/usr/lib/python3/dist-packages/nibabel/ecat.py is in python3-nibabel 2.2.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 | # emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the NiBabel package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
""" Read ECAT format images
An ECAT format image consists of:
* a *main header*;
* at least one *matrix list* (mlist);
ECAT thinks of memory locations in terms of *blocks*. One block is 512
bytes. Thus block 1 starts at 0 bytes, block 2 at 512 bytes, and so on.
The matrix list is an array with one row per frame in the data.
Columns in the matrix list are:
* 0: Matrix identifier (frame number)
* 1: matrix data start block number (subheader followed by image data)
* 2: Last block number of matrix (image) data
* 3: Matrix status
* 1: hxists - rw
* 2: exists - ro
* 3: matrix deleted
There is one sub-header for each image frame (or matrix in the terminology
above). A sub-header can also be called an *image header*. The sub-header is
one block (512 bytes), and the frame (image) data follows.
There is very little documentation of the ECAT format, and many of the comments
in this code come from a combination of trial and error and wild speculation.
XMedcon can read and write ECAT 6 format, and read ECAT 7 format: see
http://xmedcon.sourceforge.net and the ECAT files in the source of XMedCon,
currently ``libs/tpc/*ecat*`` and ``source/m-ecat*``. Unfortunately XMedCon is
GPL and some of the header files are adapted from CTI files (called CTI code
below). It's not clear what the licenses are for these files.
"""
import warnings
from numbers import Integral
import numpy as np
from .volumeutils import (native_code, swapped_code, make_dt_codes,
array_from_file)
from .spatialimages import SpatialImage
from .arraywriters import make_array_writer
from .wrapstruct import WrapStruct
from .fileslice import canonical_slicers, predict_shape, slice2outax
from .deprecated import deprecate_with_version
BLOCK_SIZE = 512
main_header_dtd = [
('magic_number', '14S'),
('original_filename', '32S'),
('sw_version', np.uint16),
('system_type', np.uint16),
('file_type', np.uint16),
('serial_number', '10S'),
('scan_start_time', np.uint32),
('isotope_name', '8S'),
('isotope_halflife', np.float32),
('radiopharmaceutical', '32S'),
('gantry_tilt', np.float32),
('gantry_rotation', np.float32),
('bed_elevation', np.float32),
('intrinsic_tilt', np.float32),
('wobble_speed', np.uint16),
('transm_source_type', np.uint16),
('distance_scanned', np.float32),
('transaxial_fov', np.float32),
('angular_compression', np.uint16),
('coin_samp_mode', np.uint16),
('axial_samp_mode', np.uint16),
('ecat_calibration_factor', np.float32),
('calibration_unitS', np.uint16),
('calibration_units_type', np.uint16),
('compression_code', np.uint16),
('study_type', '12S'),
('patient_id', '16S'),
('patient_name', '32S'),
('patient_sex', '1S'),
('patient_dexterity', '1S'),
('patient_age', np.float32),
('patient_height', np.float32),
('patient_weight', np.float32),
('patient_birth_date', np.uint32),
('physician_name', '32S'),
('operator_name', '32S'),
('study_description', '32S'),
('acquisition_type', np.uint16),
('patient_orientation', np.uint16),
('facility_name', '20S'),
('num_planes', np.uint16),
('num_frames', np.uint16),
('num_gates', np.uint16),
('num_bed_pos', np.uint16),
('init_bed_position', np.float32),
('bed_position', '15f'),
('plane_separation', np.float32),
('lwr_sctr_thres', np.uint16),
('lwr_true_thres', np.uint16),
('upr_true_thres', np.uint16),
