInfo:
fallback = (self.named_type_or_none('typing.Mapping',
[self.str_type(), self.object_type()])
or self.object_type())
info = self.basic_new_typeinfo(name, fallback)
info.typeddict_type = TypedDictType(OrderedDict(zip(items, types)), required_keys,
fallback)
def patch() -> None:
# Calculate the correct value type for the fallback Mapping.
assert info.typeddict_type, "TypedDict type deleted before calling the patch"
fallback.args[1] = join.join_type_list(list(info.typeddict_type.items.values()))
# We can't calculate the complete fallback type until after semantic
# analysis, since otherwise MROs might be incomplete. Postpone a callback
# function that patches the fallback.
self.patches.append(patch)
return info
def check_classvar(self, s: AssignmentStmt) -> None:
lvalue = s.lvalues[0]
if len(s.lvalues) != 1 or not isinstance(lvalue, RefExpr):
return
if not s.type or not self.is_classvar(s.type):
return
if self.is_class_scope() and isinstance(lvalue, NameExpr):
node = lvalue.node
if isinstance(node, Var):
node.is_classvar = True
elif not isinstance(lvalue, MemberExpr) or self.is_self_member_ref(lvalue):
# In case of member access, report error only when assigning to self
# Other kinds of member assignments should be already reported
self.fail_invalid_classvar(lvalue)
def is_classvar(self, typ: Type) -> bool:
if not isinstance(typ, UnboundType):
return False
sym = self.lookup_qualified(typ.name, typ)
if not sym or not sym.node:
return False
return sym.node.fullname() == 'typing.ClassVar'
def fail_invalid_classvar(self, context: Context) -> None:
self.fail('ClassVar can only be used for assignments in class body', context)
def process_module_assignment(self, lvals: List[Expression], rval: Expression,
ctx: AssignmentStmt) -> None:
"""Propagate module references across assignments.
Recursively handles the simple form of iterable unpacking; doesn't
handle advanced unpacking with *rest, dictionary unpacking, etc.
In an expression like x = y = z, z is the rval and lvals will be [x,
y].
"""
if all(isinstance(v, (TupleExpr, ListExpr)) for v in lvals + [rval]):
# rval and all lvals are either list or tuple, so we are dealing
# with unpacking assignment like `x, y = a, b`. Mypy didn't
# understand our all(isinstance(...)), so cast them as
# Union[TupleExpr, ListExpr] so mypy knows it is safe to access
# their .items attribute.
seq_lvals = cast(List[Union[TupleExpr, ListExpr]], lvals)
seq_rval = cast(Union[TupleExpr, ListExpr], rval)
# given an assignment like:
# (x, y) = (m, n) = (a, b)
# we now have:
# seq_lvals = [(x, y), (m, n)]
# seq_rval = (a, b)
# We now zip this into:
# elementwise_assignments = [(a, x, m), (b, y, n)]
# where each elementwise assignment includes one element of rval and the
# corresponding element of each lval. Basically we unpack
# (x, y) = (m, n) = (a, b)
# into elementwise assignments
# x = m = a
# y = n = b
# and then we recursively call this method for each of those assignments.
# If the rval and all lvals are not all of the same length, zip will just ignore
# extra elements, so no error will be raised here; mypy will later complain
# about the length mismatch in type-checking.
elementwise_assignments = zip(seq_rval.items, *[v.items for v in seq_lvals])
for rv, *lvs in elementwise_assignments:
self.process_module_assignment(lvs, rv, ctx)
elif isinstance(rval, RefExpr):
rnode = self.lookup_type_node(rval)
if rnode and rnode.kind == MODULE_REF:
for lval in lvals:
if not isinstance(lval, NameExpr):
continue
# respect explicitly annotated type
if (isinstance(lval.node, Var) and lval.node.type is not None):
continue
lnode = self.lookup(lval.name, ctx)
if lnode:
if lnode.kind == MODULE_REF and lnode.node is not rnode.node:
self.fail(
"Cannot assign multiple modules to name '{}' "
"without explicit 'types.ModuleType' annotation".format(lval.name),
ctx)
# never create module alias except on initial var definition
elif lval.is_inferred_def:
lnode.kind = MODULE_REF
lnode.node = rnode.node
def process_enum_call(self, s: AssignmentStmt) -> None:
"""Check if s defines an Enum; if yes, store the definition in symbol table."""
if len(s.lvalues) != 1 or not isinstance(s.lvalues[0], NameExpr):
return
lvalue = s.lvalues[0]
name = lvalue.name
enum_call = self.check_enum_call(s.rvalue, name)
if enum_call is None:
return
# Yes, it's a valid Enum definition. Add it to the symbol table.
node = self.lookup(name, s)
if node:
node.kind = GDEF # TODO locally defined Enum
node.node = enum_call
def check_enum_call(self, node: Expression,
var_name: Optional[str] = None) -> Optional[TypeInfo]:
"""Check if a call defines an Enum.
Example:
A = enum.Enum('A', 'foo bar')
is equivalent to:
class A(enum.Enum):
foo = 1
bar = 2
"""
if not isinstance(node, CallExpr):
return None
call = node
callee = call.callee
if not isinstance(callee, RefExpr):
return None
fullname = callee.fullname
if fullname not in ('enum.Enum', 'enum.IntEnum', 'enum.Flag', 'enum.IntFlag'):
return None
items, values, ok = self.parse_enum_call_args(call, fullname.split('.')[-1])
if not ok:
# Error. Construct dummy return value.
return self.build_enum_call_typeinfo('Enum', [], fullname)
name = cast(StrExpr, call.args[0]).value
if name != var_name or self.is_func_scope():
# Give it a unique name derived from the line number.
name += '@' + str(call.line)
info = self.build_enum_call_typeinfo(name, items, fullname)
