/usr/lib/python3/dist-packages/nltk/collections.py is in python3-nltk 3.2.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 | # Natural Language Toolkit: Collections
#
# Copyright (C) 2001-2017 NLTK Project
# Author: Steven Bird <stevenbird1@gmail.com>
# URL: <http://nltk.org/>
# For license information, see LICENSE.TXT
from __future__ import print_function, absolute_import
import locale
import re
import types
import textwrap
import pydoc
import bisect
import os
from itertools import islice, chain, combinations
from functools import total_ordering
from collections import defaultdict, deque, Counter
from six import text_type
from nltk.internals import slice_bounds, raise_unorderable_types
from nltk.compat import python_2_unicode_compatible
##########################################################################
# Ordered Dictionary
##########################################################################
class OrderedDict(dict):
def __init__(self, data=None, **kwargs):
self._keys = self.keys(data, kwargs.get('keys'))
self._default_factory = kwargs.get('default_factory')
if data is None:
dict.__init__(self)
else:
dict.__init__(self, data)
def __delitem__(self, key):
dict.__delitem__(self, key)
self._keys.remove(key)
def __getitem__(self, key):
try:
return dict.__getitem__(self, key)
except KeyError:
return self.__missing__(key)
def __iter__(self):
return (key for key in self.keys())
def __missing__(self, key):
if not self._default_factory and key not in self._keys:
raise KeyError()
return self._default_factory()
def __setitem__(self, key, item):
dict.__setitem__(self, key, item)
if key not in self._keys:
self._keys.append(key)
def clear(self):
dict.clear(self)
self._keys.clear()
def copy(self):
d = dict.copy(self)
d._keys = self._keys
return d
def items(self):
# returns iterator under python 3 and list under python 2
return zip(self.keys(), self.values())
def keys(self, data=None, keys=None):
if data:
if keys:
assert isinstance(keys, list)
assert len(data) == len(keys)
return keys
else:
assert isinstance(data, dict) or \
isinstance(data, OrderedDict) or \
isinstance(data, list)
if isinstance(data, dict) or isinstance(data, OrderedDict):
return data.keys()
elif isinstance(data, list):
return [key for (key, value) in data]
elif '_keys' in self.__dict__:
return self._keys
else:
return []
def popitem(self):
if not self._keys:
raise KeyError()
key = self._keys.pop()
value = self[key]
del self[key]
return (key, value)
def setdefault(self, key, failobj=None):
dict.setdefault(self, key, failobj)
if key not in self._keys:
self._keys.append(key)
def update(self, data):
dict.update(self, data)
for key in self.keys(data):
if key not in self._keys:
self._keys.append(key)
def values(self):
# returns iterator under python 3
return map(self.get, self._keys)
######################################################################
# Lazy Sequences
######################################################################
@total_ordering
@python_2_unicode_compatible
class AbstractLazySequence(object):
"""
An abstract base class for read-only sequences whose values are
computed as needed. Lazy sequences act like tuples -- they can be
indexed, sliced, and iterated over; but they may not be modified.
The most common application of lazy sequences in NLTK is for
corpus view objects, which provide access to the contents of a
corpus without loading the entire corpus into memory, by loading
pieces of the corpus from disk as needed.
The result of modifying a mutable element of a lazy sequence is
undefined. In particular, the modifications made to the element
may or may not persist, depending on whether and when the lazy
sequence caches that element's value or reconstructs it from
scratch.
Subclasses are required to define two methods: ``__len__()``
and ``iterate_from()``.
"""
def __len__(self):
"""
Return the number of tokens in the corpus file underlying this
corpus view.
"""
raise NotImplementedError('should be implemented by subclass')
def iterate_from(self, start):
"""
Return an iterator that generates the tokens in the corpus
file underlying this corpus view, starting at the token number
``start``. If ``start>=len(self)``, then this iterator will
generate no tokens.
"""
raise NotImplementedError('should be implemented by subclass')
def __getitem__(self, i):
"""
Return the *i* th token in the corpus file underlying this
corpus view. Negative indices and spans are both supported.