('user_process_code', '10S'),
('acquisition_mode', np.uint16),
('bin_size', np.float32),
('branching_fraction', np.float32),
('dose_start_time', np.uint32),
('dosage', np.float32),
('well_counter_corr_factor', np.float32),
('data_units', '32S'),
('septa_state', np.uint16),
('fill', '12S')
]
hdr_dtype = np.dtype(main_header_dtd)
subheader_dtd = [
('data_type', np.uint16),
('num_dimensions', np.uint16),
('x_dimension', np.uint16),
('y_dimension', np.uint16),
('z_dimension', np.uint16),
('x_offset', np.float32),
('y_offset', np.float32),
('z_offset', np.float32),
('recon_zoom', np.float32),
('scale_factor', np.float32),
('image_min', np.int16),
('image_max', np.int16),
('x_pixel_size', np.float32),
('y_pixel_size', np.float32),
('z_pixel_size', np.float32),
('frame_duration', np.uint32),
('frame_start_time', np.uint32),
('filter_code', np.uint16),
('x_resolution', np.float32),
('y_resolution', np.float32),
('z_resolution', np.float32),
('num_r_elements', np.float32),
('num_angles', np.float32),
('z_rotation_angle', np.float32),
('decay_corr_fctr', np.float32),
('corrections_applied', np.uint32),
('gate_duration', np.uint32),
('r_wave_offset', np.uint32),
('num_accepted_beats', np.uint32),
('filter_cutoff_frequency', np.float32),
('filter_resolution', np.float32),
('filter_ramp_slope', np.float32),
('filter_order', np.uint16),
('filter_scatter_fraction', np.float32),
('filter_scatter_slope', np.float32),
('annotation', '40S'),
('mt_1_1', np.float32),
('mt_1_2', np.float32),
('mt_1_3', np.float32),
('mt_2_1', np.float32),
('mt_2_2', np.float32),
('mt_2_3', np.float32),
('mt_3_1', np.float32),
('mt_3_2', np.float32),
('mt_3_3', np.float32),
('rfilter_cutoff', np.float32),
('rfilter_resolution', np.float32),
('rfilter_code', np.uint16),
('rfilter_order', np.uint16),
('zfilter_cutoff', np.float32),
('zfilter_resolution', np.float32),
('zfilter_code', np.uint16),
('zfilter_order', np.uint16),
('mt_4_1', np.float32),
('mt_4_2', np.float32),
('mt_4_3', np.float32),
('scatter_type', np.uint16),
('recon_type', np.uint16),
('recon_views', np.uint16),
('fill', '174S'),
('fill2', '96S')]
subhdr_dtype = np.dtype(subheader_dtd)
# Ecat Data Types
# See:
# http://www.turkupetcentre.net/software/libdoc/libtpcimgio/ecat7_8h_source.html#l00060
# and:
# http://www.turkupetcentre.net/software/libdoc/libtpcimgio/ecat7r_8c_source.html#l00717
_dtdefs = ( # code, name, equivalent dtype
(1, 'ECAT7_BYTE', np.uint8),
# Byte signed? https://github.com/nipy/nibabel/pull/302/files#r28275780
(2, 'ECAT7_VAXI2', np.int16),
(3, 'ECAT7_VAXI4', np.int32),
(4, 'ECAT7_VAXR4', np.float32),
(5, 'ECAT7_IEEER4', np.float32),
(6, 'ECAT7_SUNI2', np.int16),
(7, 'ECAT7_SUNI4', np.int32))
data_type_codes = make_dt_codes(_dtdefs)
# Matrix File Types
ft_defs = ( # code, name
(0, 'ECAT7_UNKNOWN'),
(1, 'ECAT7_2DSCAN'),
(2, 'ECAT7_IMAGE16'),
(3, 'ECAT7_ATTEN'),
(4, 'ECAT7_2DNORM'),
(5, 'ECAT7_POLARMAP'),
(6, 'ECAT7_VOLUME8'),
(7, 'ECAT7_VOLUME16'),
(8, 'ECAT7_PROJ'),
(9, 'ECAT7_PROJ16'),
(10, 'ECAT7_IMAGE8'),
(11, 'ECAT7_3DSCAN'),
(12, 'ECAT7_3DSCAN8'),
(13, 'ECAT7_3DNORM'),
(14, 'ECAT7_3DSCANFIT'))
file_type_codes = dict(ft_defs)
patient_orient_defs = ( # code, description
(0, 'ECAT7_Feet_First_Prone'),
(1, 'ECAT7_Head_First_Prone'),
(2, 'ECAT7_Feet_First_Supine'),
(3, 'ECAT7_Head_First_Supine'),
(4, 'ECAT7_Feet_First_Decubitus_Right'),
(5, 'ECAT7_Head_First_Decubitus_Right'),
(6, 'ECAT7_Feet_First_Decubitus_Left'),
(7, 'ECAT7_Head_First_Decubitus_Left'),
(8, 'ECAT7_Unknown_Orientation'))