# Store it as a global just in case it would remain anonymous.
# (Or in the nearest class if there is one.)
stnode = SymbolTableNode(GDEF, info)
if self.type:
self.type.names[name] = stnode
else:
self.globals[name] = stnode
call.analyzed = EnumCallExpr(info, items, values)
call.analyzed.set_line(call.line, call.column)
return info
def build_enum_call_typeinfo(self, name: str, items: List[str], fullname: str) -> TypeInfo:
base = self.named_type_or_none(fullname)
assert base is not None
info = self.basic_new_typeinfo(name, base)
info.is_enum = True
for item in items:
var = Var(item)
var.info = info
var.is_property = True
info.names[item] = SymbolTableNode(MDEF, var)
return info
def parse_enum_call_args(self, call: CallExpr,
class_name: str) -> Tuple[List[str],
List[Optional[Expression]], bool]:
args = call.args
if len(args) < 2:
return self.fail_enum_call_arg("Too few arguments for %s()" % class_name, call)
if len(args) > 2:
return self.fail_enum_call_arg("Too many arguments for %s()" % class_name, call)
if call.arg_kinds != [ARG_POS, ARG_POS]:
return self.fail_enum_call_arg("Unexpected arguments to %s()" % class_name, call)
if not isinstance(args[0], (StrExpr, UnicodeExpr)):
return self.fail_enum_call_arg(
"%s() expects a string literal as the first argument" % class_name, call)
items = []
values = [] # type: List[Optional[Expression]]
if isinstance(args[1], (StrExpr, UnicodeExpr)):
fields = args[1].value
for field in fields.replace(',', ' ').split():
items.append(field)
elif isinstance(args[1], (TupleExpr, ListExpr)):
seq_items = args[1].items
if all(isinstance(seq_item, (StrExpr, UnicodeExpr)) for seq_item in seq_items):
items = [cast(StrExpr, seq_item).value for seq_item in seq_items]
elif all(isinstance(seq_item, (TupleExpr, ListExpr))
and len(seq_item.items) == 2
and isinstance(seq_item.items[0], (StrExpr, UnicodeExpr))
for seq_item in seq_items):
for seq_item in seq_items:
assert isinstance(seq_item, (TupleExpr, ListExpr))
name, value = seq_item.items
assert isinstance(name, (StrExpr, UnicodeExpr))
items.append(name.value)
values.append(value)
else:
return self.fail_enum_call_arg(
"%s() with tuple or list expects strings or (name, value) pairs" %
class_name,
call)
elif isinstance(args[1], DictExpr):
for key, value in args[1].items:
if not isinstance(key, (StrExpr, UnicodeExpr)):
return self.fail_enum_call_arg(
"%s() with dict literal requires string literals" % class_name, call)
items.append(key.value)
values.append(value)
else:
# TODO: Allow dict(x=1, y=2) as a substitute for {'x': 1, 'y': 2}?
return self.fail_enum_call_arg(
"%s() expects a string, tuple, list or dict literal as the second argument" %
class_name,
call)
if len(items) == 0:
return self.fail_enum_call_arg("%s() needs at least one item" % class_name, call)
if not values:
values = [None] * len(items)
assert len(items) == len(values)
return items, values, True
def fail_enum_call_arg(self, message: str,
context: Context) -> Tuple[List[str],
List[Optional[Expression]], bool]:
self.fail(message, context)
return [], [], False
def visit_decorator(self, dec: Decorator) -> None:
for d in dec.decorators:
d.accept(self)
removed = [] # type: List[int]
no_type_check = False
for i, d in enumerate(dec.decorators):
# A bunch of decorators are special cased here.
if refers_to_fullname(d, 'abc.abstractmethod'):
removed.append(i)
dec.func.is_abstract = True
self.check_decorated_function_is_method('abstractmethod', dec)
elif (refers_to_fullname(d, 'asyncio.coroutines.coroutine') or
refers_to_fullname(d, 'types.coroutine')):
removed.append(i)
dec.func.is_awaitable_coroutine = True
elif refers_to_fullname(d, 'builtins.staticmethod'):
removed.append(i)
dec.func.is_static = True
dec.var.is_staticmethod = True
self.check_decorated_function_is_method('staticmethod', dec)
elif refers_to_fullname(d, 'builtins.classmethod'):
removed.append(i)
dec.func.is_class = True
dec.var.is_classmethod = True
self.check_decorated_function_is_method('classmethod', dec)
elif (refers_to_fullname(d, 'builtins.property') or
refers_to_fullname(d, 'abc.abstractproperty')):
removed.append(i)
dec.func.is_property = True
dec.var.is_property = True
if refers_to_fullname(d, 'abc.abstractproperty'):
dec.func.is_abstract = True
self.check_decorated_function_is_method('property', dec)
if len(dec.func.arguments) > 1:
self.fail('Too many arguments', dec.func)
elif refers_to_fullname(d, 'typing.no_type_check'):
dec.var.type = AnyType(TypeOfAny.special_form)
no_type_check = True
for i in reversed(removed):
del dec.decorators[i]
if not dec.is_overload or dec.var.is_property:
if self.is_func_scope():
self.add_symbol(dec.var.name(), SymbolTableNode(LDEF, dec),
dec)
elif self.type:
dec.var.info = self.type
dec.var.is_initialized_in_class = True
self.add_symbol(dec.var.name(), SymbolTableNode(MDEF, dec),
dec)
if not no_type_check:
dec.func.accept(self)
if dec.decorators and dec.var.is_property:
self.fail('Decorated property not supported', dec)
def check_decorated_function_is_method(self, decorator: str,
context: Context) -> None:
if not self.type or self.is_func_scope():
self.fail("'%s' used with a non-method" % decorator, context)
def visit_expression_stmt(self, s: ExpressionStmt) -> None:
s.expr.accept(self)
def visit_return_stmt(self, s: ReturnStmt) -> None:
if not self.is_func_scope():
self.fail("'return' outside function", s)
if s.expr:
s.expr.accept(self)
def visit_raise_stmt(self, s: RaiseStmt) -> None:
if s.expr:
s.expr.accept(self)
if s.from_expr:
s.from_expr.accept(self)
def visit_assert_stmt(self, s: AssertStmt) -> None:
if s.expr:
s.expr.accept(self)
if s.msg:
s.msg.accept(self)
def visit_operator_assignment_stmt(self,
s: OperatorAssignmentStmt) -> None:
s.lvalue.accept(self)
s.rvalue.accept(self)
if (isinstance(s.lvalue, NameExpr) and s.lvalue.name == '__all__' and
s.lvalue.kind == GDEF and isinstance(s.rvalue, (ListExpr, TupleExpr))):
self.add_exports(*s.rvalue.items)
def visit_while_stmt(self, s: WhileStmt) -> None:
s.expr.accept(self)
self.loop_depth += 1
s.body.accept(self)
self.loop_depth -= 1
self.visit_block_maybe(s.else_body)
def visit_for_stmt(self, s: ForStmt) -> None:
s.expr.accept(self)
