/usr/lib/python3/dist-packages/nltk/probability.py is in python3-nltk 3.2.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 | # -*- coding: utf-8 -*-
# Natural Language Toolkit: Probability and Statistics
#
# Copyright (C) 2001-2017 NLTK Project
# Author: Edward Loper <edloper@gmail.com>
# Steven Bird <stevenbird1@gmail.com> (additions)
# Trevor Cohn <tacohn@cs.mu.oz.au> (additions)
# Peter Ljunglöf <peter.ljunglof@heatherleaf.se> (additions)
# Liang Dong <ldong@clemson.edu> (additions)
# Geoffrey Sampson <sampson@cantab.net> (additions)
# Ilia Kurenkov <ilia.kurenkov@gmail.com> (additions)
#
# URL: <http://nltk.org/>
# For license information, see LICENSE.TXT
"""
Classes for representing and processing probabilistic information.
The ``FreqDist`` class is used to encode "frequency distributions",
which count the number of times that each outcome of an experiment
occurs.
The ``ProbDistI`` class defines a standard interface for "probability
distributions", which encode the probability of each outcome for an
experiment. There are two types of probability distribution:
- "derived probability distributions" are created from frequency
distributions. They attempt to model the probability distribution
that generated the frequency distribution.
- "analytic probability distributions" are created directly from
parameters (such as variance).
The ``ConditionalFreqDist`` class and ``ConditionalProbDistI`` interface
are used to encode conditional distributions. Conditional probability
distributions can be derived or analytic; but currently the only
implementation of the ``ConditionalProbDistI`` interface is
``ConditionalProbDist``, a derived distribution.
"""
from __future__ import print_function, unicode_literals, division
import math
import random
import warnings
import array
from operator import itemgetter
from collections import defaultdict, Counter
from functools import reduce
from abc import ABCMeta, abstractmethod
from six import itervalues, text_type, add_metaclass
from nltk import compat
from nltk.internals import raise_unorderable_types
_NINF = float('-1e300')
##//////////////////////////////////////////////////////
## Frequency Distributions
##//////////////////////////////////////////////////////
@compat.python_2_unicode_compatible
class FreqDist(Counter):
"""
A frequency distribution for the outcomes of an experiment. A
frequency distribution records the number of times each outcome of
an experiment has occurred. For example, a frequency distribution
could be used to record the frequency of each word type in a
document. Formally, a frequency distribution can be defined as a
function mapping from each sample to the number of times that
sample occurred as an outcome.
Frequency distributions are generally constructed by running a
number of experiments, and incrementing the count for a sample
every time it is an outcome of an experiment. For example, the
following code will produce a frequency distribution that encodes
how often each word occurs in a text:
>>> from nltk.tokenize import word_tokenize
>>> from nltk.probability import FreqDist
>>> sent = 'This is an example sentence'
>>> fdist = FreqDist()
>>> for word in word_tokenize(sent):
... fdist[word.lower()] += 1
An equivalent way to do this is with the initializer:
>>> fdist = FreqDist(word.lower() for word in word_tokenize(sent))
"""
def __init__(self, samples=None):
"""
Construct a new frequency distribution. If ``samples`` is
given, then the frequency distribution will be initialized
with the count of each object in ``samples``; otherwise, it
will be initialized to be empty.
In particular, ``FreqDist()`` returns an empty frequency
distribution; and ``FreqDist(samples)`` first creates an empty
frequency distribution, and then calls ``update`` with the
list ``samples``.
:param samples: The samples to initialize the frequency
distribution with.
:type samples: Sequence
"""
Counter.__init__(self, samples)
# Cached number of samples in this FreqDist
self._N = None
def N(self):
"""
Return the total number of sample outcomes that have been
recorded by this FreqDist. For the number of unique
sample values (or bins) with counts greater than zero, use
``FreqDist.B()``.
