This file is indexed.

/usr/lib/python3/dist-packages/nltk/grammar.py is in python3-nltk 3.2.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
# -*- coding: utf-8 -*-
# Natural Language Toolkit: Context Free Grammars
#
# Copyright (C) 2001-2017 NLTK Project
# Author: Steven Bird <stevenbird1@gmail.com>
#         Edward Loper <edloper@gmail.com>
#         Jason Narad <jason.narad@gmail.com>
#         Peter Ljunglöf <peter.ljunglof@heatherleaf.se>
# URL: <http://nltk.org/>
# For license information, see LICENSE.TXT
#

"""
Basic data classes for representing context free grammars.  A
"grammar" specifies which trees can represent the structure of a
given text.  Each of these trees is called a "parse tree" for the
text (or simply a "parse").  In a "context free" grammar, the set of
parse trees for any piece of a text can depend only on that piece, and
not on the rest of the text (i.e., the piece's context).  Context free
grammars are often used to find possible syntactic structures for
sentences.  In this context, the leaves of a parse tree are word
tokens; and the node values are phrasal categories, such as ``NP``
and ``VP``.

The ``CFG`` class is used to encode context free grammars.  Each
``CFG`` consists of a start symbol and a set of productions.
The "start symbol" specifies the root node value for parse trees.  For example,
the start symbol for syntactic parsing is usually ``S``.  Start
symbols are encoded using the ``Nonterminal`` class, which is discussed
below.

A Grammar's "productions" specify what parent-child relationships a parse
tree can contain.  Each production specifies that a particular
node can be the parent of a particular set of children.  For example,
the production ``<S> -> <NP> <VP>`` specifies that an ``S`` node can
be the parent of an ``NP`` node and a ``VP`` node.

Grammar productions are implemented by the ``Production`` class.
Each ``Production`` consists of a left hand side and a right hand
side.  The "left hand side" is a ``Nonterminal`` that specifies the
node type for a potential parent; and the "right hand side" is a list
that specifies allowable children for that parent.  This lists
consists of ``Nonterminals`` and text types: each ``Nonterminal``
indicates that the corresponding child may be a ``TreeToken`` with the
specified node type; and each text type indicates that the
corresponding child may be a ``Token`` with the with that type.

The ``Nonterminal`` class is used to distinguish node values from leaf
values.  This prevents the grammar from accidentally using a leaf
value (such as the English word "A") as the node of a subtree.  Within
a ``CFG``, all node values are wrapped in the ``Nonterminal``
class. Note, however, that the trees that are specified by the grammar do
*not* include these ``Nonterminal`` wrappers.

Grammars can also be given a more procedural interpretation.  According to
this interpretation, a Grammar specifies any tree structure *tree* that
can be produced by the following procedure:

| Set tree to the start symbol
| Repeat until tree contains no more nonterminal leaves:
|   Choose a production prod with whose left hand side
|     lhs is a nonterminal leaf of tree.
|   Replace the nonterminal leaf with a subtree, whose node
|     value is the value wrapped by the nonterminal lhs, and
|     whose children are the right hand side of prod.

The operation of replacing the left hand side (*lhs*) of a production
with the right hand side (*rhs*) in a tree (*tree*) is known as
"expanding" *lhs* to *rhs* in *tree*.
"""
from __future__ import print_function, unicode_literals, division

import re
from functools import total_ordering

from six import string_types

from nltk.util import transitive_closure, invert_graph
from nltk.compat import python_2_unicode_compatible, unicode_repr
from nltk.internals import raise_unorderable_types

from nltk.probability import ImmutableProbabilisticMixIn
from nltk.featstruct import FeatStruct, FeatDict, FeatStructReader, SLASH, TYPE

#################################################################
# Nonterminal
#################################################################

@total_ordering
@python_2_unicode_compatible
class Nonterminal(object):
    """
    A non-terminal symbol for a context free grammar.  ``Nonterminal``
    is a wrapper class for node values; it is used by ``Production``
    objects to distinguish node values from leaf values.
    The node value that is wrapped by a ``Nonterminal`` is known as its
    "symbol".  Symbols are typically strings representing phrasal
    categories (such as ``"NP"`` or ``"VP"``).  However, more complex
    symbol types are sometimes used (e.g., for lexicalized grammars).
    Since symbols are node values, they must be immutable and
    hashable.  Two ``Nonterminals`` are considered equal if their
    symbols are equal.

    :see: ``CFG``, ``Production``
    :type _symbol: any
    :ivar _symbol: The node value corresponding to this
        ``Nonterminal``.  This value must be immutable and hashable.
    """
    def __init__(self, symbol):
        """
        Construct a new non-terminal from the given symbol.

        :type symbol: any
        :param symbol: The node value corresponding to this
            ``Nonterminal``.  This value must be immutable and
            hashable.
        """
        self._symbol = symbol
        self._hash = hash(symbol)

    def symbol(self):
        """
        Return the node value corresponding to this ``Nonterminal``.

        :rtype: (any)
        """
        return self._symbol

    def __eq__(self, other):
        """
        Return True if this non-terminal is equal to ``other``.  In
        particular, return True if ``other`` is a ``Nonterminal``
        and this non-terminal's symbol is equal to ``other`` 's symbol.

        :rtype: bool
        """
        return type(self) == type(other) and self._symbol == other._symbol

    def __ne__(self, other):
        return not self == other

    def __lt__(self, other):
        if not isinstance(other, Nonterminal):
            raise_unorderable_types("<", self, other)
        return self._symbol < other._symbol

    def __hash__(self):
        return self._hash

    def __repr__(self):
        """
        Return a string representation for this ``Nonterminal``.

        :rtype: str
        """
        if isinstance(self._symbol, string_types):
            return '%s' % self._symbol
        else:
            return '%s' % unicode_repr(self._symbol)

    def __str__(self):
        """
        Return a string representation for this ``Nonterminal``.