"""
if isinstance(i, slice):
start, stop = slice_bounds(self, i)
return LazySubsequence(self, start, stop)
else:
# Handle negative indices
if i < 0: i += len(self)
if i < 0: raise IndexError('index out of range')
# Use iterate_from to extract it.
try:
return next(self.iterate_from(i))
except StopIteration:
raise IndexError('index out of range')
def __iter__(self):
"""Return an iterator that generates the tokens in the corpus
file underlying this corpus view."""
return self.iterate_from(0)
def count(self, value):
"""Return the number of times this list contains ``value``."""
return sum(1 for elt in self if elt==value)
def index(self, value, start=None, stop=None):
"""Return the index of the first occurrence of ``value`` in this
list that is greater than or equal to ``start`` and less than
``stop``. Negative start and stop values are treated like negative
slice bounds -- i.e., they count from the end of the list."""
start, stop = slice_bounds(self, slice(start, stop))
for i, elt in enumerate(islice(self, start, stop)):
if elt == value: return i+start
raise ValueError('index(x): x not in list')
def __contains__(self, value):
"""Return true if this list contains ``value``."""
return bool(self.count(value))
def __add__(self, other):
"""Return a list concatenating self with other."""
return LazyConcatenation([self, other])
def __radd__(self, other):
"""Return a list concatenating other with self."""
return LazyConcatenation([other, self])
def __mul__(self, count):
"""Return a list concatenating self with itself ``count`` times."""
return LazyConcatenation([self] * count)
def __rmul__(self, count):
"""Return a list concatenating self with itself ``count`` times."""
return LazyConcatenation([self] * count)
_MAX_REPR_SIZE = 60
def __repr__(self):
"""
Return a string representation for this corpus view that is
similar to a list's representation; but if it would be more
than 60 characters long, it is truncated.
"""
pieces = []
length = 5
for elt in self:
pieces.append(repr(elt))
length += len(pieces[-1]) + 2
if length > self._MAX_REPR_SIZE and len(pieces) > 2:
return '[%s, ...]' % text_type(', ').join(pieces[:-1])
return '[%s]' % text_type(', ').join(pieces)
def __eq__(self, other):
return (type(self) == type(other) and list(self) == list(other))
def __ne__(self, other):
return not self == other
def __lt__(self, other):
if type(other) != type(self):
raise_unorderable_types("<", self, other)
return list(self) < list(other)
def __hash__(self):
"""
:raise ValueError: Corpus view objects are unhashable.
"""
raise ValueError('%s objects are unhashable' %
self.__class__.__name__)
class LazySubsequence(AbstractLazySequence):
"""
A subsequence produced by slicing a lazy sequence. This slice
keeps a reference to its source sequence, and generates its values
by looking them up in the source sequence.
"""
MIN_SIZE = 100
"""
The minimum size for which lazy slices should be created. If
``LazySubsequence()`` is called with a subsequence that is
shorter than ``MIN_SIZE``, then a tuple will be returned instead.
"""
def __new__(cls, source, start, stop):
"""
Construct a new slice from a given underlying sequence. The
``start`` and ``stop`` indices should be absolute indices --
i.e., they should not be negative (for indexing from the back
of a list) or greater than the length of ``source``.
"""
# If the slice is small enough, just use a tuple.
if stop-start < cls.MIN_SIZE:
return list(islice(source.iterate_from(start), stop-start))
else:
return object.__new__(cls)
def __init__(self, source, start, stop):
self._source = source
self._start = start
self._stop = stop
def __len__(self):
return self._stop - self._start
def iterate_from(self, start):
return islice(self._source.iterate_from(start+self._start),
max(0, len(self)-start))
class LazyConcatenation(AbstractLazySequence):
"""
A lazy sequence formed by concatenating a list of lists. This
underlying list of lists may itself be lazy. ``LazyConcatenation``
maintains an index that it uses to keep track of the relationship
between offsets in the concatenated lists and offsets in the
sublists.