patient_orient_codes = dict(patient_orient_defs)
# Indexes from the patient_orient_defs structure defined above for the
# neurological and radiological viewing conventions
patient_orient_radiological = [0, 2, 4, 6]
patient_orient_neurological = [1, 3, 5, 7]
class EcatHeader(WrapStruct):
"""Class for basic Ecat PET header
Sub-parts of standard Ecat File
* main header
* matrix list
which lists the information for each frame collected (can have 1 to many
frames)
* subheaders specific to each frame with possibly-variable sized data
blocks
This just reads the main Ecat Header, it does not load the data or read the
mlist or any sub headers
"""
template_dtype = hdr_dtype
_ft_codes = file_type_codes
_patient_orient_codes = patient_orient_codes
def __init__(self,
binaryblock=None,
endianness=None,
check=True):
"""Initialize Ecat header from bytes object
Parameters
----------
binaryblock : {None, bytes} optional
binary block to set into header, By default, None in which case we
insert default empty header block
endianness : {None, '<', '>', other endian code}, optional
endian code of binary block, If None, guess endianness
from the data
check : {True, False}, optional
Whether to check and fix header for errors. No checks currently
implemented, so value has no effect.
"""
super(EcatHeader, self).__init__(binaryblock, endianness, check)
@classmethod
def guessed_endian(klass, hdr):
"""Guess endian from MAGIC NUMBER value of header data
"""
if not hdr['sw_version'] == 74:
return swapped_code
else:
return native_code
@classmethod
def default_structarr(klass, endianness=None):
''' Return header data for empty header with given endianness
'''
hdr_data = super(EcatHeader, klass).default_structarr(endianness)
hdr_data['magic_number'] = 'MATRIX72'
hdr_data['sw_version'] = 74
hdr_data['num_frames'] = 0
hdr_data['file_type'] = 0 # Unknown
hdr_data['ecat_calibration_factor'] = 1.0 # scale factor
return hdr_data
def get_data_dtype(self):
""" Get numpy dtype for data from header"""
raise NotImplementedError("dtype is only valid from subheaders")
def get_patient_orient(self):
""" gets orientation of patient based on code stored
in header, not always reliable
"""
code = self._structarr['patient_orientation'].item()
if code not in self._patient_orient_codes:
raise KeyError('Ecat Orientation CODE %d not recognized' % code)
return self._patient_orient_codes[code]
def get_filetype(self):
""" Type of ECAT Matrix File from code stored in header"""
code = self._structarr['file_type'].item()
if code not in self._ft_codes:
raise KeyError('Ecat Filetype CODE %d not recognized' % code)
return self._ft_codes[code]
@classmethod
def _get_checks(klass):
''' Return sequence of check functions for this class '''
return ()
def read_mlist(fileobj, endianness):
""" read (nframes, 4) matrix list array from `fileobj`
Parameters
----------
fileobj : file-like
an open file-like object implementing ``seek`` and ``read``
Returns
-------
mlist : (nframes, 4) ndarray
matrix list is an array with ``nframes`` rows and columns:
* 0: Matrix identifier (frame number)
* 1: matrix data start block number (subheader followed by image data)
* 2: Last block number of matrix (image) data
* 3: Matrix status
* 1: hxists - rw
* 2: exists - ro
* 3: matrix deleted
Notes
-----
A block is 512 bytes.
``block_no`` in the code below is 1-based. block 1 is the main header,
and the mlist blocks start at block number 2.
The 512 bytes in an mlist block contain 32 rows of the int32 (nframes,
4) mlist matrix.