        :rtype: str
        """
        if isinstance(self._symbol, string_types):
            return '%s' % self._symbol
        else:
            return '%s' % unicode_repr(self._symbol)

    def __div__(self, rhs):
        """
        Return a new nonterminal whose symbol is ``A/B``, where ``A`` is
        the symbol for this nonterminal, and ``B`` is the symbol for rhs.

        :param rhs: The nonterminal used to form the right hand side
            of the new nonterminal.
        :type rhs: Nonterminal
        :rtype: Nonterminal
        """
        return Nonterminal('%s/%s' % (self._symbol, rhs._symbol))


    def __truediv__(self, rhs):
        """
        Return a new nonterminal whose symbol is ``A/B``, where ``A`` is
        the symbol for this nonterminal, and ``B`` is the symbol for rhs.
        This function allows use of the slash ``/`` operator with
        the future import of division.

        :param rhs: The nonterminal used to form the right hand side
            of the new nonterminal.
        :type rhs: Nonterminal
        :rtype: Nonterminal
        """
        return self.__div__(rhs)

def nonterminals(symbols):
    """
    Given a string containing a list of symbol names, return a list of
    ``Nonterminals`` constructed from those symbols.

    :param symbols: The symbol name string.  This string can be
        delimited by either spaces or commas.
    :type symbols: str
    :return: A list of ``Nonterminals`` constructed from the symbol
        names given in ``symbols``.  The ``Nonterminals`` are sorted
        in the same order as the symbols names.
    :rtype: list(Nonterminal)
    """
    if ',' in symbols: symbol_list = symbols.split(',')
    else: symbol_list = symbols.split()
    return [Nonterminal(s.strip()) for s in symbol_list]

class FeatStructNonterminal(FeatDict, Nonterminal):
    """A feature structure that's also a nonterminal.  It acts as its
    own symbol, and automatically freezes itself when hashed."""
    def __hash__(self):
        self.freeze()
        return FeatStruct.__hash__(self)
    def symbol(self):
        return self

def is_nonterminal(item):
    """
    :return: True if the item is a ``Nonterminal``.
    :rtype: bool
    """
    return isinstance(item, Nonterminal)


#################################################################
# Terminals
#################################################################

def is_terminal(item):
    """
    Return True if the item is a terminal, which currently is
    if it is hashable and not a ``Nonterminal``.

    :rtype: bool
    """
    return hasattr(item, '__hash__') and not isinstance(item, Nonterminal)


#################################################################
# Productions
#################################################################

@total_ordering
@python_2_unicode_compatible
class Production(object):
    """
    A grammar production.  Each production maps a single symbol
    on the "left-hand side" to a sequence of symbols on the
    "right-hand side".  (In the case of context-free productions,
    the left-hand side must be a ``Nonterminal``, and the right-hand
    side is a sequence of terminals and ``Nonterminals``.)
    "terminals" can be any immutable hashable object that is
    not a ``Nonterminal``.  Typically, terminals are strings
    representing words, such as ``"dog"`` or ``"under"``.

    :see: ``CFG``
    :see: ``DependencyGrammar``
    :see: ``Nonterminal``
    :type _lhs: Nonterminal
    :ivar _lhs: The left-hand side of the production.
    :type _rhs: tuple(Nonterminal, terminal)
    :ivar _rhs: The right-hand side of the production.
    """

    def __init__(self, lhs, rhs):
        """
        Construct a new ``Production``.

        :param lhs: The left-hand side of the new ``Production``.
        :type lhs: Nonterminal
        :param rhs: The right-hand side of the new ``Production``.
        :type rhs: sequence(Nonterminal and terminal)
        """
        if isinstance(rhs, string_types):
            raise TypeError('production right hand side should be a list, '
                            'not a string')
        self._lhs = lhs
        self._rhs = tuple(rhs)
        self._hash = hash((self._lhs, self._rhs))

    def lhs(self):
        """
        Return the left-hand side of this ``Production``.

        :rtype: Nonterminal
        """
        return self._lhs

    def rhs(self):
        """
        Return the right-hand side of this ``Production``.

        :rtype: sequence(Nonterminal and terminal)
        """
        return self._rhs

    def __len__(self):
        """
        Return the length of the right-hand side.

        :rtype: int
        """
        return len(self._rhs)

    def is_nonlexical(self):
        """
        Return True if the right-hand side only contains ``Nonterminals``

        :rtype: bool
        """
        return all(is_nonterminal(n) for n in self._rhs)

    def is_lexical(self):
        """
        Return True if the right-hand contain at least one terminal token.

        :rtype: bool
        """
        return not self.is_nonlexical()

    def __str__(self):
        """
        Return a verbose string representation of the ``Production``.

        :rtype: str
        """
        result = '%s -> ' % unicode_repr(self._lhs)
        result += " ".join(unicode_repr(el) for el in self._rhs)
        return result

    def __repr__(self):
        """
        Return a concise string representation of the ``Production``.

        :rtype: str
        """
        return '%s' % self

    def __eq__(self, other):
        """
        Return True if this ``Production`` is equal to ``other``.

        :rtype: bool
        """
        return (type(self) == type(other) and
                self._lhs == other._lhs and
                self._rhs == other._rhs)

    def __ne__(self, other):
        return not self == other

    def __lt__(self, other):
        if not isinstance(other, Production):
            raise_unorderable_types("<", self, other)
        return (self._lhs, self._rhs) < (other._lhs, other._rhs)

    def __hash__(self):
        """
        Return a hash value for the ``Production``.

        :rtype: int
        """
        return self._hash


@python_2_unicode_compatible
class DependencyProduction(Production):
    """
    A dependency grammar production.  Each production maps a single
    head word to an unordered list of one or more modifier words.
    """
    def __str__(self):
        """
        Return a verbose string representation of the ``DependencyProduction``.

        :rtype: str
        """
        result = '\'%s\' ->' % (self._lhs,)
        for elt in self._rhs:
            result += ' \'%s\'' % (elt,)
        return result


@python_2_unicode_compatible
class ProbabilisticProduction(Production, ImmutableProbabilisticMixIn):
    """
    A probabilistic context free grammar production.
    A PCFG ``ProbabilisticProduction`` is essentially just a ``Production`` that
    has an associated probability, which represents how likely it is that
    this production will be used.  In particular, the probability of a
    ``ProbabilisticProduction`` records the likelihood that its right-hand side is
    the correct instantiation for any given occurrence of its left-hand side.