"""
def __init__(self, list_of_lists):
self._list = list_of_lists
self._offsets = [0]
def __len__(self):
if len(self._offsets) <= len(self._list):
for tok in self.iterate_from(self._offsets[-1]): pass
return self._offsets[-1]
def iterate_from(self, start_index):
if start_index < self._offsets[-1]:
sublist_index = bisect.bisect_right(self._offsets, start_index)-1
else:
sublist_index = len(self._offsets)-1
index = self._offsets[sublist_index]
# Construct an iterator over the sublists.
if isinstance(self._list, AbstractLazySequence):
sublist_iter = self._list.iterate_from(sublist_index)
else:
sublist_iter = islice(self._list, sublist_index, None)
for sublist in sublist_iter:
if sublist_index == (len(self._offsets)-1):
assert index+len(sublist) >= self._offsets[-1], (
'offests not monotonic increasing!')
self._offsets.append(index+len(sublist))
else:
assert self._offsets[sublist_index+1] == index+len(sublist), (
'inconsistent list value (num elts)')
for value in sublist[max(0, start_index-index):]:
yield value
index += len(sublist)
sublist_index += 1
class LazyMap(AbstractLazySequence):
"""
A lazy sequence whose elements are formed by applying a given
function to each element in one or more underlying lists. The
function is applied lazily -- i.e., when you read a value from the
list, ``LazyMap`` will calculate that value by applying its
function to the underlying lists' value(s). ``LazyMap`` is
essentially a lazy version of the Python primitive function
``map``. In particular, the following two expressions are
equivalent:
>>> from nltk.collections import LazyMap
>>> function = str
>>> sequence = [1,2,3]
>>> map(function, sequence) # doctest: +SKIP
['1', '2', '3']
>>> list(LazyMap(function, sequence))
['1', '2', '3']
Like the Python ``map`` primitive, if the source lists do not have
equal size, then the value None will be supplied for the
'missing' elements.
Lazy maps can be useful for conserving memory, in cases where
individual values take up a lot of space. This is especially true
if the underlying list's values are constructed lazily, as is the
case with many corpus readers.
A typical example of a use case for this class is performing
feature detection on the tokens in a corpus. Since featuresets
are encoded as dictionaries, which can take up a lot of memory,
using a ``LazyMap`` can significantly reduce memory usage when
training and running classifiers.
"""
def __init__(self, function, *lists, **config):
"""
:param function: The function that should be applied to
elements of ``lists``. It should take as many arguments
as there are ``lists``.
:param lists: The underlying lists.
:param cache_size: Determines the size of the cache used
by this lazy map. (default=5)
"""
if not lists:
raise TypeError('LazyMap requires at least two args')
self._lists = lists
self._func = function
self._cache_size = config.get('cache_size', 5)
self._cache = ({} if self._cache_size > 0 else None)