The first row of these 32 looks like a special row. The 4 values appear
to be (respectively):
* not sure - maybe negative number of mlist rows (out of 31) that are
blank and not used in this block. Called `nfree` but unused in CTI
code;
* block_no - of next set of mlist entries or 2 if no more entries. We also
allow 1 or 0 to signal no more entries;
* <no idea>. Called `prvblk` in CTI code, so maybe previous block no;
* n_rows - number of mlist rows in this block (between ?0 and 31) (called
`nused` in CTI code).
"""
dt = np.dtype(np.int32)
if endianness is not native_code:
dt = dt.newbyteorder(endianness)
mlists = []
mlist_index = 0
mlist_block_no = 2 # 1-based indexing, block with first mlist
while True:
# Read block containing mlist entries
fileobj.seek((mlist_block_no - 1) * BLOCK_SIZE) # fix 1-based indexing
dat = fileobj.read(BLOCK_SIZE)
rows = np.ndarray(shape=(32, 4), dtype=dt, buffer=dat)
# First row special, points to next mlist entries if present
n_unused, mlist_block_no, _, n_rows = rows[0]
if not (n_unused + n_rows) == 31: # Some error condition here?
mlist = []
return mlist
# Use all but first housekeeping row
mlists.append(rows[1:n_rows + 1])
mlist_index += n_rows
if mlist_block_no <= 2: # should block_no in (1, 2) be an error?
break
return np.row_stack(mlists)
def get_frame_order(mlist):
"""Returns the order of the frames stored in the file
Sometimes Frames are not stored in the file in
chronological order, this can be used to extract frames
in correct order
Returns
-------
id_dict: dict mapping frame number -> [mlist_row, mlist_id]
(where mlist id is value in the first column of the mlist matrix )
Examples
--------
>>> import os
>>> import nibabel as nib
>>> nibabel_dir = os.path.dirname(nib.__file__)
>>> from nibabel import ecat
>>> ecat_file = os.path.join(nibabel_dir,'tests','data','tinypet.v')
>>> img = ecat.load(ecat_file)
>>> mlist = img.get_mlist()
>>> get_frame_order(mlist)
{0: [0, 16842758]}
"""
ids = mlist[:, 0].copy()
n_valid = np.sum(ids > 0)
ids[ids <= 0] = ids.max() + 1 # put invalid frames at end after sort
valid_order = np.argsort(ids)
if not all(valid_order == sorted(valid_order)):
# raise UserWarning if Frames stored out of order
warnings.warn_explicit('Frames stored out of order;'
'true order = %s\n'
'frames will be accessed in order '
'STORED, NOT true order' % valid_order,
UserWarning, 'ecat', 0)
id_dict = {}
for i in range(n_valid):
id_dict[i] = [valid_order[i], ids[valid_order[i]]]
return id_dict
def get_series_framenumbers(mlist):
""" Returns framenumber of data as it was collected,
as part of a series; not just the order of how it was
stored in this or across other files
For example, if the data is split between multiple files
this should give you the true location of this frame as
collected in the series
(Frames are numbered starting at ONE (1) not Zero)
Returns
-------
frame_dict: dict mapping order_stored -> frame in series
where frame in series counts from 1; [1,2,3,4...]
Examples
--------
>>> import os
>>> import nibabel as nib
>>> nibabel_dir = os.path.dirname(nib.__file__)
>>> from nibabel import ecat
>>> ecat_file = os.path.join(nibabel_dir,'tests','data','tinypet.v')
>>> img = ecat.load(ecat_file)
>>> mlist = img.get_mlist()
>>> get_series_framenumbers(mlist)
{0: 1}
"""
nframes = len(mlist)
frames_order = get_frame_order(mlist)
mlist_nframes = len(frames_order)
trueframenumbers = np.arange(nframes - mlist_nframes, nframes)
frame_dict = {}
for frame_stored, (true_order, _) in frames_order.items():
# frame as stored in file -> true number in series
try:
frame_dict[frame_stored] = trueframenumbers[true_order] + 1
except IndexError:
raise IOError('Error in header or mlist order unknown')
return frame_dict
def read_subheaders(fileobj, mlist, endianness):
""" Retrieve all subheaders and return list of subheader recarrays
Parameters
----------
fileobj : file-like
implementing ``read`` and ``seek``
mlist : (nframes, 4) ndarray
Columns are:
* 0 - Matrix identifier.