    :see: ``Production``
    """
    def __init__(self, lhs, rhs, **prob):
        """
        Construct a new ``ProbabilisticProduction``.

        :param lhs: The left-hand side of the new ``ProbabilisticProduction``.
        :type lhs: Nonterminal
        :param rhs: The right-hand side of the new ``ProbabilisticProduction``.
        :type rhs: sequence(Nonterminal and terminal)
        :param prob: Probability parameters of the new ``ProbabilisticProduction``.
        """
        ImmutableProbabilisticMixIn.__init__(self, **prob)
        Production.__init__(self, lhs, rhs)

    def __str__(self):
        return Production.__unicode__(self) + \
            (' [1.0]' if (self.prob() == 1.0) else ' [%g]' % self.prob())

    def __eq__(self, other):
        return (type(self) == type(other) and
                self._lhs == other._lhs and
                self._rhs == other._rhs and
                self.prob() == other.prob())

    def __ne__(self, other):
        return not self == other

    def __hash__(self):
        return hash((self._lhs, self._rhs, self.prob()))

#################################################################
# Grammars
#################################################################

@python_2_unicode_compatible
class CFG(object):
    """
    A context-free grammar.  A grammar consists of a start state and
    a set of productions.  The set of terminals and nonterminals is
    implicitly specified by the productions.

    If you need efficient key-based access to productions, you
    can use a subclass to implement it.
    """
    def __init__(self, start, productions, calculate_leftcorners=True):
        """
        Create a new context-free grammar, from the given start state
        and set of ``Production``s.

        :param start: The start symbol
        :type start: Nonterminal
        :param productions: The list of productions that defines the grammar
        :type productions: list(Production)
        :param calculate_leftcorners: False if we don't want to calculate the
            leftcorner relation. In that case, some optimized chart parsers won't work.
        :type calculate_leftcorners: bool
        """
        if not is_nonterminal(start):
            raise TypeError("start should be a Nonterminal object,"
                            " not a %s" % type(start).__name__)

        self._start = start
        self._productions = productions
        self._categories = set(prod.lhs() for prod in productions)
        self._calculate_indexes()
        self._calculate_grammar_forms()
        if calculate_leftcorners:
            self._calculate_leftcorners()

    def _calculate_indexes(self):
        self._lhs_index = {}
        self._rhs_index = {}
        self._empty_index = {}
        self._lexical_index = {}
        for prod in self._productions:
            # Left hand side.
            lhs = prod._lhs
            if lhs not in self._lhs_index:
                self._lhs_index[lhs] = []
            self._lhs_index[lhs].append(prod)
            if prod._rhs:
                # First item in right hand side.
                rhs0 = prod._rhs[0]
                if rhs0 not in self._rhs_index:
                    self._rhs_index[rhs0] = []
                self._rhs_index[rhs0].append(prod)
            else:
                # The right hand side is empty.
                self._empty_index[prod.lhs()] = prod
            # Lexical tokens in the right hand side.
            for token in prod._rhs:
                if is_terminal(token):
                    self._lexical_index.setdefault(token, set()).add(prod)

    def _calculate_leftcorners(self):
        # Calculate leftcorner relations, for use in optimized parsing.
        self._immediate_leftcorner_categories = dict((cat, set([cat])) for cat in self._categories)
        self._immediate_leftcorner_words = dict((cat, set()) for cat in self._categories)
        for prod in self.productions():
            if len(prod) > 0:
                cat, left = prod.lhs(), prod.rhs()[0]
                if is_nonterminal(left):
                    self._immediate_leftcorner_categories[cat].add(left)
                else:
                    self._immediate_leftcorner_words[cat].add(left)

        lc = transitive_closure(self._immediate_leftcorner_categories, reflexive=True)
        self._leftcorners = lc
        self._leftcorner_parents = invert_graph(lc)

        nr_leftcorner_categories = sum(map(len, self._immediate_leftcorner_categories.values()))
        nr_leftcorner_words = sum(map(len, self._immediate_leftcorner_words.values()))
        if nr_leftcorner_words > nr_leftcorner_categories > 10000:
            # If the grammar is big, the leftcorner-word dictionary will be too large.
            # In that case it is better to calculate the relation on demand.
            self._leftcorner_words = None
            return

        self._leftcorner_words = {}
        for cat in self._leftcorners:
            lefts = self._leftcorners[cat]
            lc = self._leftcorner_words[cat] = set()
            for left in lefts:
                lc.update(self._immediate_leftcorner_words.get(left, set()))

    @classmethod
    def fromstring(cls, input, encoding=None):
        """
        Return the ``CFG`` corresponding to the input string(s).

        :param input: a grammar, either in the form of a string or as a list of strings.
        """
        start, productions = read_grammar(input, standard_nonterm_parser,
                                          encoding=encoding)
        return CFG(start, productions)

    def start(self):
        """
        Return the start symbol of the grammar

        :rtype: Nonterminal
        """
        return self._start

    # tricky to balance readability and efficiency here!
    # can't use set operations as they don't preserve ordering
    def productions(self, lhs=None, rhs=None, empty=False):
        """
        Return the grammar productions, filtered by the left-hand side
        or the first item in the right-hand side.

        :param lhs: Only return productions with the given left-hand side.
        :param rhs: Only return productions with the given first item
            in the right-hand side.
        :param empty: Only return productions with an empty right-hand side.
        :return: A list of productions matching the given constraints.
        :rtype: list(Production)
        """
        if rhs and empty:
            raise ValueError("You cannot select empty and non-empty "
                             "productions at the same time.")