:rtype: int
"""
if self._N is None:
# Not already cached, or cache has been invalidated
self._N = sum(self.values())
return self._N
def __setitem__(self, key, val):
"""
Override ``Counter.__setitem__()`` to invalidate the cached N
"""
self._N = None
super(FreqDist, self).__setitem__(key, val)
def __delitem__(self, key):
"""
Override ``Counter.__delitem__()`` to invalidate the cached N
"""
self._N = None
super(FreqDist, self).__delitem__(key)
def update(self, *args, **kwargs):
"""
Override ``Counter.update()`` to invalidate the cached N
"""
self._N = None
super(FreqDist, self).update(*args, **kwargs)
def setdefault(self, key, val):
"""
Override ``Counter.setdefault()`` to invalidate the cached N
"""
self._N = None
super(FreqDist, self).setdefault(key, val)
def B(self):
"""
Return the total number of sample values (or "bins") that
have counts greater than zero. For the total
number of sample outcomes recorded, use ``FreqDist.N()``.
(FreqDist.B() is the same as len(FreqDist).)
:rtype: int
"""
return len(self)
def hapaxes(self):
"""
Return a list of all samples that occur once (hapax legomena)
:rtype: list
"""
return [item for item in self if self[item] == 1]
def Nr(self, r, bins=None):
return self.r_Nr(bins)[r]
def r_Nr(self, bins=None):
"""
Return the dictionary mapping r to Nr, the number of samples with frequency r, where Nr > 0.
:type bins: int
:param bins: The number of possible sample outcomes. ``bins``
is used to calculate Nr(0). In particular, Nr(0) is
``bins-self.B()``. If ``bins`` is not specified, it
defaults to ``self.B()`` (so Nr(0) will be 0).
:rtype: int
"""
_r_Nr = defaultdict(int)
for count in self.values():
_r_Nr[count] += 1
# Special case for Nr[0]:
_r_Nr[0] = bins - self.B() if bins is not None else 0
return _r_Nr
def _cumulative_frequencies(self, samples):
"""
Return the cumulative frequencies of the specified samples.
If no samples are specified, all counts are returned, starting
with the largest.
:param samples: the samples whose frequencies should be returned.
:type samples: any
:rtype: list(float)
"""
cf = 0.0
for sample in samples:
cf += self[sample]
yield cf
# slightly odd nomenclature freq() if FreqDist does counts and ProbDist does probs,
# here, freq() does probs
def freq(self, sample):
"""
Return the frequency of a given sample. The frequency of a
sample is defined as the count of that sample divided by the
total number of sample outcomes that have been recorded by
this FreqDist. The count of a sample is defined as the
number of times that sample outcome was recorded by this
FreqDist. Frequencies are always real numbers in the range
[0, 1].
:param sample: the sample whose frequency
should be returned.
:type sample: any
:rtype: float
"""
n = self.N()
if n == 0:
return 0
return self[sample] / n
def max(self):
"""
Return the sample with the greatest number of outcomes in this
frequency distribution. If two or more samples have the same
number of outcomes, return one of them; which sample is
returned is undefined. If no outcomes have occurred in this
frequency distribution, return None.
:return: The sample with the maximum number of outcomes in this
frequency distribution.
:rtype: any or None
"""
if len(self) == 0:
raise ValueError('A FreqDist must have at least one sample before max is defined.')
return self.most_common(1)[0][0]
def plot(self, *args, **kwargs):
"""
Plot samples from the frequency distribution
displaying the most frequent sample first. If an integer
parameter is supplied, stop after this many samples have been
plotted. For a cumulative plot, specify cumulative=True.
(Requires Matplotlib to be installed.)
:param title: The title for the graph
:type title: str
:param cumulative: A flag to specify whether the plot is cumulative (default = False)
:type title: bool
"""
try:
from matplotlib import pylab
except ImportError:
raise ValueError('The plot function requires matplotlib to be installed.'