* 1 - subheader block number
* 2 - Last block number of matrix data block.
* 3 - Matrix status
endianness : {'<', '>'}
little / big endian code
Returns
-------
subheaders : list
List of subheader structured arrays
"""
subheaders = []
dt = subhdr_dtype
if endianness is not native_code:
dt = dt.newbyteorder(endianness)
for mat_id, sh_blkno, sh_last_blkno, mat_stat in mlist:
if sh_blkno == 0:
break
offset = (sh_blkno - 1) * BLOCK_SIZE
fileobj.seek(offset)
tmpdat = fileobj.read(BLOCK_SIZE)
sh = np.ndarray(shape=(), dtype=dt, buffer=tmpdat)
subheaders.append(sh)
return subheaders
class EcatSubHeader(object):
_subhdrdtype = subhdr_dtype
_data_type_codes = data_type_codes
def __init__(self, hdr, mlist, fileobj):
"""parses the subheaders in the ecat (.v) file
there is one subheader for each frame in the ecat file
Parameters
-----------
hdr : EcatHeader
ECAT main header
mlist : array shape (N, 4)
Matrix list
fileobj : ECAT file <filename>.v fileholder or file object
with read, seek methods
"""
self._header = hdr
self.endianness = hdr.endianness
self._mlist = mlist
self.fileobj = fileobj
self.subheaders = read_subheaders(fileobj, mlist, hdr.endianness)
def get_shape(self, frame=0):
""" returns shape of given frame"""
subhdr = self.subheaders[frame]
x = subhdr['x_dimension'].item()
y = subhdr['y_dimension'].item()
z = subhdr['z_dimension'].item()
return (x, y, z)
def get_nframes(self):
"""returns number of frames"""
framed = get_frame_order(self._mlist)
return len(framed)
def _check_affines(self):
"""checks if all affines are equal across frames"""
nframes = self.get_nframes()
if nframes == 1:
return True
affs = [self.get_frame_affine(i) for i in range(nframes)]
if affs:
i = iter(affs)
first = i.next()
for item in i:
if not np.all(first == item):
return False
return True
def get_frame_affine(self, frame=0):
"""returns best affine for given frame of data"""
subhdr = self.subheaders[frame]
x_off = subhdr['x_offset']
y_off = subhdr['y_offset']
z_off = subhdr['z_offset']
zooms = self.get_zooms(frame=frame)
dims = self.get_shape(frame)
# get translations from center of image
origin_offset = (np.array(dims) - 1) / 2.0
aff = np.diag(zooms)
aff[:3, -1] = -origin_offset * zooms[:-1] + np.array([x_off, y_off,
z_off])
return aff
def get_zooms(self, frame=0):
"""returns zooms ...pixdims"""
subhdr = self.subheaders[frame]
x_zoom = subhdr['x_pixel_size'] * 10
y_zoom = subhdr['y_pixel_size'] * 10
z_zoom = subhdr['z_pixel_size'] * 10
return (x_zoom, y_zoom, z_zoom, 1)
def _get_data_dtype(self, frame):
dtcode = self.subheaders[frame]['data_type'].item()
return self._data_type_codes.dtype[dtcode]
def _get_frame_offset(self, frame=0):
return int(self._mlist[frame][1] * BLOCK_SIZE)
def _get_oriented_data(self, raw_data, orientation=None):
'''
Get data oriented following ``patient_orientation`` header field. If
the ``orientation`` parameter is given, return data according to this
orientation.
:param raw_data: Numpy array containing the raw data
:param orientation: None (default), 'neurological' or 'radiological'
:rtype: Numpy array containing the oriented data
'''
if orientation is None:
orientation = self._header['patient_orientation']
elif orientation == 'neurological':
orientation = patient_orient_neurological[0]
elif orientation == 'radiological':
orientation = patient_orient_radiological[0]
else:
raise ValueError('orientation should be None,\
neurological or radiological')
if orientation in patient_orient_neurological:
raw_data = raw_data[::-1, ::-1, ::-1]
elif orientation in patient_orient_radiological:
raw_data = raw_data[::, ::-1, ::-1]
return raw_data
def raw_data_from_fileobj(self, frame=0, orientation=None):
'''
Get raw data from file object.