        # no constraints so return everything
        if not lhs and not rhs:
            if not empty:
                return self._productions
            else:
                return self._empty_index.values()

        # only lhs specified so look up its index
        elif lhs and not rhs:
            if not empty:
                return self._lhs_index.get(lhs, [])
            elif lhs in self._empty_index:
                return [self._empty_index[lhs]]
            else:
                return []

        # only rhs specified so look up its index
        elif rhs and not lhs:
            return self._rhs_index.get(rhs, [])

        # intersect
        else:
            return [prod for prod in self._lhs_index.get(lhs, [])
                    if prod in self._rhs_index.get(rhs, [])]

    def leftcorners(self, cat):
        """
        Return the set of all nonterminals that the given nonterminal
        can start with, including itself.

        This is the reflexive, transitive closure of the immediate
        leftcorner relation:  (A > B)  iff  (A -> B beta)

        :param cat: the parent of the leftcorners
        :type cat: Nonterminal
        :return: the set of all leftcorners
        :rtype: set(Nonterminal)
        """
        return self._leftcorners.get(cat, set([cat]))

    def is_leftcorner(self, cat, left):
        """
        True if left is a leftcorner of cat, where left can be a
        terminal or a nonterminal.

        :param cat: the parent of the leftcorner
        :type cat: Nonterminal
        :param left: the suggested leftcorner
        :type left: Terminal or Nonterminal
        :rtype: bool
        """
        if is_nonterminal(left):
            return left in self.leftcorners(cat)
        elif self._leftcorner_words:
            return left in self._leftcorner_words.get(cat, set())
        else:
            return any(left in self._immediate_leftcorner_words.get(parent, set())
                       for parent in self.leftcorners(cat))

    def leftcorner_parents(self, cat):
        """
        Return the set of all nonterminals for which the given category
        is a left corner. This is the inverse of the leftcorner relation.

        :param cat: the suggested leftcorner
        :type cat: Nonterminal
        :return: the set of all parents to the leftcorner
        :rtype: set(Nonterminal)
        """
        return self._leftcorner_parents.get(cat, set([cat]))

    def check_coverage(self, tokens):
        """
        Check whether the grammar rules cover the given list of tokens.
        If not, then raise an exception.

        :type tokens: list(str)
        """
        missing = [tok for tok in tokens
                   if not self._lexical_index.get(tok)]
        if missing:
            missing = ', '.join('%r' % (w,) for w in missing)
            raise ValueError("Grammar does not cover some of the "
                             "input words: %r." % missing)

    def _calculate_grammar_forms(self):
        """
        Pre-calculate of which form(s) the grammar is.
        """
        prods = self._productions
        self._is_lexical = all(p.is_lexical() for p in prods)
        self._is_nonlexical = all(p.is_nonlexical() for p in prods
                                  if len(p) != 1)
        self._min_len = min(len(p) for p in prods)
        self._max_len = max(len(p) for p in prods)
        self._all_unary_are_lexical = all(p.is_lexical() for p in prods
                                          if len(p) == 1)

    def is_lexical(self):
        """
        Return True if all productions are lexicalised.
        """
        return self._is_lexical

    def is_nonlexical(self):
        """
        Return True if all lexical rules are "preterminals", that is,
        unary rules which can be separated in a preprocessing step.

        This means that all productions are of the forms
        A -> B1 ... Bn (n>=0), or A -> "s".

        Note: is_lexical() and is_nonlexical() are not opposites.
        There are grammars which are neither, and grammars which are both.
        """
        return self._is_nonlexical

    def min_len(self):
        """
        Return the right-hand side length of the shortest grammar production.
        """
        return self._min_len

    def max_len(self):
        """
        Return the right-hand side length of the longest grammar production.
        """
        return self._max_len

    def is_nonempty(self):
        """
        Return True if there are no empty productions.
        """
        return self._min_len > 0

    def is_binarised(self):
        """
        Return True if all productions are at most binary.
        Note that there can still be empty and unary productions.
        """
        return self._max_len <= 2

    def is_flexible_chomsky_normal_form(self):
        """
        Return True if all productions are of the forms
        A -> B C, A -> B, or A -> "s".
        """
        return self.is_nonempty() and self.is_nonlexical() and self.is_binarised()

    def is_chomsky_normal_form(self):
        """
        Return True if the grammar is of Chomsky Normal Form, i.e. all productions
        are of the form A -> B C, or A -> "s".
        """
        return (self.is_flexible_chomsky_normal_form() and
                self._all_unary_are_lexical)

    def __repr__(self):
        return '<Grammar with %d productions>' % len(self._productions)

    def __str__(self):
        result = 'Grammar with %d productions' % len(self._productions)
        result += ' (start state = %r)' % self._start
        for production in self._productions:
            result += '\n    %s' % production
        return result


class FeatureGrammar(CFG):
    """
    A feature-based grammar.  This is equivalent to a
    ``CFG`` whose nonterminals are all
    ``FeatStructNonterminal``.

    A grammar consists of a start state and a set of
    productions.  The set of terminals and nonterminals
    is implicitly specified by the productions.
    """
    def __init__(self, start, productions):
        """
        Create a new feature-based grammar, from the given start
        state and set of ``Productions``.

        :param start: The start symbol
        :type start: FeatStructNonterminal
        :param productions: The list of productions that defines the grammar
        :type productions: list(Production)
        """
        CFG.__init__(self, start, productions)

    # The difference with CFG is that the productions are
    # indexed on the TYPE feature of the nonterminals.
    # This is calculated by the method _get_type_if_possible().

    def _calculate_indexes(self):
        self._lhs_index = {}
        self._rhs_index = {}
        self._empty_index = {}
        self._empty_productions = []
        self._lexical_index = {}
        for prod in self._productions:
            # Left hand side.
            lhs = self._get_type_if_possible(prod._lhs)
            if lhs not in self._lhs_index:
                self._lhs_index[lhs] = []
            self._lhs_index[lhs].append(prod)
            if prod._rhs:
                # First item in right hand side.
                rhs0 = self._get_type_if_possible(prod._rhs[0])
                if rhs0 not in self._rhs_index:
                    self._rhs_index[rhs0] = []
                self._rhs_index[rhs0].append(prod)
            else:
                # The right hand side is empty.
                if lhs not in self._empty_index:
                    self._empty_index[lhs] = []
                self._empty_index[lhs].append(prod)
                self._empty_productions.append(prod)
            # Lexical tokens in the right hand side.
            for token in prod._rhs:
                if is_terminal(token):
                    self._lexical_index.setdefault(token, set()).add(prod)

    @classmethod
    def fromstring(cls, input, features=None, logic_parser=None, fstruct_reader=None,
               encoding=None):
        """
        Return a feature structure based ``FeatureGrammar``.