'See http://matplotlib.org/')
if len(args) == 0:
args = [len(self)]
samples = [item for item, _ in self.most_common(*args)]
cumulative = _get_kwarg(kwargs, 'cumulative', False)
if cumulative:
freqs = list(self._cumulative_frequencies(samples))
ylabel = "Cumulative Counts"
else:
freqs = [self[sample] for sample in samples]
ylabel = "Counts"
# percents = [f * 100 for f in freqs] only in ProbDist?
pylab.grid(True, color="silver")
if not "linewidth" in kwargs:
kwargs["linewidth"] = 2
if "title" in kwargs:
pylab.title(kwargs["title"])
del kwargs["title"]
pylab.plot(freqs, **kwargs)
pylab.xticks(range(len(samples)), [text_type(s) for s in samples], rotation=90)
pylab.xlabel("Samples")
pylab.ylabel(ylabel)
pylab.show()
def tabulate(self, *args, **kwargs):
"""
Tabulate the given samples from the frequency distribution (cumulative),
displaying the most frequent sample first. If an integer
parameter is supplied, stop after this many samples have been
plotted.
:param samples: The samples to plot (default is all samples)
:type samples: list
:param cumulative: A flag to specify whether the freqs are cumulative (default = False)
:type title: bool
"""
if len(args) == 0:
args = [len(self)]
samples = [item for item, _ in self.most_common(*args)]
cumulative = _get_kwarg(kwargs, 'cumulative', False)
if cumulative:
freqs = list(self._cumulative_frequencies(samples))
else:
freqs = [self[sample] for sample in samples]
# percents = [f * 100 for f in freqs] only in ProbDist?
width = max(len("%s" % s) for s in samples)
width = max(width, max(len("%d" % f) for f in freqs))
for i in range(len(samples)):
print("%*s" % (width, samples[i]), end=' ')
print()
for i in range(len(samples)):
print("%*d" % (width, freqs[i]), end=' ')
print()
def copy(self):
"""
Create a copy of this frequency distribution.
:rtype: FreqDist
"""
return self.__class__(self)
# Mathematical operatiors
def __add__(self, other):
"""
Add counts from two counters.
>>> FreqDist('abbb') + FreqDist('bcc')
FreqDist({'b': 4, 'c': 2, 'a': 1})
"""
return self.__class__(super(FreqDist, self).__add__(other))
def __sub__(self, other):
"""
Subtract count, but keep only results with positive counts.
>>> FreqDist('abbbc') - FreqDist('bccd')
FreqDist({'b': 2, 'a': 1})
"""
return self.__class__(super(FreqDist, self).__sub__(other))
def __or__(self, other):
"""
Union is the maximum of value in either of the input counters.
>>> FreqDist('abbb') | FreqDist('bcc')
FreqDist({'b': 3, 'c': 2, 'a': 1})
"""
return self.__class__(super(FreqDist, self).__or__(other))
def __and__(self, other):
"""
Intersection is the minimum of corresponding counts.
>>> FreqDist('abbb') & FreqDist('bcc')
FreqDist({'b': 1})
"""
return self.__class__(super(FreqDist, self).__and__(other))
def __le__(self, other):
if not isinstance(other, FreqDist):
raise_unorderable_types("<=", self, other)
return set(self).issubset(other) and all(self[key] <= other[key] for key in self)
# @total_ordering doesn't work here, since the class inherits from a builtin class
__ge__ = lambda self, other: not self <= other or self == other
__lt__ = lambda self, other: self <= other and not self == other
__gt__ = lambda self, other: not self <= other
def __repr__(self):
"""
Return a string representation of this FreqDist.
:rtype: string
"""
return self.pformat()
def pprint(self, maxlen=10, stream=None):
"""
Print a string representation of this FreqDist to 'stream'
:param maxlen: The maximum number of items to print
:type maxlen: int
:param stream: The stream to print to. stdout by default
"""
print(self.pformat(maxlen=maxlen), file=stream)
def pformat(self, maxlen=10):
"""
Return a string representation of this FreqDist.
:param maxlen: The maximum number of items to display
:type maxlen: int
:rtype: string
"""
items = ['{0!r}: {1!r}'.format(*item) for item in self.most_common(maxlen)]
if len(self) > maxlen:
items.append('...')
return 'FreqDist({{{0}}})'.format(', '.join(items))
def __str__(self):
"""
Return a string representation of this FreqDist.