:param frame: Time frame index from where to fetch data
:param orientation: None (default), 'neurological' or 'radiological'
:rtype: Numpy array containing (possibly oriented) raw data
.. seealso:: data_from_fileobj
'''
dtype = self._get_data_dtype(frame)
if self._header.endianness is not native_code:
dtype = dtype.newbyteorder(self._header.endianness)
shape = self.get_shape(frame)
offset = self._get_frame_offset(frame)
fid_obj = self.fileobj
raw_data = array_from_file(shape, dtype, fid_obj, offset=offset)
raw_data = self._get_oriented_data(raw_data, orientation)
return raw_data
def data_from_fileobj(self, frame=0, orientation=None):
'''
Read scaled data from file for a given frame
:param frame: Time frame index from where to fetch data
:param orientation: None (default), 'neurological' or 'radiological'
:rtype: Numpy array containing (possibly oriented) raw data
.. seealso:: raw_data_from_fileobj
'''
header = self._header
subhdr = self.subheaders[frame]
raw_data = self.raw_data_from_fileobj(frame, orientation)
# Scale factors have to be set to scalars to force scalar upcasting
data = raw_data * np.asscalar(header['ecat_calibration_factor'])
data = data * np.asscalar(subhdr['scale_factor'])
return data
class EcatImageArrayProxy(object):
''' Ecat implemention of array proxy protocol
The array proxy allows us to freeze the passed fileobj and
header such that it returns the expected data array.
'''
def __init__(self, subheader):
self._subheader = subheader
self._data = None
x, y, z = subheader.get_shape()
nframes = subheader.get_nframes()
self._shape = (x, y, z, nframes)
@property
def shape(self):
return self._shape
@property
def is_proxy(self):
return True
def __array__(self):
''' Read of data from file
This reads ALL FRAMES into one array, can be memory expensive.
If you want to read only some slices, use the slicing syntax
(``__getitem__``) below, or ``subheader.data_from_fileobj(frame)``
'''
data = np.empty(self.shape)
frame_mapping = get_frame_order(self._subheader._mlist)
for i in sorted(frame_mapping):
data[:, :, :, i] = self._subheader.data_from_fileobj(
frame_mapping[i][0])
return data
def __getitem__(self, sliceobj):
""" Return slice `sliceobj` from ECAT data, optimizing if possible
"""
sliceobj = canonical_slicers(sliceobj, self.shape)
# Indices into sliceobj referring to image axes
ax_inds = [i for i, obj in enumerate(sliceobj) if obj is not None]
assert len(ax_inds) == len(self.shape)
frame_mapping = get_frame_order(self._subheader._mlist)
# Analyze index for 4th axis
slice3 = sliceobj[ax_inds[3]]
# We will load volume by volume. Make slicer into volume by dropping
# index over the volume axis
in_slicer = sliceobj[:ax_inds[3]] + sliceobj[ax_inds[3] + 1:]
# int index for 4th axis, load one slice
if isinstance(slice3, Integral):
data = self._subheader.data_from_fileobj(frame_mapping[slice3][0])
return data[in_slicer]
# slice axis for 4th axis, we will iterate over slices
out_shape = predict_shape(sliceobj, self.shape)
out_data = np.empty(out_shape)
# Slice into output data with out_slicer
out_slicer = [slice(None)] * len(out_shape)
# Work out axis corresponding to volume in output
in2out_ind = slice2outax(len(self.shape), sliceobj)[3]
# Iterate over specified 4th axis indices
for i in list(range(self.shape[3]))[slice3]:
data = self._subheader.data_from_fileobj(
frame_mapping[i][0])
out_slicer[in2out_ind] = i
out_data[tuple(out_slicer)] = data[in_slicer]
return out_data
class EcatImage(SpatialImage):
""" Class returns a list of Ecat images, with one image(hdr/data) per frame
"""
_header = EcatHeader
header_class = _header
valid_exts = ('.v',)
_subheader = EcatSubHeader
files_types = (('image', '.v'), ('header', '.v'))
ImageArrayProxy = EcatImageArrayProxy
def __init__(self, dataobj, affine, header,
subheader, mlist,
extra=None, file_map=None):
""" Initialize Image
The image is a combination of
(array, affine matrix, header, subheader, mlist)
with optional meta data in `extra`, and filename / file-like objects
contained in the `file_map`.