        :param input: a grammar, either in the form of a string or else
        as a list of strings.
        :param features: a tuple of features (default: SLASH, TYPE)
        :param logic_parser: a parser for lambda-expressions,
        by default, ``LogicParser()``
        :param fstruct_reader: a feature structure parser
        (only if features and logic_parser is None)
        """
        if features is None:
            features = (SLASH, TYPE)

        if fstruct_reader is None:
            fstruct_reader = FeatStructReader(features, FeatStructNonterminal,
                                              logic_parser=logic_parser)
        elif logic_parser is not None:
            raise Exception('\'logic_parser\' and \'fstruct_reader\' must '
                            'not both be set')

        start, productions = read_grammar(input, fstruct_reader.read_partial,
                                          encoding=encoding)
        return FeatureGrammar(start, productions)


    def productions(self, lhs=None, rhs=None, empty=False):
        """
        Return the grammar productions, filtered by the left-hand side
        or the first item in the right-hand side.

        :param lhs: Only return productions with the given left-hand side.
        :param rhs: Only return productions with the given first item
            in the right-hand side.
        :param empty: Only return productions with an empty right-hand side.
        :rtype: list(Production)
        """
        if rhs and empty:
            raise ValueError("You cannot select empty and non-empty "
                             "productions at the same time.")

        # no constraints so return everything
        if not lhs and not rhs:
            if empty:
                return self._empty_productions
            else:
                return self._productions

        # only lhs specified so look up its index
        elif lhs and not rhs:
            if empty:
                return self._empty_index.get(self._get_type_if_possible(lhs), [])
            else:
                return self._lhs_index.get(self._get_type_if_possible(lhs), [])

        # only rhs specified so look up its index
        elif rhs and not lhs:
            return self._rhs_index.get(self._get_type_if_possible(rhs), [])

        # intersect
        else:
            return [prod for prod in self._lhs_index.get(self._get_type_if_possible(lhs), [])
                    if prod in self._rhs_index.get(self._get_type_if_possible(rhs), [])]

    def leftcorners(self, cat):
        """
        Return the set of all words that the given category can start with.
        Also called the "first set" in compiler construction.
        """
        raise NotImplementedError("Not implemented yet")

    def leftcorner_parents(self, cat):
        """
        Return the set of all categories for which the given category
        is a left corner.
        """
        raise NotImplementedError("Not implemented yet")

    def _get_type_if_possible(self, item):
        """
        Helper function which returns the ``TYPE`` feature of the ``item``,
        if it exists, otherwise it returns the ``item`` itself
        """
        if isinstance(item, dict) and TYPE in item:
            return FeatureValueType(item[TYPE])
        else:
            return item

@total_ordering
@python_2_unicode_compatible
class FeatureValueType(object):
    """
    A helper class for ``FeatureGrammars``, designed to be different
    from ordinary strings.  This is to stop the ``FeatStruct``
    ``FOO[]`` from being compare equal to the terminal "FOO".
    """
    def __init__(self, value):
        self._value = value
        self._hash = hash(value)

    def __repr__(self):
        return '<%s>' % self._value

    def __eq__(self, other):
        return type(self) == type(other) and self._value == other._value

    def __ne__(self, other):
        return not self == other

    def __lt__(self, other):
        if not isinstance(other, FeatureValueType):
            raise_unorderable_types("<", self, other)
        return self._value < other._value

    def __hash__(self):
        return self._hash


@python_2_unicode_compatible
class DependencyGrammar(object):
    """
    A dependency grammar.  A DependencyGrammar consists of a set of
    productions.  Each production specifies a head/modifier relationship
    between a pair of words.
    """
    def __init__(self, productions):
        """
        Create a new dependency grammar, from the set of ``Productions``.

        :param productions: The list of productions that defines the grammar
        :type productions: list(Production)
        """
        self._productions = productions

    @classmethod
    def fromstring(cls, input):
        productions = []
        for linenum, line in enumerate(input.split('\n')):
            line = line.strip()
            if line.startswith('#') or line=='': continue
            try: productions += _read_dependency_production(line)
            except ValueError:
                raise ValueError('Unable to parse line %s: %s' % (linenum, line))
        if len(productions) == 0:
            raise ValueError('No productions found!')
        return DependencyGrammar(productions)

    def contains(self, head, mod):
        """
        :param head: A head word.
        :type head: str
        :param mod: A mod word, to test as a modifier of 'head'.
        :type mod: str

        :return: true if this ``DependencyGrammar`` contains a
            ``DependencyProduction`` mapping 'head' to 'mod'.
        :rtype: bool
        """
        for production in self._productions:
            for possibleMod in production._rhs:
                if(production._lhs == head and possibleMod == mod):
                    return True
        return False

    def __contains__(self, head, mod):
        """
        Return True if this ``DependencyGrammar`` contains a
        ``DependencyProduction`` mapping 'head' to 'mod'.