# Bind index variables and check if they define new names.
self.analyze_lvalue(s.index, explicit_type=s.index_type is not None)
if s.index_type:
if self.is_classvar(s.index_type):
self.fail_invalid_classvar(s.index)
allow_tuple_literal = isinstance(s.index, (TupleExpr, ListExpr))
s.index_type = self.anal_type(s.index_type, allow_tuple_literal=allow_tuple_literal)
self.store_declared_types(s.index, s.index_type)
self.loop_depth += 1
self.visit_block(s.body)
self.loop_depth -= 1
self.visit_block_maybe(s.else_body)
def visit_break_stmt(self, s: BreakStmt) -> None:
if self.loop_depth == 0:
self.fail("'break' outside loop", s, True, blocker=True)
def visit_continue_stmt(self, s: ContinueStmt) -> None:
if self.loop_depth == 0:
self.fail("'continue' outside loop", s, True, blocker=True)
def visit_if_stmt(self, s: IfStmt) -> None:
infer_reachability_of_if_statement(s,
pyversion=self.options.python_version,
platform=self.options.platform)
for i in range(len(s.expr)):
s.expr[i].accept(self)
self.visit_block(s.body[i])
self.visit_block_maybe(s.else_body)
def visit_try_stmt(self, s: TryStmt) -> None:
self.analyze_try_stmt(s, self)
def analyze_try_stmt(self, s: TryStmt, visitor: NodeVisitor[None],
add_global: bool = False) -> None:
s.body.accept(visitor)
for type, var, handler in zip(s.types, s.vars, s.handlers):
if type:
type.accept(visitor)
if var:
self.analyze_lvalue(var, add_global=add_global)
handler.accept(visitor)
if s.else_body:
s.else_body.accept(visitor)
if s.finally_body:
s.finally_body.accept(visitor)
def visit_with_stmt(self, s: WithStmt) -> None:
types = [] # type: List[Type]
if s.target_type:
actual_targets = [t for t in s.target if t is not None]
if len(actual_targets) == 0:
# We have a type for no targets
self.fail('Invalid type comment', s)
elif len(actual_targets) == 1:
# We have one target and one type
types = [s.target_type]
elif isinstance(s.target_type, TupleType):
# We have multiple targets and multiple types
if len(actual_targets) == len(s.target_type.items):
types = s.target_type.items
else:
# But it's the wrong number of items
self.fail('Incompatible number of types for `with` targets', s)
else:
# We have multiple targets and one type
self.fail('Multiple types expected for multiple `with` targets', s)
new_types = [] # type: List[Type]
for e, n in zip(s.expr, s.target):
e.accept(self)
if n:
self.analyze_lvalue(n, explicit_type=s.target_type is not None)
# Since we have a target, pop the next type from types
if types:
t = types.pop(0)
if self.is_classvar(t):
self.fail_invalid_classvar(n)
allow_tuple_literal = isinstance(n, (TupleExpr, ListExpr))
t = self.anal_type(t, allow_tuple_literal=allow_tuple_literal)
new_types.append(t)
self.store_declared_types(n, t)
# Reverse the logic above to correctly reassign target_type
if new_types:
if len(s.target) == 1:
s.target_type = new_types[0]
elif isinstance(s.target_type, TupleType):
s.target_type = s.target_type.copy_modified(items=new_types)
self.visit_block(s.body)
def visit_del_stmt(self, s: DelStmt) -> None:
s.expr.accept(self)
if not self.is_valid_del_target(s.expr):
self.fail('Invalid delete target', s)
def is_valid_del_target(self, s: Expression) -> bool:
if isinstance(s, (IndexExpr, NameExpr, MemberExpr)):
return True
elif isinstance(s, TupleExpr):
return all(self.is_valid_del_target(item) for item in s.items)
else:
return False
def visit_global_decl(self, g: GlobalDecl) -> None:
for name in g.names:
if name in self.nonlocal_decls[-1]:
self.fail("Name '{}' is nonlocal and global".format(name), g)
self.global_decls[-1].add(name)
def visit_nonlocal_decl(self, d: NonlocalDecl) -> None:
if not self.is_func_scope():
self.fail("nonlocal declaration not allowed at module level", d)
else:
for name in d.names:
for table in reversed(self.locals[:-1]):
if table is not None and name in table:
break
else:
self.fail("No binding for nonlocal '{}' found".format(name), d)
if self.locals[-1] is not None and name in self.locals[-1]:
self.fail("Name '{}' is already defined in local "
"scope before nonlocal declaration".format(name), d)
if name in self.global_decls[-1]:
self.fail("Name '{}' is nonlocal and global".format(name), d)
self.nonlocal_decls[-1].add(name)
def visit_print_stmt(self, s: PrintStmt) -> None:
for arg in s.args:
arg.accept(self)
if s.target:
s.target.accept(self)
def visit_exec_stmt(self, s: ExecStmt) -> None:
s.expr.accept(self)
if s.globals:
s.globals.accept(self)
if s.locals:
s.locals.accept(self)
#
# Expressions
#
def visit_name_expr(self, expr: NameExpr) -> None:
n = self.lookup(expr.name, expr)
if n:
if n.kind == TVAR and self.tvar_scope.get_binding(n):
self.fail("'{}' is a type variable and only valid in type "
"context".format(expr.name), expr)
else:
expr.kind = n.kind
expr.node = n.node
expr.fullname = n.fullname
def visit_super_expr(self, expr: SuperExpr) -> None:
if not self.type:
self.fail('"super" used outside class', expr)
return
expr.info = self.type
for arg in expr.call.args:
arg.accept(self)
def visit_tuple_expr(self, expr: TupleExpr) -> None:
for item in expr.items:
if isinstance(item, StarExpr):
item.valid = True
item.accept(self)
def visit_list_expr(self, expr: ListExpr) -> None:
for item in expr.items:
if isinstance(item, StarExpr):
item.valid = True
item.accept(self)
def visit_set_expr(self, expr: SetExpr) -> None:
for item in expr.items:
if isinstance(item, StarExpr):
item.valid = True
item.accept(self)
def visit_dict_expr(self, expr: DictExpr) -> None:
for key, value in expr.items:
if key is not None:
key.accept(self)
value.accept(self)
def visit_star_expr(self, expr: StarExpr) -> None:
if not expr.valid:
# XXX TODO Change this error message
self.fail('Can use starred expression only as assignment target', expr)
else:
expr.expr.accept(self)
def visit_yield_from_expr(self, e: YieldFromExpr) -> None:
if not self.is_func_scope(): # not sure
self.fail("'yield from' outside function", e, True, blocker=True)
else:
if self.function_stack[-1].is_coroutine:
self.fail("'yield from' in async function", e, True, blocker=True)
else:
self.function_stack[-1].is_generator = True
if e.expr:
e.expr.accept(self)
def visit_call_expr(self, expr: CallExpr) -> None:
"""Analyze a call expression.
Some call expressions are recognized as special forms, including
cast(...).
"""
if expr.analyzed:
return
expr.callee.accept(self)
if refers_to_fullname(expr.callee, 'typing.cast'):
# Special form cast(...).
if not self.check_fixed_args(expr, 2, 'cast'):
return
# Translate first argument to an unanalyzed type.
try:
target = expr_to_unanalyzed_type(expr.args[0])
except TypeTranslationError:
self.fail('Cast target is not a type', expr)
return
# Piggyback CastExpr object to the CallExpr object; it takes
# precedence over the CallExpr semantics.
expr.analyzed = CastExpr(expr.args[1], target)
expr.analyzed.line = expr.line
expr.analyzed.accept(self)
elif refers_to_fullname(expr.callee, 'builtins.reveal_type'):
if not self.check_fixed_args(expr, 1, 'reveal_type'):
return
expr.analyzed = RevealTypeExpr(expr.args[0])
expr.analyzed.line = expr.line
expr.analyzed.column = expr.column
expr.analyzed.accept(self)
elif refers_to_fullname(expr.callee, 'typing.Any'):