:rtype: string
"""
return '<FreqDist with %d samples and %d outcomes>' % (len(self), self.N())
##//////////////////////////////////////////////////////
## Probability Distributions
##//////////////////////////////////////////////////////
@add_metaclass(ABCMeta)
class ProbDistI(object):
"""
A probability distribution for the outcomes of an experiment. A
probability distribution specifies how likely it is that an
experiment will have any given outcome. For example, a
probability distribution could be used to predict the probability
that a token in a document will have a given type. Formally, a
probability distribution can be defined as a function mapping from
samples to nonnegative real numbers, such that the sum of every
number in the function's range is 1.0. A ``ProbDist`` is often
used to model the probability distribution of the experiment used
to generate a frequency distribution.
"""
SUM_TO_ONE = True
"""True if the probabilities of the samples in this probability
distribution will always sum to one."""
@abstractmethod
def __init__(self):
"""
Classes inheriting from ProbDistI should implement __init__.
"""
@abstractmethod
def prob(self, sample):
"""
Return the probability for a given sample. Probabilities
are always real numbers in the range [0, 1].
:param sample: The sample whose probability
should be returned.
:type sample: any
:rtype: float
"""
def logprob(self, sample):
"""
Return the base 2 logarithm of the probability for a given sample.
:param sample: The sample whose probability
should be returned.
:type sample: any
:rtype: float
"""
# Default definition, in terms of prob()
p = self.prob(sample)
return (math.log(p, 2) if p != 0 else _NINF)
@abstractmethod
def max(self):
"""
Return the sample with the greatest probability. If two or
more samples have the same probability, return one of them;
which sample is returned is undefined.
:rtype: any
"""
@abstractmethod
def samples(self):
"""
Return a list of all samples that have nonzero probabilities.
Use ``prob`` to find the probability of each sample.
:rtype: list
"""
# cf self.SUM_TO_ONE
def discount(self):
"""
Return the ratio by which counts are discounted on average: c*/c
:rtype: float
"""
return 0.0
# Subclasses should define more efficient implementations of this,
# where possible.
def generate(self):
"""
Return a randomly selected sample from this probability distribution.
The probability of returning each sample ``samp`` is equal to
``self.prob(samp)``.
"""
p = random.random()
p_init = p
for sample in self.samples():
p -= self.prob(sample)
if p <= 0: return sample
# allow for some rounding error:
if p < .0001:
return sample
# we *should* never get here
if self.SUM_TO_ONE:
warnings.warn("Probability distribution %r sums to %r; generate()"
" is returning an arbitrary sample." % (self, p_init-p))
return random.choice(list(self.samples()))
@compat.python_2_unicode_compatible
class UniformProbDist(ProbDistI):
"""
A probability distribution that assigns equal probability to each
sample in a given set; and a zero probability to all other
samples.
"""
def __init__(self, samples):
"""
Construct a new uniform probability distribution, that assigns
equal probability to each sample in ``samples``.
:param samples: The samples that should be given uniform
probability.
:type samples: list
:raise ValueError: If ``samples`` is empty.
"""
if len(samples) == 0:
raise ValueError('A Uniform probability distribution must '+
'have at least one sample.')
self._sampleset = set(samples)
self._prob = 1.0/len(self._sampleset)
self._samples = list(self._sampleset)
def prob(self, sample):
return (self._prob if sample in self._sampleset else 0)
def max(self):
return self._samples[0]
def samples(self):
return self._samples
def __repr__(self):
return '<UniformProbDist with %d samples>' % len(self._sampleset)
@compat.python_2_unicode_compatible
class RandomProbDist(ProbDistI):
"""
Generates a random probability distribution whereby each sample
will be between 0 and 1 with equal probability (uniform random distribution.
Also called a continuous uniform distribution).
