This file is indexed.

/usr/lib/python3/dist-packages/networkx/algorithms/tests/test_minors.py is in python3-networkx 1.11-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# test_minors.py - unit tests for the minors module
#
# Copyright 2015 Jeffrey Finkelstein <jeffrey.finkelstein@gmail.com>.
#
# This file is part of NetworkX.
#
# NetworkX is distributed under a BSD license; see LICENSE.txt for more
# information.
"""Unit tests for the :mod:`networkx.algorithms.minors` module."""
from nose.tools import assert_equal
from nose.tools import assert_true
from nose.tools import raises

import networkx as nx


class TestQuotient(object):
    """Unit tests for computing quotient graphs."""

    def test_quotient_graph_complete_multipartite(self):
        """Tests that the quotient graph of the complete *n*-partite graph
        under the "same neighbors" node relation is the complete graph on *n*
        nodes.

        """
        G = nx.complete_multipartite_graph(2, 3, 4)
        # Two nodes are equivalent if they are not adjacent but have the same
        # neighbor set.
        same_neighbors = lambda u, v: (u not in G[v] and v not in G[u]
                                       and G[u] == G[v])
        expected = nx.complete_graph(3)
        actual = nx.quotient_graph(G, same_neighbors)
        # It won't take too long to run a graph isomorphism algorithm on such
        # small graphs.
        assert_true(nx.is_isomorphic(expected, actual))

    def test_quotient_graph_complete_bipartite(self):
        """Tests that the quotient graph of the complete bipartite graph under
        the "same neighbors" node relation is `K_2`.

        """
        G = nx.complete_bipartite_graph(2, 3)
        # Two nodes are equivalent if they are not adjacent but have the same
        # neighbor set.
        same_neighbors = lambda u, v: (u not in G[v] and v not in G[u]
                                       and G[u] == G[v])
        expected = nx.complete_graph(2)
        actual = nx.quotient_graph(G, same_neighbors)
        # It won't take too long to run a graph isomorphism algorithm on such
        # small graphs.
        assert_true(nx.is_isomorphic(expected, actual))

    def test_quotient_graph_edge_relation(self):
        """Tests for specifying an alternate edge relation for the quotient
        graph.

        """
        G = nx.path_graph(5)
        identity = lambda u, v: u == v
        peek = lambda x: next(iter(x))
        same_parity = lambda b, c: peek(b) % 2 == peek(c) % 2
        actual = nx.quotient_graph(G, identity, same_parity)
        expected = nx.Graph()
        expected.add_edges_from([(0, 2), (0, 4), (2, 4)])
        expected.add_edge(1, 3)
        assert_true(nx.is_isomorphic(actual, expected))

    def test_condensation_as_quotient(self):
        """This tests that the condensation of a graph can be viewed as the
        quotient graph under the "in the same connected component" equivalence
        relation.

        """
        # This example graph comes from the file `test_strongly_connected.py`.
        G = nx.DiGraph()
        G.add_edges_from([(1, 2), (2, 3), (2, 11), (2, 12), (3, 4), (4, 3),
                          (4, 5), (5, 6), (6, 5), (6, 7), (7, 8), (7, 9),
                          (7, 10), (8, 9), (9, 7), (10, 6), (11, 2), (11, 4),
                          (11, 6), (12, 6), (12, 11)])
        scc = list(nx.strongly_connected_components(G))
        C = nx.condensation(G, scc)
        component_of = C.graph['mapping']
        # Two nodes are equivalent if they are in the same connected component.
        same_component = lambda u, v: component_of[u] == component_of[v]
        Q = nx.quotient_graph(G, same_component)
        assert_true(nx.is_isomorphic(C, Q))


class TestContraction(object):
    """Unit tests for node and edge contraction functions."""

    def test_undirected_node_contraction(self):
        """Tests for node contraction in an undirected graph."""
        G = nx.cycle_graph(4)
        actual = nx.contracted_nodes(G, 0, 1)
        expected = nx.complete_graph(3)
        expected.add_edge(0, 0)
        assert_true(nx.is_isomorphic(actual, expected))

    def test_directed_node_contraction(self):
        """Tests for node contraction in a directed graph."""
        G = nx.DiGraph(nx.cycle_graph(4))
        actual = nx.contracted_nodes(G, 0, 1)
        expected = nx.DiGraph(nx.complete_graph(3))
        expected.add_edge(0, 0)
        expected.add_edge(0, 0)
        assert_true(nx.is_isomorphic(actual, expected))

    def test_node_attributes(self):
        """Tests that node contraction preserves node attributes."""
        G = nx.cycle_graph(4)
        # Add some data to the two nodes being contracted.
        G.node[0] = dict(foo='bar')
        G.node[1] = dict(baz='xyzzy')
        actual = nx.contracted_nodes(G, 0, 1)
        # We expect that contracting the nodes 0 and 1 in C_4 yields K_3, but
        # with nodes labeled 0, 2, and 3, and with a self-loop on 0.
        expected = nx.complete_graph(3)
        expected = nx.relabel_nodes(expected, {1: 2, 2: 3})
        expected.add_edge(0, 0)
        expected.node[0] = dict(foo='bar', contraction={1: dict(baz='xyzzy')})
        assert_true(nx.is_isomorphic(actual, expected))
        assert_equal(actual.node, expected.node)

    def test_without_self_loops(self):
        """Tests for node contraction without preserving self-loops."""
        G = nx.cycle_graph(4)
        actual = nx.contracted_nodes(G, 0, 1, self_loops=False)
        expected = nx.complete_graph(3)
        assert_true(nx.is_isomorphic(actual, expected))

    def test_undirected_edge_contraction(self):
        """Tests for edge contraction in an undirected graph."""
        G = nx.cycle_graph(4)
        actual = nx.contracted_edge(G, (0, 1))
        expected = nx.complete_graph(3)
        expected.add_edge(0, 0)
        assert_true(nx.is_isomorphic(actual, expected))

    @raises(ValueError)
    def test_nonexistent_edge(self):
        """Tests that attempting to contract a non-existent edge raises an
        exception.

        """
        G = nx.cycle_graph(4)
        nx.contracted_edge(G, (0, 2))