# Special form Any(...) no longer supported.
self.fail('Any(...) is no longer supported. Use cast(Any, ...) instead', expr)
elif refers_to_fullname(expr.callee, 'typing._promote'):
# Special form _promote(...).
if not self.check_fixed_args(expr, 1, '_promote'):
return
# Translate first argument to an unanalyzed type.
try:
target = expr_to_unanalyzed_type(expr.args[0])
except TypeTranslationError:
self.fail('Argument 1 to _promote is not a type', expr)
return
expr.analyzed = PromoteExpr(target)
expr.analyzed.line = expr.line
expr.analyzed.accept(self)
elif refers_to_fullname(expr.callee, 'builtins.dict'):
expr.analyzed = self.translate_dict_call(expr)
else:
# Normal call expression.
for a in expr.args:
a.accept(self)
if (isinstance(expr.callee, MemberExpr) and
isinstance(expr.callee.expr, NameExpr) and
expr.callee.expr.name == '__all__' and
expr.callee.expr.kind == GDEF and
expr.callee.name in ('append', 'extend')):
if expr.callee.name == 'append' and expr.args:
self.add_exports(expr.args[0])
elif (expr.callee.name == 'extend' and expr.args and
isinstance(expr.args[0], (ListExpr, TupleExpr))):
self.add_exports(*expr.args[0].items)
def translate_dict_call(self, call: CallExpr) -> Optional[DictExpr]:
"""Translate 'dict(x=y, ...)' to {'x': y, ...}.
For other variants of dict(...), return None.
"""
if not call.args:
return None
if not all(kind == ARG_NAMED for kind in call.arg_kinds):
# Must still accept those args.
for a in call.args:
a.accept(self)
return None
expr = DictExpr([(StrExpr(cast(str, key)), value) # since they are all ARG_NAMED
for key, value in zip(call.arg_names, call.args)])
expr.set_line(call)
expr.accept(self)
return expr
def check_fixed_args(self, expr: CallExpr, numargs: int,
name: str) -> bool:
"""Verify that expr has specified number of positional args.
Return True if the arguments are valid.
"""
s = 's'
if numargs == 1:
s = ''
if len(expr.args) != numargs:
self.fail("'%s' expects %d argument%s" % (name, numargs, s),
expr)
return False
if expr.arg_kinds != [ARG_POS] * numargs:
self.fail("'%s' must be called with %s positional argument%s" %
(name, numargs, s), expr)
return False
return True
def visit_member_expr(self, expr: MemberExpr) -> None:
base = expr.expr
base.accept(self)
# Bind references to module attributes.
if isinstance(base, RefExpr) and base.kind == MODULE_REF:
# This branch handles the case foo.bar where foo is a module.
# In this case base.node is the module's MypyFile and we look up
# bar in its namespace. This must be done for all types of bar.
file = cast(Optional[MypyFile], base.node) # can't use isinstance due to issue #2999
# TODO: Should we actually use this? Not sure if this makes a difference.
# if file.fullname() == self.cur_mod_id:
# names = self.globals
# else:
# names = file.names
n = file.names.get(expr.name, None) if file is not None else None
if n and not n.module_hidden:
n = self.normalize_type_alias(n, expr)
if not n:
return
n = self.rebind_symbol_table_node(n)
if n:
# TODO: What if None?
expr.kind = n.kind
expr.fullname = n.fullname
expr.node = n.node
elif file is not None and file.is_stub and '__getattr__' in file.names:
# If there is a module-level __getattr__, then any attribute on the module is valid
# per PEP 484.
getattr_defn = file.names['__getattr__']
if isinstance(getattr_defn.node, FuncDef):
if isinstance(getattr_defn.node.type, CallableType):
typ = getattr_defn.node.type.ret_type
else:
typ = AnyType(TypeOfAny.special_form)
expr.kind = MDEF
expr.fullname = '{}.{}'.format(file.fullname(), expr.name)
expr.node = Var(expr.name, type=typ)
else:
# We only catch some errors here; the rest will be
# caught during type checking.
#
# This way we can report a larger number of errors in
# one type checker run. If we reported errors here,
# the build would terminate after semantic analysis
# and we wouldn't be able to report any type errors.
full_name = '%s.%s' % (file.fullname() if file is not None else None, expr.name)
mod_name = " '%s'" % file.fullname() if file is not None else ''
if full_name in obsolete_name_mapping:
self.fail("Module%s has no attribute %r (it's now called %r)" % (
mod_name, expr.name, obsolete_name_mapping[full_name]), expr)
elif isinstance(base, RefExpr):
# This branch handles the case C.bar (or cls.bar or self.bar inside
# a classmethod/method), where C is a class and bar is a type
# definition or a module resulting from `import bar` (or a module
# assignment) inside class C. We look up bar in the class' TypeInfo
# namespace. This is done only when bar is a module or a type;
# other things (e.g. methods) are handled by other code in
# checkmember.
type_info = None
if isinstance(base.node, TypeInfo):
# C.bar where C is a class
type_info = base.node
elif isinstance(base.node, Var) and self.type and self.function_stack:
# check for self.bar or cls.bar in method/classmethod
func_def = self.function_stack[-1]
if not func_def.is_static and isinstance(func_def.type, CallableType):
formal_arg = func_def.type.argument_by_name(base.node.name())
if formal_arg and formal_arg.pos == 0:
type_info = self.type
if type_info:
n = type_info.names.get(expr.name)
if n is not None and (n.kind == MODULE_REF or isinstance(n.node, TypeInfo)):
n = self.normalize_type_alias(n, expr)
if not n:
return
expr.kind = n.kind
expr.fullname = n.fullname
expr.node = n.node
def visit_op_expr(self, expr: OpExpr) -> None:
expr.left.accept(self)
if expr.op in ('and', 'or'):
inferred = infer_condition_value(expr.left,
pyversion=self.options.python_version,
platform=self.options.platform)
if ((inferred == ALWAYS_FALSE and expr.op == 'and') or
(inferred == ALWAYS_TRUE and expr.op == 'or')):
expr.right_unreachable = True
return
elif ((inferred == ALWAYS_TRUE and expr.op == 'and') or
(inferred == ALWAYS_FALSE and expr.op == 'or')):
expr.right_always = True
expr.right.accept(self)
def visit_comparison_expr(self, expr: ComparisonExpr) -> None:
for operand in expr.operands:
operand.accept(self)
def visit_unary_expr(self, expr: UnaryExpr) -> None:
expr.expr.accept(self)
def visit_index_expr(self, expr: IndexExpr) -> None:
if expr.analyzed:
return
expr.base.accept(self)
if (isinstance(expr.base, RefExpr)
and isinstance(expr.base.node, TypeInfo)
and not expr.base.node.is_generic()):
expr.index.accept(self)
elif isinstance(expr.base, RefExpr) and expr.base.kind == TYPE_ALIAS:
# Special form -- subscripting a generic type alias.
# Perform the type substitution and create a new alias.
res, alias_tvars = self.analyze_alias(expr)
assert res is not None, "Failed analyzing already defined alias"
expr.analyzed = TypeAliasExpr(res, alias_tvars, fallback=self.alias_fallback(res),
in_runtime=True)
expr.analyzed.line = expr.line
expr.analyzed.column = expr.column
elif refers_to_class_or_function(expr.base):
# Special form -- type application.
# Translate index to an unanalyzed type.
types = [] # type: List[Type]
if isinstance(expr.index, TupleExpr):
items = expr.index.items
else:
items = [expr.index]
for item in items:
try:
typearg = expr_to_unanalyzed_type(item)
except TypeTranslationError:
self.fail('Type expected within [...]', expr)
return
typearg = self.anal_type(typearg, aliasing=True)
types.append(typearg)
expr.analyzed = TypeApplication(expr.base, types)
expr.analyzed.line = expr.line
# list, dict, set are not directly subscriptable
n = self.lookup_type_node(expr.base)
if n and not n.normalized and n.fullname in nongen_builtins:
self.fail(no_subscript_builtin_alias(n.fullname, propose_alt=False), expr)
else:
expr.index.accept(self)
def lookup_type_node(self, expr: Expression) -> Optional[SymbolTableNode]:
try:
t = expr_to_unanalyzed_type(expr)
except TypeTranslationError:
return None
if isinstance(t, UnboundType):
n = self.lookup_qualified(t.name, expr, suppress_errors=True)
return n
return None
def visit_slice_expr(self, expr: SliceExpr) -> None:
if expr.begin_index:
expr.begin_index.accept(self)
if expr.end_index:
expr.end_index.accept(self)
if expr.stride:
expr.stride.accept(self)
def visit_cast_expr(self, expr: CastExpr) -> None:
expr.expr.accept(self)
expr.type = self.anal_type(expr.type)
def visit_reveal_type_expr(self, expr: RevealTypeExpr) -> None:
expr.expr.accept(self)
def visit_type_application(self, expr: TypeApplication) -> None:
expr.expr.accept(self)
for i in range(len(expr.types)):
expr.types[i] = self.anal_type(expr.types[i])
def visit_list_comprehension(self, expr: ListComprehension) -> None:
expr.generator.accept(self)
def visit_set_comprehension(self, expr: SetComprehension) -> None:
expr.generator.accept(self)
def visit_dictionary_comprehension(self, expr: DictionaryComprehension) -> None:
self.enter()
self.analyze_comp_for(expr)
expr.key.accept(self)
expr.value.accept(self)
self.leave()
self.analyze_comp_for_2(expr)
def visit_generator_expr(self, expr: GeneratorExpr) -> None:
self.enter()
self.analyze_comp_for(expr)
expr.left_expr.accept(self)
self.leave()
self.analyze_comp_for_2(expr)
def analyze_comp_for(self, expr: Union[GeneratorExpr,
DictionaryComprehension]) -> None:
"""Analyses the 'comp_for' part of comprehensions (part 1).
That is the part after 'for' in (x for x in l if p). This analyzes
variables and conditions which are analyzed in a local scope.
"""
for i, (index, sequence, conditions) in enumerate(zip(expr.indices,
expr.sequences,
expr.condlists)):
if i > 0:
sequence.accept(self)
# Bind index variables.
self.analyze_lvalue(index)
for cond in conditions:
cond.accept(self)
def analyze_comp_for_2(self, expr: Union[GeneratorExpr,
DictionaryComprehension]) -> None:
"""Analyses the 'comp_for' part of comprehensions (part 2).
That is the part after 'for' in (x for x in l if p). This analyzes
the 'l' part which is analyzed in the surrounding scope.
"""
expr.sequences[0].accept(self)
def visit_lambda_expr(self, expr: LambdaExpr) -> None:
self.analyze_function(expr)
def visit_conditional_expr(self, expr: ConditionalExpr) -> None:
expr.if_expr.accept(self)
expr.cond.accept(self)
expr.else_expr.accept(self)
def visit_backquote_expr(self, expr: BackquoteExpr) -> None:
expr.expr.accept(self)
def visit__promote_expr(self, expr: PromoteExpr) -> None:
expr.type = self.anal_type(expr.type)
def visit_yield_expr(self, expr: YieldExpr) -> None:
if not self.is_func_scope():
self.fail("'yield' outside function", expr, True, blocker=True)
else:
if self.function_stack[-1].is_coroutine:
if self.options.python_version < (3, 6):
self.fail("'yield' in async function", expr, True, blocker=True)
else:
self.function_stack[-1].is_generator = True
self.function_stack[-1].is_async_generator = True
else:
self.function_stack[-1].is_generator = True
if expr.expr:
expr.expr.accept(self)
def visit_await_expr(self, expr: AwaitExpr) -> None:
if not self.is_func_scope():
self.fail("'await' outside function", expr)
elif not self.function_stack[-1].is_coroutine:
self.fail("'await' outside coroutine ('async def')", expr)
expr.expr.accept(self)
#
# Helpers
#
@contextmanager
def tvar_scope_frame(self, frame: TypeVarScope) -> Iterator[None]:
old_scope = self.tvar_scope
self.tvar_scope = frame
yield
self.tvar_scope = old_scope
def lookup(self, name: str, ctx: Context,
suppress_errors: bool = False) -> Optional[SymbolTableNode]:
"""Look up an unqualified name in all active namespaces."""
implicit_name = False
# 1a. Name declared using 'global x' takes precedence
if name in self.global_decls[-1]:
if name in self.globals:
return self.globals[name]
if not suppress_errors:
self.name_not_defined(name, ctx)
return None
# 1b. Name declared using 'nonlocal x' takes precedence
if name in self.nonlocal_decls[-1]:
for table in reversed(self.locals[:-1]):
if table is not None and name in table:
return table[name]
else:
if not suppress_errors:
self.name_not_defined(name, ctx)
return None
# 2. Class attributes (if within class definition)
if self.type and not self.is_func_scope() and name in self.type.names:
node = self.type.names[name]
if not node.implicit:
return node
implicit_name = True
implicit_node = node
# 3. Local (function) scopes
for table in reversed(self.locals):
if table is not None and name in table:
return table[name]
# 4. Current file global scope
if name in self.globals:
return self.globals[name]
# 5. Builtins
b = self.globals.get('__builtins__', None)
if b:
assert isinstance(b.node, MypyFile)
table = b.node.names
if name in table:
if name[0] == "_" and name[1] != "_":
if not suppress_errors:
self.name_not_defined(name, ctx)
return None
node = table[name]
return node
# Give up.
if not implicit_name and not suppress_errors:
self.name_not_defined(name, ctx)
self.check_for_obsolete_short_name(name, ctx)
else:
if implicit_name:
return implicit_node
return None
def check_for_obsolete_short_name(self, name: str, ctx: Context) -> None:
matches = [obsolete_name
for obsolete_name in obsolete_name_mapping
if obsolete_name.rsplit('.', 1)[-1] == name]
if len(matches) == 1:
self.note("(Did you mean '{}'?)".format(obsolete_name_mapping[matches[0]]), ctx)
def lookup_qualified(self, name: str, ctx: Context,
suppress_errors: bool = False) -> Optional[SymbolTableNode]:
if '.' not in name:
return self.lookup(name, ctx, suppress_errors=suppress_errors)
else:
parts = name.split('.')