# If you just take bool() of sum() here _all_lazy will be true just
# in case n >= 1 list is an AbstractLazySequence. Presumably this
# isn't what's intended.
self._all_lazy = sum(isinstance(lst, AbstractLazySequence)
for lst in lists) == len(lists)
def iterate_from(self, index):
# Special case: one lazy sublist
if len(self._lists) == 1 and self._all_lazy:
for value in self._lists[0].iterate_from(index):
yield self._func(value)
return
# Special case: one non-lazy sublist
elif len(self._lists) == 1:
while True:
try: yield self._func(self._lists[0][index])
except IndexError: return
index += 1
# Special case: n lazy sublists
elif self._all_lazy:
iterators = [lst.iterate_from(index) for lst in self._lists]
while True:
elements = []
for iterator in iterators:
try: elements.append(next(iterator))
except: elements.append(None)
if elements == [None] * len(self._lists):
return
yield self._func(*elements)
index += 1
# general case
else:
while True:
try: elements = [lst[index] for lst in self._lists]
except IndexError:
elements = [None] * len(self._lists)
for i, lst in enumerate(self._lists):
try: elements[i] = lst[index]
except IndexError: pass
if elements == [None] * len(self._lists):
return
yield self._func(*elements)
index += 1
def __getitem__(self, index):
if isinstance(index, slice):
sliced_lists = [lst[index] for lst in self._lists]
return LazyMap(self._func, *sliced_lists)
else:
# Handle negative indices
if index < 0: index += len(self)
if index < 0: raise IndexError('index out of range')
# Check the cache
if self._cache is not None and index in self._cache:
return self._cache[index]
# Calculate the value
try: val = next(self.iterate_from(index))
except StopIteration:
raise IndexError('index out of range')
# Update the cache
if self._cache is not None:
if len(self._cache) > self._cache_size:
self._cache.popitem() # discard random entry
self._cache[index] = val
# Return the value
return val
def __len__(self):
return max(len(lst) for lst in self._lists)
class LazyZip(LazyMap):
"""
A lazy sequence whose elements are tuples, each containing the i-th
element from each of the argument sequences. The returned list is
truncated in length to the length of the shortest argument sequence. The
tuples are constructed lazily -- i.e., when you read a value from the
list, ``LazyZip`` will calculate that value by forming a tuple from
the i-th element of each of the argument sequences.
``LazyZip`` is essentially a lazy version of the Python primitive function
``zip``. In particular, an evaluated LazyZip is equivalent to a zip:
>>> from nltk.collections import LazyZip
>>> sequence1, sequence2 = [1, 2, 3], ['a', 'b', 'c']
>>> zip(sequence1, sequence2) # doctest: +SKIP
[(1, 'a'), (2, 'b'), (3, 'c')]
>>> list(LazyZip(sequence1, sequence2))
[(1, 'a'), (2, 'b'), (3, 'c')]
>>> sequences = [sequence1, sequence2, [6,7,8,9]]
>>> list(zip(*sequences)) == list(LazyZip(*sequences))
True
Lazy zips can be useful for conserving memory in cases where the argument
sequences are particularly long.
A typical example of a use case for this class is combining long sequences
of gold standard and predicted values in a classification or tagging task
in order to calculate accuracy. By constructing tuples lazily and
avoiding the creation of an additional long sequence, memory usage can be
significantly reduced.
"""
def __init__(self, *lists):
"""
:param lists: the underlying lists
:type lists: list(list)
"""
LazyMap.__init__(self, lambda *elts: elts, *lists)
def iterate_from(self, index):
iterator = LazyMap.iterate_from(self, index)
while index < len(self):
yield next(iterator)
index += 1
return
def __len__(self):
return min(len(lst) for lst in self._lists)
class LazyEnumerate(LazyZip):
"""
A lazy sequence whose elements are tuples, each ontaining a count (from
zero) and a value yielded by underlying sequence. ``LazyEnumerate`` is
useful for obtaining an indexed list. The tuples are constructed lazily
-- i.e., when you read a value from the list, ``LazyEnumerate`` will
calculate that value by forming a tuple from the count of the i-th
element and the i-th element of the underlying sequence.
``LazyEnumerate`` is essentially a lazy version of the Python primitive
function ``enumerate``. In particular, the following two expressions are
equivalent:
>>> from nltk.collections import LazyEnumerate
>>> sequence = ['first', 'second', 'third']
>>> list(enumerate(sequence))
[(0, 'first'), (1, 'second'), (2, 'third')]
>>> list(LazyEnumerate(sequence))
[(0, 'first'), (1, 'second'), (2, 'third')]
Lazy enumerations can be useful for conserving memory in cases where the
argument sequences are particularly long.
A typical example of a use case for this class is obtaining an indexed
list for a long sequence of values. By constructing tuples lazily and
avoiding the creation of an additional long sequence, memory usage can be
significantly reduced.
"""
def __init__(self, lst):
"""
:param lst: the underlying list
:type lst: list
"""
LazyZip.__init__(self, range(len(lst)), lst)
class LazyIteratorList(AbstractLazySequence):
"""
Wraps an iterator, loading its elements on demand
and making them subscriptable.