Parameters
----------
dataabj : array-like
image data
affine : None or (4,4) array-like
homogeneous affine giving relationship between voxel coords and
world coords.
header : None or header instance
meta data for this image format
subheader : None or subheader instance
meta data for each sub-image for frame in the image
mlist : None or array
Matrix list array giving offset and order of data in file
extra : None or mapping, optional
metadata associated with this image that cannot be
stored in header or subheader
file_map : mapping, optional
mapping giving file information for this image format
Examples
--------
>>> import os
>>> import nibabel as nib
>>> nibabel_dir = os.path.dirname(nib.__file__)
>>> from nibabel import ecat
>>> ecat_file = os.path.join(nibabel_dir,'tests','data','tinypet.v')
>>> img = ecat.load(ecat_file)
>>> frame0 = img.get_frame(0)
>>> frame0.shape == (10, 10, 3)
True
>>> data4d = img.get_data()
>>> data4d.shape == (10, 10, 3, 1)
True
"""
self._subheader = subheader
self._mlist = mlist
self._dataobj = dataobj
if affine is not None:
# Check that affine is array-like 4,4. Maybe this is too strict at
# this abstract level, but so far I think all image formats we know
# do need 4,4.
affine = np.array(affine, dtype=np.float64, copy=True)
if not affine.shape == (4, 4):
raise ValueError('Affine should be shape 4,4')
self._affine = affine
if extra is None:
extra = {}
self.extra = extra
self._header = header
if file_map is None:
file_map = self.__class__.make_file_map()
self.file_map = file_map
self._data_cache = None
@property
def affine(self):
if not self._subheader._check_affines():
warnings.warn('Affines different across frames, loading affine '
'from FIRST frame', UserWarning)
return self._affine
def get_frame_affine(self, frame):
"""returns 4X4 affine"""
return self._subheader.get_frame_affine(frame=frame)
def get_frame(self, frame, orientation=None):
'''
Get full volume for a time frame
:param frame: Time frame index from where to fetch data
:param orientation: None (default), 'neurological' or 'radiological'
:rtype: Numpy array containing (possibly oriented) raw data
'''
return self._subheader.data_from_fileobj(frame, orientation)
def get_data_dtype(self, frame):
subhdr = self._subheader
dt = subhdr._get_data_dtype(frame)
return dt
@property
def shape(self):
x, y, z = self._subheader.get_shape()
nframes = self._subheader.get_nframes()
return(x, y, z, nframes)
def get_mlist(self):
""" get access to the mlist
"""
return self._mlist
def get_subheaders(self):
"""get access to subheaders"""
return self._subheader
@classmethod
@deprecate_with_version('from_filespec class method is deprecated.\n'
'Please use the ``from_file_map`` class method '
'instead.',
'2.1', '4.0')
def from_filespec(klass, filespec):
return klass.from_filename(filespec)
@staticmethod
def _get_fileholders(file_map):
""" returns files specific to header and image of the image
for ecat .v this is the same image file
Returns
-------
header : file holding header data
image : file holding image data
"""
return file_map['header'], file_map['image']
@classmethod
def from_file_map(klass, file_map):
"""class method to create image from mapping
specified in file_map
"""
hdr_file, img_file = klass._get_fileholders(file_map)
# note header and image are in same file
hdr_fid = hdr_file.get_prepare_fileobj(mode='rb')
header = klass._header.from_fileobj(hdr_fid)
hdr_copy = header.copy()
# LOAD MLIST
mlist = np.zeros((header['num_frames'], 4), dtype=np.int32)
mlist_data = read_mlist(hdr_fid, hdr_copy.endianness)
mlist[:len(mlist_data)] = mlist_data