"""
def __init__(self, samples):
if len(samples) == 0:
raise ValueError('A probability distribution must '+
'have at least one sample.')
self._probs = self.unirand(samples)
self._samples = list(self._probs.keys())
@classmethod
def unirand(cls, samples):
"""
The key function that creates a randomized initial distribution
that still sums to 1. Set as a dictionary of prob values so that
it can still be passed to MutableProbDist and called with identical
syntax to UniformProbDist
"""
samples = set(samples)
randrow = [random.random() for i in range(len(samples))]
total = sum(randrow)
for i, x in enumerate(randrow):
randrow[i] = x/total
total = sum(randrow)
if total != 1:
#this difference, if present, is so small (near NINF) that it
#can be subtracted from any element without risking probs not (0 1)
randrow[-1] -= total - 1
return dict((s, randrow[i]) for i, s in enumerate(samples))
def prob(self, sample):
return self._probs.get(sample, 0)
def samples(self):
return self._samples
def __repr__(self):
return '<RandomUniformProbDist with %d samples>' %len(self._probs)
@compat.python_2_unicode_compatible
class DictionaryProbDist(ProbDistI):
"""
A probability distribution whose probabilities are directly
specified by a given dictionary. The given dictionary maps
samples to probabilities.
"""
def __init__(self, prob_dict=None, log=False, normalize=False):
"""
Construct a new probability distribution from the given
dictionary, which maps values to probabilities (or to log
probabilities, if ``log`` is true). If ``normalize`` is
true, then the probability values are scaled by a constant
factor such that they sum to 1.
If called without arguments, the resulting probability
distribution assigns zero probability to all values.
"""
self._prob_dict = (prob_dict.copy() if prob_dict is not None else {})
self._log = log
# Normalize the distribution, if requested.
if normalize:
if len(prob_dict) == 0:
raise ValueError('A DictionaryProbDist must have at least one sample ' +
'before it can be normalized.')
if log:
value_sum = sum_logs(list(self._prob_dict.values()))
if value_sum <= _NINF:
logp = math.log(1.0/len(prob_dict), 2)
for x in prob_dict:
self._prob_dict[x] = logp
else:
for (x, p) in self._prob_dict.items():
self._prob_dict[x] -= value_sum
else:
value_sum = sum(self._prob_dict.values())
if value_sum == 0:
p = 1.0/len(prob_dict)
for x in prob_dict:
self._prob_dict[x] = p
else:
norm_factor = 1.0/value_sum
for (x, p) in self._prob_dict.items():
self._prob_dict[x] *= norm_factor
def prob(self, sample):
if self._log:
return (2**(self._prob_dict[sample]) if sample in self._prob_dict else 0)
else:
return self._prob_dict.get(sample, 0)
def logprob(self, sample):
if self._log:
return self._prob_dict.get(sample, _NINF)
else:
if sample not in self._prob_dict: return _NINF
elif self._prob_dict[sample] == 0: return _NINF
else: return math.log(self._prob_dict[sample], 2)
def max(self):
if not hasattr(self, '_max'):
self._max = max((p,v) for (v,p) in self._prob_dict.items())[1]
return self._max
def samples(self):
return self._prob_dict.keys()
def __repr__(self):
return '<ProbDist with %d samples>' % len(self._prob_dict)
@compat.python_2_unicode_compatible
class MLEProbDist(ProbDistI):
"""
The maximum likelihood estimate for the probability distribution
of the experiment used to generate a frequency distribution. The
"maximum likelihood estimate" approximates the probability of
each sample as the frequency of that sample in the frequency
distribution.
"""
def __init__(self, freqdist, bins=None):
"""
Use the maximum likelihood estimate to create a probability
distribution for the experiment used to generate ``freqdist``.
:type freqdist: FreqDist
:param freqdist: The frequency distribution that the
probability estimates should be based on.
"""
self._freqdist = freqdist
def freqdist(self):
"""
Return the frequency distribution that this probability
distribution is based on.
:rtype: FreqDist
"""
return self._freqdist
def prob(self, sample):
return self._freqdist.freq(sample)
def max(self):
return self._freqdist.max()
def samples(self):
return self._freqdist.keys()
def __repr__(self):
"""
:rtype: str
:return: A string representation of this ``ProbDist``.