__repr__ displays only the first few elements.
"""
def __init__(self, it, known_len=None):
self._it = it
self._len = known_len
self._cache = []
def __len__(self):
if self._len:
return self._len
for x in self.iterate_from(len(self._cache)):
pass
self._len = len(self._cache)
return self._len
def iterate_from(self, start):
"""Create a new iterator over this list starting at the given offset."""
while len(self._cache)<start:
v = next(self._it)
self._cache.append(v)
i = start
while i<len(self._cache):
yield self._cache[i]
i += 1
while True:
v = next(self._it)
self._cache.append(v)
yield v
i += 1
def __add__(self, other):
"""Return a list concatenating self with other."""
return type(self)(chain(self, other))
def __radd__(self, other):
"""Return a list concatenating other with self."""
return type(self)(chain(other, self))
######################################################################
# Trie Implementation
######################################################################
class Trie(defaultdict):
"""A Trie implementation for strings"""
LEAF = True
def __init__(self, strings=None):
"""Builds a Trie object, which is built around a ``defaultdict``
If ``strings`` is provided, it will add the ``strings``, which
consist of a ``list`` of ``strings``, to the Trie.
Otherwise, it'll construct an empty Trie.
:param strings: List of strings to insert into the trie
(Default is ``None``)
:type strings: list(str)
"""
defaultdict.__init__(self, Trie)
if strings:
for string in strings:
self.insert(string)
def insert(self, string):
"""Inserts ``string`` into the Trie
:param string: String to insert into the trie
:type string: str
:Example:
>>> from nltk.collections import Trie
>>> trie = Trie(["ab"])
>>> trie
defaultdict(<class 'nltk.collections.Trie'>, {'a': defaultdict(<class 'nltk.collections.Trie'>, {'b': defaultdict(<class 'nltk.collections.Trie'>, {True: None})})})
"""
if len(string):
self[string[0]].insert(string[1:])
else:
# mark the string is complete
self[Trie.LEAF] = None
def __str__(self):
return str(self.as_dict())
def as_dict(self, d=None):
"""Convert ``defaultdict`` to common ``dict`` representation.
:param: A defaultdict containing strings mapped to nested defaultdicts.
This is the structure of the trie. (Default is None)
:type: defaultdict(str -> defaultdict)
:return: Even though ``defaultdict`` is a subclass of ``dict`` and thus
can be converted to a simple ``dict`` using ``dict()``, in our case
it's a nested ``defaultdict``, so here's a quick trick to provide to
us the ``dict`` representation of the ``Trie`` without
``defaultdict(<class 'nltk.collections.Trie'>, ...``
:rtype: dict(str -> dict(bool -> None))
Note: there can be an arbitrarily deeply nested
``dict(str -> dict(str -> dict(..))``, but the last
level will have ``dict(str -> dict(bool -> None))``
:Example:
>>> from nltk.collections import Trie
>>> trie = Trie(["abc", "def"])
>>> expected = {'a': {'b': {'c': {True: None}}}, 'd': {'e': {'f': {True: None}}}}
>>> trie.as_dict() == expected
True
"""
def _default_to_regular(d):
"""
Source: http://stackoverflow.com/a/26496899/4760801
:param d: Nested ``defaultdict`` to convert to regular ``dict``
:type d: defaultdict(str -> defaultdict(...))
:return: A dict representation of the defaultdict
:rtype: dict(str -> dict(str -> ...))
:Example:
>>> from collections import defaultdict
>>> d = defaultdict(defaultdict)
>>> d["one"]["two"] = "three"
>>> d
defaultdict(<type 'collections.defaultdict'>, {'one': defaultdict(None, {'two': 'three'})})
>>> _default_to_regular(d)
{'one': {'two': 'three'}}
"""
if isinstance(d, defaultdict):
d = {k: _default_to_regular(v) for k, v in d.items()}
return d
return _default_to_regular(self)
|