n = self.lookup(parts[0], ctx, suppress_errors=suppress_errors)
if n:
for i in range(1, len(parts)):
if isinstance(n.node, TypeInfo):
if n.node.mro is None:
# We haven't yet analyzed the class `n.node`. Fall back to direct
# lookup in the names declared directly under it, without its base
# classes. This can happen when we have a forward reference to a
# nested class, and the reference is bound before the outer class
# has been fully semantically analyzed.
#
# A better approach would be to introduce a new analysis pass or
# to move things around between passes, but this unblocks a common
# use case even though this is a little limited in case there is
# inheritance involved.
result = n.node.names.get(parts[i])
else:
result = n.node.get(parts[i])
n = result
elif isinstance(n.node, MypyFile):
names = n.node.names
# Rebind potential references to old version of current module in
# fine-grained incremental mode.
#
# TODO: Do this for all modules in the set of modified files.
if n.node.fullname() == self.cur_mod_id:
names = self.globals
n = names.get(parts[i], None)
# TODO: What if node is Var or FuncDef?
if not n:
if not suppress_errors:
self.name_not_defined(name, ctx)
break
if n:
n = self.normalize_type_alias(n, ctx)
if n and n.module_hidden:
self.name_not_defined(name, ctx)
if n and not n.module_hidden:
n = self.rebind_symbol_table_node(n)
return n
return None
def rebind_symbol_table_node(self, n: SymbolTableNode) -> Optional[SymbolTableNode]:
"""If node refers to old version of module, return reference to new version.
If the reference is removed in the new version, return None.
"""
# TODO: Handle type aliases, type variables and other sorts of references
if isinstance(n.node, (FuncDef, OverloadedFuncDef, TypeInfo, Var)):
# TODO: Why is it possible for fullname() to be None, even though it's not
# annotated as Optional[str]?
# TODO: Do this for all modules in the set of modified files
# TODO: This doesn't work for things nested within classes
if n.node.fullname() and get_prefix(n.node.fullname()) == self.cur_mod_id:
# This is an indirect reference to a name defined in the current module.
# Rebind it.
return self.globals.get(n.node.name())
# No need to rebind.
return n
def builtin_type(self, fully_qualified_name: str) -> Instance:
sym = self.lookup_fully_qualified(fully_qualified_name)
node = sym.node
assert isinstance(node, TypeInfo)
return Instance(node, [AnyType(TypeOfAny.special_form)] * len(node.defn.type_vars))
def lookup_fully_qualified(self, name: str) -> SymbolTableNode:
"""Lookup a fully qualified name.
Assume that the name is defined. This happens in the global namespace -- the local
module namespace is ignored.
"""
parts = name.split('.')
n = self.modules[parts[0]]
for i in range(1, len(parts) - 1):
next_sym = n.names[parts[i]]
assert isinstance(next_sym.node, MypyFile)
n = next_sym.node
return n.names[parts[-1]]
def lookup_fully_qualified_or_none(self, name: str) -> Optional[SymbolTableNode]:
"""Lookup a fully qualified name.
Don't assume that the name is defined. This happens in the global namespace --
the local module namespace is ignored.
"""
assert '.' in name
parts = name.split('.')
n = self.modules[parts[0]]
for i in range(1, len(parts) - 1):
next_sym = n.names.get(parts[i])
if not next_sym:
return None
assert isinstance(next_sym.node, MypyFile)
n = next_sym.node
return n.names.get(parts[-1])
def qualified_name(self, n: str) -> str:
if self.type is not None:
base = self.type._fullname
else:
base = self.cur_mod_id
return base + '.' + n
def enter(self) -> None:
self.locals.append(SymbolTable())
self.global_decls.append(set())
self.nonlocal_decls.append(set())
# -1 since entering block will increment this to 0.
self.block_depth.append(-1)
def leave(self) -> None:
self.locals.pop()
self.global_decls.pop()
self.nonlocal_decls.pop()
self.block_depth.pop()
def is_func_scope(self) -> bool:
return self.locals[-1] is not None
def is_class_scope(self) -> bool:
return self.type is not None and not self.is_func_scope()
def is_module_scope(self) -> bool:
return not (self.is_class_scope() or self.is_func_scope())
def add_symbol(self, name: str, node: SymbolTableNode,
context: Context) -> None:
if self.is_func_scope():
assert self.locals[-1] is not None
if name in self.locals[-1]:
# Flag redefinition unless this is a reimport of a module.
if not (node.kind == MODULE_REF and
self.locals[-1][name].node == node.node):
self.name_already_defined(name, context)
self.locals[-1][name] = node
elif self.type:
self.type.names[name] = node
else:
existing = self.globals.get(name)
if existing and (not isinstance(node.node, MypyFile) or
existing.node != node.node) and existing.kind != UNBOUND_IMPORTED:
# Modules can be imported multiple times to support import
# of multiple submodules of a package (e.g. a.x and a.y).
ok = False
# Only report an error if the symbol collision provides a different type.
if existing.type and node.type and is_same_type(existing.type, node.type):
ok = True
if not ok:
self.name_already_defined(name, context)
self.globals[name] = node
def add_local(self, node: Union[Var, FuncDef, OverloadedFuncDef], ctx: Context) -> None:
assert self.locals[-1] is not None, "Should not add locals outside a function"
name = node.name()
if name in self.locals[-1]:
self.name_already_defined(name, ctx)
node._fullname = name
self.locals[-1][name] = SymbolTableNode(LDEF, node)
def add_exports(self, *exps: Expression) -> None:
for exp in exps:
if isinstance(exp, StrExpr):
self.all_exports.add(exp.value)
def check_no_global(self, n: str, ctx: Context,
is_overloaded_func: bool = False) -> None:
if n in self.globals:
prev_is_overloaded = isinstance(self.globals[n], OverloadedFuncDef)
if is_overloaded_func and prev_is_overloaded:
self.fail("Nonconsecutive overload {} found".format(n), ctx)
elif prev_is_overloaded:
self.fail("Definition of '{}' missing 'overload'".format(n), ctx)
else:
self.name_already_defined(n, ctx, self.globals[n])
def name_not_defined(self, name: str, ctx: Context) -> None:
message = "Name '{}' is not defined".format(name)
extra = self.undefined_name_extra_info(name)
if extra:
message += ' {}'.format(extra)
self.fail(message, ctx)
if 'builtins.{}'.format(name) in SUGGESTED_TEST_FIXTURES:
# The user probably has a missing definition in a test fixture. Let's verify.
fullname = 'builtins.{}'.format(name)
if self.lookup_fully_qualified_or_none(fullname) is None:
# Yes. Generate a helpful note.
self.add_fixture_note(fullname, ctx)
def name_already_defined(self, name: str, ctx: Context,
original_ctx: Optional[SymbolTableNode] = None) -> None:
if original_ctx:
if original_ctx.node and original_ctx.node.get_line() != -1:
extra_msg = ' on line {}'.format(original_ctx.node.get_line())
else:
extra_msg = ' (possibly by an import)'
else:
extra_msg = ''
self.fail("Name '{}' already defined{}".format(name, extra_msg), ctx)
def fail(self, msg: str, ctx: Context, serious: bool = False, *,
blocker: bool = False) -> None:
if (not serious and
not self.options.check_untyped_defs and
self.function_stack and
self.function_stack[-1].is_dynamic()):
return
# In case it's a bug and we don't really have context
assert ctx is not None, msg
self.errors.report(ctx.get_line(), ctx.get_column(), msg, blocker=blocker)
def fail_blocker(self, msg: str, ctx: Context) -> None:
self.fail(msg, ctx, blocker=True)
def note(self, msg: str, ctx: Context) -> None:
if (not self.options.check_untyped_defs and
self.function_stack and
self.function_stack[-1].is_dynamic()):
return
self.errors.report(ctx.get_line(), ctx.get_column(), msg, severity='note')
def undefined_name_extra_info(self, fullname: str) -> Optional[str]:
if fullname in obsolete_name_mapping:
return "(it's now called '{}')".format(obsolete_name_mapping[fullname])
else:
return None
def accept(self, node: Node) -> None:
try:
node.accept(self)
except Exception as err:
report_internal_error(err, self.errors.file, node.line, self.errors, self.options)
def replace_implicit_first_type(sig: FunctionLike, new: Type) -> FunctionLike:
if isinstance(sig, CallableType):
return sig.copy_modified(arg_types=[new] + sig.arg_types[1:])
elif isinstance(sig, Overloaded):
return Overloaded([cast(CallableType, replace_implicit_first_type(i, new))
for i in sig.items()])
else:
assert False
def set_callable_name(sig: Type, fdef: FuncDef) -> Type:
if isinstance(sig, FunctionLike):
if fdef.info:
return sig.with_name(
'{} of {}'.format(fdef.name(), fdef.info.name()))
else:
return sig.with_name(fdef.name())
else:
return sig
def refers_to_fullname(node: Expression, fullname: str) -> bool:
"""Is node a name or member expression with the given full name?"""
return isinstance(node, RefExpr) and node.fullname == fullname
def refers_to_class_or_function(node: Expression) -> bool:
"""Does semantically analyzed node refer to a class?"""
return (isinstance(node, RefExpr) and
isinstance(node.node, (TypeInfo, FuncDef, OverloadedFuncDef)))
def calculate_class_mro(defn: ClassDef, fail: Callable[[str, Context], None]) -> None:
try:
defn.info.calculate_mro()
except MroError:
fail("Cannot determine consistent method resolution order "
'(MRO) for "%s"' % defn.name, defn)
defn.info.mro = []
# The property of falling back to Any is inherited.
defn.info.fallback_to_any = any(baseinfo.fallback_to_any for baseinfo in defn.info.mro)
def find_duplicate(list: List[T]) -> Optional[T]:
"""If the list has duplicates, return one of the duplicates.
Otherwise, return None.
"""
for i in range(1, len(list)):
if list[i] in list[:i]:
return list[i]
return None
def remove_imported_names_from_symtable(names: SymbolTable,
module: str) -> None:
"""Remove all imported names from the symbol table of a module."""
removed = [] # type: List[str]
for name, node in names.items():
if node.node is None:
continue
fullname = node.node.fullname()
prefix = fullname[:fullname.rfind('.')]
if prefix != module:
removed.append(name)
for name in removed:
del names[name]
def infer_reachability_of_if_statement(s: IfStmt,
pyversion: Tuple[int, int],
platform: str) -> None:
for i in range(len(s.expr)):
result = infer_condition_value(s.expr[i], pyversion, platform)
if result in (ALWAYS_FALSE, MYPY_FALSE):
# The condition is considered always false, so we skip the if/elif body.
mark_block_unreachable(s.body[i])
elif result in (ALWAYS_TRUE, MYPY_TRUE):
# This condition is considered always true, so all of the remaining
# elif/else bodies should not be checked.
if result == MYPY_TRUE:
# This condition is false at runtime; this will affect
# import priorities.
mark_block_mypy_only(s.body[i])
for body in s.body[i + 1:]:
mark_block_unreachable(body)
# Make sure else body always exists and is marked as
# unreachable so the type checker always knows that
# all control flow paths will flow through the if
# statement body.
if not s.else_body:
s.else_body = Block([])
mark_block_unreachable(s.else_body)
break
def infer_condition_value(expr: Expression, pyversion: Tuple[int, int], platform: str) -> int:
"""Infer whether the given condition is always true/false.
Return ALWAYS_TRUE if always true, ALWAYS_FALSE if always false,
MYPY_TRUE if true under mypy and false at runtime, MYPY_FALSE if
false under mypy and true at runtime, else TRUTH_VALUE_UNKNOWN.
"""
name = ''
negated = False
alias = expr
if isinstance(alias, UnaryExpr):
if alias.op == 'not':
expr = alias.expr
negated = True
result = TRUTH_VALUE_UNKNOWN
if isinstance(expr, NameExpr):
name = expr.name
elif isinstance(expr, MemberExpr):
name = expr.name
elif isinstance(expr, OpExpr) and expr.op in ('and', 'or'):
left = infer_condition_value(expr.left, pyversion, platform)
if ((left == ALWAYS_TRUE and expr.op == 'and') or
(left == ALWAYS_FALSE and expr.op == 'or')):
# Either `True and <other>` or `False or <other>`: the result will
# always be the right-hand-side.
return infer_condition_value(expr.right, pyversion, platform)
else:
# The result will always be the left-hand-side (e.g. ALWAYS_* or
# TRUTH_VALUE_UNKNOWN).
return left
else:
result = consider_sys_version_info(expr, pyversion)
if result == TRUTH_VALUE_UNKNOWN:
result = consider_sys_platform(expr, platform)
if result == TRUTH_VALUE_UNKNOWN:
if name == 'PY2':
result = ALWAYS_TRUE if pyversion[0] == 2 else ALWAYS_FALSE
elif name == 'PY3':
result = ALWAYS_TRUE if pyversion[0] == 3 else ALWAYS_FALSE
elif name == 'MYPY' or name == 'TYPE_CHECKING':
result = MYPY_TRUE
if negated:
result = inverted_truth_mapping[result]
return result
def consider_sys_version_info(expr: Expression, pyversion: Tuple[int, ...]) -> int:
"""Consider whether expr is a comparison involving sys.version_info.