"""
return '<MLEProbDist based on %d samples>' % self._freqdist.N()
@compat.python_2_unicode_compatible
class LidstoneProbDist(ProbDistI):
"""
The Lidstone estimate for the probability distribution of the
experiment used to generate a frequency distribution. The
"Lidstone estimate" is parameterized by a real number *gamma*,
which typically ranges from 0 to 1. The Lidstone estimate
approximates the probability of a sample with count *c* from an
experiment with *N* outcomes and *B* bins as
``c+gamma)/(N+B*gamma)``. This is equivalent to adding
*gamma* to the count for each bin, and taking the maximum
likelihood estimate of the resulting frequency distribution.
"""
SUM_TO_ONE = False
def __init__(self, freqdist, gamma, bins=None):
"""
Use the Lidstone estimate to create a probability distribution
for the experiment used to generate ``freqdist``.
:type freqdist: FreqDist
:param freqdist: The frequency distribution that the
probability estimates should be based on.
:type gamma: float
:param gamma: A real number used to parameterize the
estimate. The Lidstone estimate is equivalent to adding
*gamma* to the count for each bin, and taking the
maximum likelihood estimate of the resulting frequency
distribution.
:type bins: int
:param bins: The number of sample values that can be generated
by the experiment that is described by the probability
distribution. This value must be correctly set for the
probabilities of the sample values to sum to one. If
``bins`` is not specified, it defaults to ``freqdist.B()``.
"""
if (bins == 0) or (bins is None and freqdist.N() == 0):
name = self.__class__.__name__[:-8]
raise ValueError('A %s probability distribution ' % name +
'must have at least one bin.')
if (bins is not None) and (bins < freqdist.B()):
name = self.__class__.__name__[:-8]
raise ValueError('\nThe number of bins in a %s distribution ' % name +
'(%d) must be greater than or equal to\n' % bins +
'the number of bins in the FreqDist used ' +
'to create it (%d).' % freqdist.B())
self._freqdist = freqdist
self._gamma = float(gamma)
self._N = self._freqdist.N()
if bins is None:
bins = freqdist.B()
self._bins = bins
self._divisor = self._N + bins * gamma
if self._divisor == 0.0:
# In extreme cases we force the probability to be 0,
# which it will be, since the count will be 0:
self._gamma = 0
self._divisor = 1
def freqdist(self):
"""
Return the frequency distribution that this probability
distribution is based on.
:rtype: FreqDist
"""
return self._freqdist
def prob(self, sample):
c = self._freqdist[sample]
return (c + self._gamma) / self._divisor
def max(self):
# For Lidstone distributions, probability is monotonic with
# frequency, so the most probable sample is the one that
# occurs most frequently.
return self._freqdist.max()
def samples(self):
return self._freqdist.keys()
def discount(self):
gb = self._gamma * self._bins
return gb / (self._N + gb)
def __repr__(self):
"""
Return a string representation of this ``ProbDist``.
:rtype: str
"""
return '<LidstoneProbDist based on %d samples>' % self._freqdist.N()
@compat.python_2_unicode_compatible
class LaplaceProbDist(LidstoneProbDist):
"""
The Laplace estimate for the probability distribution of the
experiment used to generate a frequency distribution. The
"Laplace estimate" approximates the probability of a sample with
count *c* from an experiment with *N* outcomes and *B* bins as
*(c+1)/(N+B)*. This is equivalent to adding one to the count for
each bin, and taking the maximum likelihood estimate of the
resulting frequency distribution.
"""
def __init__(self, freqdist, bins=None):
"""
Use the Laplace estimate to create a probability distribution
for the experiment used to generate ``freqdist``.
:type freqdist: FreqDist
:param freqdist: The frequency distribution that the
probability estimates should be based on.
:type bins: int
:param bins: The number of sample values that can be generated
by the experiment that is described by the probability
distribution. This value must be correctly set for the
probabilities of the sample values to sum to one. If
``bins`` is not specified, it defaults to ``freqdist.B()``.