        :param head: A head word.
        :type head: str
        :param mod: A mod word, to test as a modifier of 'head'.
        :type mod: str
        :rtype: bool
        """
        for production in self._productions:
            for possibleMod in production._rhs:
                if(production._lhs == head and possibleMod == mod):
                    return True
        return False

    #   # should be rewritten, the set comp won't work in all comparisons
    # def contains_exactly(self, head, modlist):
    #   for production in self._productions:
    #       if(len(production._rhs) == len(modlist)):
    #           if(production._lhs == head):
    #               set1 = Set(production._rhs)
    #               set2 = Set(modlist)
    #               if(set1 == set2):
    #                   return True
    #   return False


    def __str__(self):
        """
        Return a verbose string representation of the ``DependencyGrammar``

        :rtype: str
        """
        str = 'Dependency grammar with %d productions' % len(self._productions)
        for production in self._productions:
            str += '\n  %s' % production
        return str

    def __repr__(self):
        """
        Return a concise string representation of the ``DependencyGrammar``
        """
        return 'Dependency grammar with %d productions' % len(self._productions)


@python_2_unicode_compatible
class ProbabilisticDependencyGrammar(object):
    """

    """

    def __init__(self, productions, events, tags):
        self._productions = productions
        self._events = events
        self._tags = tags

    def contains(self, head, mod):
        """
        Return True if this ``DependencyGrammar`` contains a
        ``DependencyProduction`` mapping 'head' to 'mod'.

        :param head: A head word.
        :type head: str
        :param mod: A mod word, to test as a modifier of 'head'.
        :type mod: str
        :rtype: bool
        """
        for production in self._productions:
            for possibleMod in production._rhs:
                if(production._lhs == head and possibleMod == mod):
                    return True
        return False

    def __str__(self):
        """
        Return a verbose string representation of the ``ProbabilisticDependencyGrammar``

        :rtype: str
        """
        str = 'Statistical dependency grammar with %d productions' % len(self._productions)
        for production in self._productions:
            str += '\n  %s' % production
        str += '\nEvents:'
        for event in self._events:
            str += '\n  %d:%s' % (self._events[event], event)
        str += '\nTags:'
        for tag_word in self._tags:
            str += '\n %s:\t(%s)' % (tag_word, self._tags[tag_word])
        return str

    def __repr__(self):
        """
        Return a concise string representation of the ``ProbabilisticDependencyGrammar``
        """
        return 'Statistical Dependency grammar with %d productions' % len(self._productions)


class PCFG(CFG):
    """
    A probabilistic context-free grammar.  A PCFG consists of a
    start state and a set of productions with probabilities.  The set of
    terminals and nonterminals is implicitly specified by the productions.

    PCFG productions use the ``ProbabilisticProduction`` class.
    ``PCFGs`` impose the constraint that the set of productions with
    any given left-hand-side must have probabilities that sum to 1
    (allowing for a small margin of error).

    If you need efficient key-based access to productions, you can use
    a subclass to implement it.

    :type EPSILON: float
    :cvar EPSILON: The acceptable margin of error for checking that
        productions with a given left-hand side have probabilities
        that sum to 1.
    """
    EPSILON = 0.01

    def __init__(self, start, productions, calculate_leftcorners=True):
        """
        Create a new context-free grammar, from the given start state
        and set of ``ProbabilisticProductions``.

        :param start: The start symbol
        :type start: Nonterminal
        :param productions: The list of productions that defines the grammar
        :type productions: list(Production)
        :raise ValueError: if the set of productions with any left-hand-side
            do not have probabilities that sum to a value within
            EPSILON of 1.
        :param calculate_leftcorners: False if we don't want to calculate the
            leftcorner relation. In that case, some optimized chart parsers won't work.
        :type calculate_leftcorners: bool
        """
        CFG.__init__(self, start, productions, calculate_leftcorners)

        # Make sure that the probabilities sum to one.
        probs = {}
        for production in productions:
            probs[production.lhs()] = (probs.get(production.lhs(), 0) +
                                       production.prob())
        for (lhs, p) in probs.items():
            if not ((1-PCFG.EPSILON) < p <
                    (1+PCFG.EPSILON)):
                raise ValueError("Productions for %r do not sum to 1" % lhs)


    @classmethod
    def fromstring(cls, input, encoding=None):
        """
        Return a probabilistic ``PCFG`` corresponding to the
        input string(s).

        :param input: a grammar, either in the form of a string or else
             as a list of strings.
        """
        start, productions = read_grammar(input, standard_nonterm_parser,
                                          probabilistic=True, encoding=encoding)
        return PCFG(start, productions)


#################################################################
# Inducing Grammars
#################################################################

# Contributed by Nathan Bodenstab <bodenstab@cslu.ogi.edu>

def induce_pcfg(start, productions):
    """
    Induce a PCFG grammar from a list of productions.

    The probability of a production A -> B C in a PCFG is:

    |                count(A -> B C)
    |  P(B, C | A) = ---------------       where \* is any right hand side
    |                 count(A -> \*)

    :param start: The start symbol
    :type start: Nonterminal
    :param productions: The list of productions that defines the grammar
    :type productions: list(Production)
    """
    # Production count: the number of times a given production occurs
    pcount = {}

    # LHS-count: counts the number of times a given lhs occurs
    lcount = {}

    for prod in productions:
        lcount[prod.lhs()] = lcount.get(prod.lhs(), 0) + 1
        pcount[prod]       = pcount.get(prod,       0) + 1

    prods = [ProbabilisticProduction(p.lhs(), p.rhs(),
                                prob=pcount[p] / lcount[p.lhs()])
             for p in pcount]
    return PCFG(start, prods)


#################################################################
# Helper functions for reading productions
#################################################################

def _read_cfg_production(input):
    """
    Return a list of context-free ``Productions``.
    """
    return _read_production(input, standard_nonterm_parser)

def _read_pcfg_production(input):
    """
    Return a list of PCFG ``ProbabilisticProductions``.
    """
    return _read_production(input, standard_nonterm_parser, probabilistic=True)

def _read_fcfg_production(input, fstruct_reader):
    """
    Return a list of feature-based ``Productions``.
    """
    return _read_production(input, fstruct_reader)


# Parsing generic grammars

_ARROW_RE = re.compile(r'\s* -> \s*', re.VERBOSE)
_PROBABILITY_RE = re.compile(r'( \[ [\d\.]+ \] ) \s*', re.VERBOSE)
_TERMINAL_RE = re.compile(r'( "[^"]+" | \'[^\']+\' ) \s*', re.VERBOSE)
_DISJUNCTION_RE = re.compile(r'\| \s*', re.VERBOSE)

def _read_production(line, nonterm_parser, probabilistic=False):
    """
    Parse a grammar rule, given as a string, and return
    a list of productions.
    """
    pos = 0