# LOAD SUBHEADERS
subheaders = klass._subheader(hdr_copy, mlist, hdr_fid)
# LOAD DATA
# Class level ImageArrayProxy
data = klass.ImageArrayProxy(subheaders)
# Get affine
if not subheaders._check_affines():
warnings.warn('Affines different across frames, loading affine '
'from FIRST frame', UserWarning)
aff = subheaders.get_frame_affine()
img = klass(data, aff, header, subheaders, mlist,
extra=None, file_map=file_map)
return img
def _get_empty_dir(self):
'''
Get empty directory entry of the form
[numAvail, nextDir, previousDir, numUsed]
'''
return np.array([31, 2, 0, 0], dtype=np.int32)
def _write_data(self, data, stream, pos, dtype=None, endianness=None):
'''
Write data to ``stream`` using an array_writer
:param data: Numpy array containing the dat
:param stream: The file-like object to write the data to
:param pos: The position in the stream to write the data to
:param endianness: Endianness code of the data to write
'''
if dtype is None:
dtype = data.dtype
if endianness is None:
endianness = native_code
stream.seek(pos)
make_array_writer(data.newbyteorder(endianness),
dtype).to_fileobj(stream)
def to_file_map(self, file_map=None):
''' Write ECAT7 image to `file_map` or contained ``self.file_map``
The format consist of:
- A main header (512L) with dictionary entries in the form
[numAvail, nextDir, previousDir, numUsed]
- For every frame (3D volume in 4D data)
- A subheader (size = frame_offset)
- Frame data (3D volume)
'''
if file_map is None:
file_map = self.file_map
# It appears to be necessary to load the data before saving even if the
# data itself is not used.
self.get_data()
hdr = self.header
mlist = self._mlist
subheaders = self.get_subheaders()
dir_pos = 512
entry_pos = dir_pos + 16 # 528
current_dir = self._get_empty_dir()
hdr_fh, img_fh = self._get_fileholders(file_map)
hdrf = hdr_fh.get_prepare_fileobj(mode='wb')
imgf = hdrf
# Write main header
hdr.write_to(hdrf)
# Write every frames
for index in range(0, self.header['num_frames']):
# Move to subheader offset
frame_offset = subheaders._get_frame_offset(index) - 512
imgf.seek(frame_offset)
# Write subheader
subhdr = subheaders.subheaders[index]
imgf.write(subhdr.tostring())
# Seek to the next image block
pos = imgf.tell()
imgf.seek(pos + 2)
# Get frame
image = self._subheader.raw_data_from_fileobj(index)
# Write frame images
self._write_data(image, imgf, pos + 2, endianness='>')
# Move to dictionnary offset and write dictionnary entry
self._write_data(mlist[index], imgf, entry_pos, endianness='>')
entry_pos = entry_pos + 16
current_dir[0] = current_dir[0] - 1
current_dir[3] = current_dir[3] + 1
# Create a new directory is previous one is full
if current_dir[0] == 0:
# self._write_dir(current_dir, imgf, dir_pos)
self._write_data(current_dir, imgf, dir_pos)
current_dir = self._get_empty_dir()
current_dir[3] = dir_pos / 512
dir_pos = mlist[index][2] + 1
entry_pos = dir_pos + 16
tmp_avail = current_dir[0]
tmp_used = current_dir[3]
# Fill directory with empty data until directory is full
while current_dir[0] > 0:
entry_pos = dir_pos + 16 + (16 * current_dir[3])
self._write_data(np.zeros(4, dtype=np.int32), imgf, entry_pos)
current_dir[0] = current_dir[0] - 1
current_dir[3] = current_dir[3] + 1
current_dir[0] = tmp_avail
current_dir[3] = tmp_used
# Write directory index
self._write_data(current_dir, imgf, dir_pos, endianness='>')
@classmethod
def from_image(klass, img):
raise NotImplementedError("Ecat images can only be generated "
"from file objects")
@classmethod
def load(klass, filespec):
return klass.from_filename(filespec)
load = EcatImage.load
|