"""
LidstoneProbDist.__init__(self, freqdist, 1, bins)
def __repr__(self):
"""
:rtype: str
:return: A string representation of this ``ProbDist``.
"""
return '<LaplaceProbDist based on %d samples>' % self._freqdist.N()
@compat.python_2_unicode_compatible
class ELEProbDist(LidstoneProbDist):
"""
The expected likelihood estimate for the probability distribution
of the experiment used to generate a frequency distribution. The
"expected likelihood estimate" approximates the probability of a
sample with count *c* from an experiment with *N* outcomes and
*B* bins as *(c+0.5)/(N+B/2)*. This is equivalent to adding 0.5
to the count for each bin, and taking the maximum likelihood
estimate of the resulting frequency distribution.
"""
def __init__(self, freqdist, bins=None):
"""
Use the expected likelihood estimate to create a probability
distribution for the experiment used to generate ``freqdist``.
:type freqdist: FreqDist
:param freqdist: The frequency distribution that the
probability estimates should be based on.
:type bins: int
:param bins: The number of sample values that can be generated
by the experiment that is described by the probability
distribution. This value must be correctly set for the
probabilities of the sample values to sum to one. If
``bins`` is not specified, it defaults to ``freqdist.B()``.
"""
LidstoneProbDist.__init__(self, freqdist, 0.5, bins)
def __repr__(self):
"""
Return a string representation of this ``ProbDist``.
:rtype: str
"""
return '<ELEProbDist based on %d samples>' % self._freqdist.N()
@compat.python_2_unicode_compatible
class HeldoutProbDist(ProbDistI):
"""
The heldout estimate for the probability distribution of the
experiment used to generate two frequency distributions. These
two frequency distributions are called the "heldout frequency
distribution" and the "base frequency distribution." The
"heldout estimate" uses uses the "heldout frequency
distribution" to predict the probability of each sample, given its
frequency in the "base frequency distribution".
In particular, the heldout estimate approximates the probability
for a sample that occurs *r* times in the base distribution as
the average frequency in the heldout distribution of all samples
that occur *r* times in the base distribution.
This average frequency is *Tr[r]/(Nr[r].N)*, where:
- *Tr[r]* is the total count in the heldout distribution for
all samples that occur *r* times in the base distribution.
- *Nr[r]* is the number of samples that occur *r* times in
the base distribution.
- *N* is the number of outcomes recorded by the heldout
frequency distribution.
In order to increase the efficiency of the ``prob`` member
function, *Tr[r]/(Nr[r].N)* is precomputed for each value of *r*
when the ``HeldoutProbDist`` is created.
:type _estimate: list(float)
:ivar _estimate: A list mapping from *r*, the number of
times that a sample occurs in the base distribution, to the
probability estimate for that sample. ``_estimate[r]`` is
calculated by finding the average frequency in the heldout
distribution of all samples that occur *r* times in the base
distribution. In particular, ``_estimate[r]`` =
*Tr[r]/(Nr[r].N)*.
:type _max_r: int
:ivar _max_r: The maximum number of times that any sample occurs
in the base distribution. ``_max_r`` is used to decide how
large ``_estimate`` must be.
"""
SUM_TO_ONE = False
def __init__(self, base_fdist, heldout_fdist, bins=None):
"""
Use the heldout estimate to create a probability distribution
for the experiment used to generate ``base_fdist`` and
``heldout_fdist``.
:type base_fdist: FreqDist
:param base_fdist: The base frequency distribution.
:type heldout_fdist: FreqDist
:param heldout_fdist: The heldout frequency distribution.
:type bins: int
:param bins: The number of sample values that can be generated
by the experiment that is described by the probability
distribution. This value must be correctly set for the
probabilities of the sample values to sum to one. If
``bins`` is not specified, it defaults to ``freqdist.B()``.