    # Parse the left-hand side.
    lhs, pos = nonterm_parser(line, pos)

    # Skip over the arrow.
    m = _ARROW_RE.match(line, pos)
    if not m: raise ValueError('Expected an arrow')
    pos = m.end()

    # Parse the right hand side.
    probabilities = [0.0]
    rhsides = [[]]
    while pos < len(line):
        # Probability.
        m = _PROBABILITY_RE.match(line, pos)
        if probabilistic and m:
            pos = m.end()
            probabilities[-1] = float(m.group(1)[1:-1])
            if probabilities[-1] > 1.0:
                raise ValueError('Production probability %f, '
                                 'should not be greater than 1.0' %
                                 (probabilities[-1],))

        # String -- add terminal.
        elif line[pos] in "\'\"":
            m = _TERMINAL_RE.match(line, pos)
            if not m: raise ValueError('Unterminated string')
            rhsides[-1].append(m.group(1)[1:-1])
            pos = m.end()

        # Vertical bar -- start new rhside.
        elif line[pos] == '|':
            m = _DISJUNCTION_RE.match(line, pos)
            probabilities.append(0.0)
            rhsides.append([])
            pos = m.end()

        # Anything else -- nonterminal.
        else:
            nonterm, pos = nonterm_parser(line, pos)
            rhsides[-1].append(nonterm)

    if probabilistic:
        return [ProbabilisticProduction(lhs, rhs, prob=probability)
                for (rhs, probability) in zip(rhsides, probabilities)]
    else:
        return [Production(lhs, rhs) for rhs in rhsides]


#################################################################
# Reading Phrase Structure Grammars
#################################################################

def read_grammar(input, nonterm_parser, probabilistic=False, encoding=None):
    """
    Return a pair consisting of a starting category and a list of
    ``Productions``.

    :param input: a grammar, either in the form of a string or else
        as a list of strings.
    :param nonterm_parser: a function for parsing nonterminals.
        It should take a ``(string, position)`` as argument and
        return a ``(nonterminal, position)`` as result.
    :param probabilistic: are the grammar rules probabilistic?
    :type probabilistic: bool
    :param encoding: the encoding of the grammar, if it is a binary string
    :type encoding: str
    """
    if encoding is not None:
        input = input.decode(encoding)
    if isinstance(input, string_types):
        lines = input.split('\n')
    else:
        lines = input

    start = None
    productions = []
    continue_line = ''
    for linenum, line in enumerate(lines):
        line = continue_line + line.strip()
        if line.startswith('#') or line=='': continue
        if line.endswith('\\'):
            continue_line = line[:-1].rstrip()+' '
            continue
        continue_line = ''
        try:
            if line[0] == '%':
                directive, args = line[1:].split(None, 1)
                if directive == 'start':
                    start, pos = nonterm_parser(args, 0)
                    if pos != len(args):
                        raise ValueError('Bad argument to start directive')
                else:
                    raise ValueError('Bad directive')
            else:
                # expand out the disjunctions on the RHS
                productions += _read_production(line, nonterm_parser, probabilistic)
        except ValueError as e:
            raise ValueError('Unable to parse line %s: %s\n%s' %
                             (linenum+1, line, e))

    if not productions:
        raise ValueError('No productions found!')
    if not start:
        start = productions[0].lhs()
    return (start, productions)

_STANDARD_NONTERM_RE = re.compile('( [\w/][\w/^<>-]* ) \s*', re.VERBOSE)

def standard_nonterm_parser(string, pos):
    m = _STANDARD_NONTERM_RE.match(string, pos)
    if not m: raise ValueError('Expected a nonterminal, found: '
                               + string[pos:])
    return (Nonterminal(m.group(1)), m.end())


#################################################################
# Reading Dependency Grammars
#################################################################

_READ_DG_RE = re.compile(r'''^\s*                # leading whitespace
                              ('[^']+')\s*        # single-quoted lhs
                              (?:[-=]+>)\s*        # arrow
                              (?:(                 # rhs:
                                   "[^"]+"         # doubled-quoted terminal
                                 | '[^']+'         # single-quoted terminal
                                 | \|              # disjunction
                                 )
                                 \s*)              # trailing space
                                 *$''',            # zero or more copies
                             re.VERBOSE)
_SPLIT_DG_RE = re.compile(r'''('[^']'|[-=]+>|"[^"]+"|'[^']+'|\|)''')

def _read_dependency_production(s):
    if not _READ_DG_RE.match(s):
        raise ValueError('Bad production string')
    pieces = _SPLIT_DG_RE.split(s)
    pieces = [p for i,p in enumerate(pieces) if i%2==1]
    lhside = pieces[0].strip('\'\"')
    rhsides = [[]]
    for piece in pieces[2:]:
        if piece == '|':
            rhsides.append([])
        else:
            rhsides[-1].append(piece.strip('\'\"'))
    return [DependencyProduction(lhside, rhside) for rhside in rhsides]


#################################################################
# Demonstration
#################################################################

def cfg_demo():
    """
    A demonstration showing how ``CFGs`` can be created and used.
    """

    from nltk import nonterminals, Production, CFG

    # Create some nonterminals
    S, NP, VP, PP = nonterminals('S, NP, VP, PP')
    N, V, P, Det = nonterminals('N, V, P, Det')
    VP_slash_NP = VP/NP

    print('Some nonterminals:', [S, NP, VP, PP, N, V, P, Det, VP/NP])
    print('    S.symbol() =>', repr(S.symbol()))
    print()

    print(Production(S, [NP]))