Return ALWAYS_TRUE, ALWAYS_FALSE, or TRUTH_VALUE_UNKNOWN.
"""
# Cases supported:
# - sys.version_info[<int>] <compare_op> <int>
# - sys.version_info[:<int>] <compare_op> <tuple_of_n_ints>
# - sys.version_info <compare_op> <tuple_of_1_or_2_ints>
# (in this case <compare_op> must be >, >=, <, <=, but cannot be ==, !=)
if not isinstance(expr, ComparisonExpr):
return TRUTH_VALUE_UNKNOWN
# Let's not yet support chained comparisons.
if len(expr.operators) > 1:
return TRUTH_VALUE_UNKNOWN
op = expr.operators[0]
if op not in ('==', '!=', '<=', '>=', '<', '>'):
return TRUTH_VALUE_UNKNOWN
thing = contains_int_or_tuple_of_ints(expr.operands[1])
if thing is None:
return TRUTH_VALUE_UNKNOWN
index = contains_sys_version_info(expr.operands[0])
if isinstance(index, int) and isinstance(thing, int):
# sys.version_info[i] <compare_op> k
if 0 <= index <= 1:
return fixed_comparison(pyversion[index], op, thing)
else:
return TRUTH_VALUE_UNKNOWN
elif isinstance(index, tuple) and isinstance(thing, tuple):
lo, hi = index
if lo is None:
lo = 0
if hi is None:
hi = 2
if 0 <= lo < hi <= 2:
val = pyversion[lo:hi]
if len(val) == len(thing) or len(val) > len(thing) and op not in ('==', '!='):
return fixed_comparison(val, op, thing)
return TRUTH_VALUE_UNKNOWN
def consider_sys_platform(expr: Expression, platform: str) -> int:
"""Consider whether expr is a comparison involving sys.platform.
Return ALWAYS_TRUE, ALWAYS_FALSE, or TRUTH_VALUE_UNKNOWN.
"""
# Cases supported:
# - sys.platform == 'posix'
# - sys.platform != 'win32'
# - sys.platform.startswith('win')
if isinstance(expr, ComparisonExpr):
# Let's not yet support chained comparisons.
if len(expr.operators) > 1:
return TRUTH_VALUE_UNKNOWN
op = expr.operators[0]
if op not in ('==', '!='):
return TRUTH_VALUE_UNKNOWN
if not is_sys_attr(expr.operands[0], 'platform'):
return TRUTH_VALUE_UNKNOWN
right = expr.operands[1]
if not isinstance(right, (StrExpr, UnicodeExpr)):
return TRUTH_VALUE_UNKNOWN
return fixed_comparison(platform, op, right.value)
elif isinstance(expr, CallExpr):
if not isinstance(expr.callee, MemberExpr):
return TRUTH_VALUE_UNKNOWN
if len(expr.args) != 1 or not isinstance(expr.args[0], (StrExpr, UnicodeExpr)):
return TRUTH_VALUE_UNKNOWN
if not is_sys_attr(expr.callee.expr, 'platform'):
return TRUTH_VALUE_UNKNOWN
if expr.callee.name != 'startswith':
return TRUTH_VALUE_UNKNOWN
if platform.startswith(expr.args[0].value):
return ALWAYS_TRUE
else:
return ALWAYS_FALSE
else:
return TRUTH_VALUE_UNKNOWN
Targ = TypeVar('Targ', int, str, Tuple[int, ...])
def fixed_comparison(left: Targ, op: str, right: Targ) -> int:
rmap = {False: ALWAYS_FALSE, True: ALWAYS_TRUE}
if op == '==':
return rmap[left == right]
if op == '!=':
return rmap[left != right]
if op == '<=':
return rmap[left <= right]
if op == '>=':
return rmap[left >= right]
if op == '<':
return rmap[left < right]
if op == '>':
return rmap[left > right]
return TRUTH_VALUE_UNKNOWN
def contains_int_or_tuple_of_ints(expr: Expression
) -> Union[None, int, Tuple[int], Tuple[int, ...]]:
if isinstance(expr, IntExpr):
return expr.value
if isinstance(expr, TupleExpr):
if literal(expr) == LITERAL_YES:
thing = []
for x in expr.items:
if not isinstance(x, IntExpr):
return None
thing.append(x.value)
return tuple(thing)
return None
def contains_sys_version_info(expr: Expression
) -> Union[None, int, Tuple[Optional[int], Optional[int]]]:
if is_sys_attr(expr, 'version_info'):
return (None, None) # Same as sys.version_info[:]
if isinstance(expr, IndexExpr) and is_sys_attr(expr.base, 'version_info'):
index = expr.index
if isinstance(index, IntExpr):
return index.value
if isinstance(index, SliceExpr):
if index.stride is not None:
if not isinstance(index.stride, IntExpr) or index.stride.value != 1:
return None
begin = end = None
if index.begin_index is not None:
if not isinstance(index.begin_index, IntExpr):
return None
begin = index.begin_index.value
if index.end_index is not None:
if not isinstance(index.end_index, IntExpr):
return None
end = index.end_index.value
return (begin, end)
return None
def is_sys_attr(expr: Expression, name: str) -> bool:
# TODO: This currently doesn't work with code like this:
# - import sys as _sys
# - from sys import version_info
if isinstance(expr, MemberExpr) and expr.name == name:
if isinstance(expr.expr, NameExpr) and expr.expr.name == 'sys':
# TODO: Guard against a local named sys, etc.
# (Though later passes will still do most checking.)
return True
return False
def mark_block_unreachable(block: Block) -> None:
block.is_unreachable = True
block.accept(MarkImportsUnreachableVisitor())
class MarkImportsUnreachableVisitor(TraverserVisitor):
"""Visitor that flags all imports nested within a node as unreachable."""
def visit_import(self, node: Import) -> None:
node.is_unreachable = True
def visit_import_from(self, node: ImportFrom) -> None:
node.is_unreachable = True
def visit_import_all(self, node: ImportAll) -> None:
node.is_unreachable = True
def mark_block_mypy_only(block: Block) -> None:
block.accept(MarkImportsMypyOnlyVisitor())
class MarkImportsMypyOnlyVisitor(TraverserVisitor):
"""Visitor that sets is_mypy_only (which affects priority)."""
def visit_import(self, node: Import) -> None:
node.is_mypy_only = True
def visit_import_from(self, node: ImportFrom) -> None:
node.is_mypy_only = True
def visit_import_all(self, node: ImportAll) -> None:
node.is_mypy_only = True
def make_any_non_explicit(t: Type) -> Type:
"""Replace all Any types within in with Any that has attribute 'explicit' set to False"""
return t.accept(MakeAnyNonExplicit())
class MakeAnyNonExplicit(TypeTranslator):
def visit_any(self, t: AnyType) -> Type:
if t.type_of_any == TypeOfAny.explicit:
return t.copy_modified(TypeOfAny.special_form)
return t
|