    # Create some Grammar Productions
    grammar = CFG.fromstring("""
      S -> NP VP
      PP -> P NP
      NP -> Det N | NP PP
      VP -> V NP | VP PP
      Det -> 'a' | 'the'
      N -> 'dog' | 'cat'
      V -> 'chased' | 'sat'
      P -> 'on' | 'in'
    """)

    print('A Grammar:', repr(grammar))
    print('    grammar.start()       =>', repr(grammar.start()))
    print('    grammar.productions() =>', end=' ')
    # Use string.replace(...) is to line-wrap the output.
    print(repr(grammar.productions()).replace(',', ',\n'+' '*25))
    print()

toy_pcfg1 = PCFG.fromstring("""
    S -> NP VP [1.0]
    NP -> Det N [0.5] | NP PP [0.25] | 'John' [0.1] | 'I' [0.15]
    Det -> 'the' [0.8] | 'my' [0.2]
    N -> 'man' [0.5] | 'telescope' [0.5]
    VP -> VP PP [0.1] | V NP [0.7] | V [0.2]
    V -> 'ate' [0.35] | 'saw' [0.65]
    PP -> P NP [1.0]
    P -> 'with' [0.61] | 'under' [0.39]
    """)

toy_pcfg2 = PCFG.fromstring("""
    S    -> NP VP         [1.0]
    VP   -> V NP          [.59]
    VP   -> V             [.40]
    VP   -> VP PP         [.01]
    NP   -> Det N         [.41]
    NP   -> Name          [.28]
    NP   -> NP PP         [.31]
    PP   -> P NP          [1.0]
    V    -> 'saw'         [.21]
    V    -> 'ate'         [.51]
    V    -> 'ran'         [.28]
    N    -> 'boy'         [.11]
    N    -> 'cookie'      [.12]
    N    -> 'table'       [.13]
    N    -> 'telescope'   [.14]
    N    -> 'hill'        [.5]
    Name -> 'Jack'        [.52]
    Name -> 'Bob'         [.48]
    P    -> 'with'        [.61]
    P    -> 'under'       [.39]
    Det  -> 'the'         [.41]
    Det  -> 'a'           [.31]
    Det  -> 'my'          [.28]
    """)

def pcfg_demo():
    """
    A demonstration showing how a ``PCFG`` can be created and used.
    """

    from nltk.corpus import treebank
    from nltk import treetransforms
    from nltk import induce_pcfg
    from nltk.parse import pchart

    pcfg_prods = toy_pcfg1.productions()

    pcfg_prod = pcfg_prods[2]
    print('A PCFG production:', repr(pcfg_prod))
    print('    pcfg_prod.lhs()  =>', repr(pcfg_prod.lhs()))
    print('    pcfg_prod.rhs()  =>', repr(pcfg_prod.rhs()))
    print('    pcfg_prod.prob() =>', repr(pcfg_prod.prob()))
    print()

    grammar = toy_pcfg2
    print('A PCFG grammar:', repr(grammar))
    print('    grammar.start()       =>', repr(grammar.start()))
    print('    grammar.productions() =>', end=' ')
    # Use .replace(...) is to line-wrap the output.
    print(repr(grammar.productions()).replace(',', ',\n'+' '*26))
    print()

    # extract productions from three trees and induce the PCFG
    print("Induce PCFG grammar from treebank data:")

    productions = []
    item = treebank._fileids[0]
    for tree in treebank.parsed_sents(item)[:3]:
        # perform optional tree transformations, e.g.:
        tree.collapse_unary(collapsePOS = False)
        tree.chomsky_normal_form(horzMarkov = 2)

        productions += tree.productions()

    S = Nonterminal('S')
    grammar = induce_pcfg(S, productions)
    print(grammar)
    print()

    print("Parse sentence using induced grammar:")

    parser = pchart.InsideChartParser(grammar)
    parser.trace(3)

    # doesn't work as tokens are different:
    #sent = treebank.tokenized('wsj_0001.mrg')[0]

    sent = treebank.parsed_sents(item)[0].leaves()
    print(sent)
    for parse in parser.parse(sent):
        print(parse)

def fcfg_demo():
    import nltk.data
    g = nltk.data.load('grammars/book_grammars/feat0.fcfg')
    print(g)
    print()

def dg_demo():
    """
    A demonstration showing the creation and inspection of a
    ``DependencyGrammar``.
    """
    grammar = DependencyGrammar.fromstring("""
    'scratch' -> 'cats' | 'walls'
    'walls' -> 'the'
    'cats' -> 'the'
    """)
    print(grammar)

def sdg_demo():
    """
    A demonstration of how to read a string representation of
    a CoNLL format dependency tree.
    """
    from nltk.parse import DependencyGraph

    dg = DependencyGraph("""
    1   Ze                ze                Pron  Pron  per|3|evofmv|nom                 2   su      _  _
    2   had               heb               V     V     trans|ovt|1of2of3|ev             0   ROOT    _  _
    3   met               met               Prep  Prep  voor                             8   mod     _  _
    4   haar              haar              Pron  Pron  bez|3|ev|neut|attr               5   det     _  _
    5   moeder            moeder            N     N     soort|ev|neut                    3   obj1    _  _
    6   kunnen            kan               V     V     hulp|ott|1of2of3|mv              2   vc      _  _
    7   gaan              ga                V     V     hulp|inf                         6   vc      _  _
    8   winkelen          winkel            V     V     intrans|inf                      11  cnj     _  _
    9   ,                 ,                 Punc  Punc  komma                            8   punct   _  _
    10  zwemmen           zwem              V     V     intrans|inf                      11  cnj     _  _
    11  of                of                Conj  Conj  neven                            7   vc      _  _
    12  terrassen         terras            N     N     soort|mv|neut                    11  cnj     _  _
    13  .                 .                 Punc  Punc  punt                             12  punct   _  _
    """)
    tree = dg.tree()
    print(tree.pprint())

def demo():
    cfg_demo()
    pcfg_demo()
    fcfg_demo()
    dg_demo()
    sdg_demo()

if __name__ == '__main__':
    demo()

__all__ = ['Nonterminal', 'nonterminals',
           'CFG', 'Production',
	   'PCFG', 'ProbabilisticProduction',
	   'DependencyGrammar', 'DependencyProduction',
           'ProbabilisticDependencyGrammar',
	   'induce_pcfg', 'read_grammar']