"""
self._base_fdist = base_fdist
self._heldout_fdist = heldout_fdist
# The max number of times any sample occurs in base_fdist.
self._max_r = base_fdist[base_fdist.max()]
# Calculate Tr, Nr, and N.
Tr = self._calculate_Tr()
r_Nr = base_fdist.r_Nr(bins)
Nr = [r_Nr[r] for r in range(self._max_r+1)]
N = heldout_fdist.N()
# Use Tr, Nr, and N to compute the probability estimate for
# each value of r.
self._estimate = self._calculate_estimate(Tr, Nr, N)
def _calculate_Tr(self):
"""
Return the list *Tr*, where *Tr[r]* is the total count in
``heldout_fdist`` for all samples that occur *r*
times in ``base_fdist``.
:rtype: list(float)
"""
Tr = [0.0] * (self._max_r+1)
for sample in self._heldout_fdist:
r = self._base_fdist[sample]
Tr[r] += self._heldout_fdist[sample]
return Tr
def _calculate_estimate(self, Tr, Nr, N):
"""
Return the list *estimate*, where *estimate[r]* is the probability
estimate for any sample that occurs *r* times in the base frequency
distribution. In particular, *estimate[r]* is *Tr[r]/(N[r].N)*.
In the special case that *N[r]=0*, *estimate[r]* will never be used;
so we define *estimate[r]=None* for those cases.
:rtype: list(float)
:type Tr: list(float)
:param Tr: the list *Tr*, where *Tr[r]* is the total count in
the heldout distribution for all samples that occur *r*
times in base distribution.
:type Nr: list(float)
:param Nr: The list *Nr*, where *Nr[r]* is the number of
samples that occur *r* times in the base distribution.
:type N: int
:param N: The total number of outcomes recorded by the heldout
frequency distribution.
"""
estimate = []
for r in range(self._max_r+1):
if Nr[r] == 0: estimate.append(None)
else: estimate.append(Tr[r]/(Nr[r]*N))
return estimate
def base_fdist(self):
"""
Return the base frequency distribution that this probability
distribution is based on.
:rtype: FreqDist
"""
return self._base_fdist
def heldout_fdist(self):
"""
Return the heldout frequency distribution that this
probability distribution is based on.
:rtype: FreqDist
"""
return self._heldout_fdist
def samples(self):
return self._base_fdist.keys()
def prob(self, sample):
# Use our precomputed probability estimate.
r = self._base_fdist[sample]
return self._estimate[r]
def max(self):
# Note: the Heldout estimation is *not* necessarily monotonic;
# so this implementation is currently broken. However, it
# should give the right answer *most* of the time. :)
return self._base_fdist.max()
def discount(self):
raise NotImplementedError()
def __repr__(self):
"""
:rtype: str
:return: A string representation of this ``ProbDist``.
"""
s = '<HeldoutProbDist: %d base samples; %d heldout samples>'
return s % (self._base_fdist.N(), self._heldout_fdist.N())
@compat.python_2_unicode_compatible
class CrossValidationProbDist(ProbDistI):
"""
The cross-validation estimate for the probability distribution of
the experiment used to generate a set of frequency distribution.
The "cross-validation estimate" for the probability of a sample
is found by averaging the held-out estimates for the sample in
each pair of frequency distributions.
"""
SUM_TO_ONE = False
def __init__(self, freqdists, bins):
"""
Use the cross-validation estimate to create a probability
distribution for the experiment used to generate
``freqdists``.
:type freqdists: list(FreqDist)
:param freqdists: A list of the frequency distributions
generated by the experiment.
:type bins: int
:param bins: The number of sample values that can be generated
by the experiment that is described by the probability
distribution. This value must be correctly set for the
probabilities of the sample values to sum to one. If
``bins`` is not specified, it defaults to ``freqdist.B()``.
"""
self._freqdists = freqdists
# Create a heldout probability distribution for each pair of
# frequency distributions in freqdists.
self._heldout_probdists = []
for fdist1 in freqdists:
for fdist2 in freqdists:
if fdist1 is not fdist2:
probdist = HeldoutProbDist(fdist1, fdist2, bins)
self._heldout_probdists.append(probdist)
def freqdists(self):
"""
Return the list of frequency distributions that this ``ProbDist`` is based on.
:rtype: list(FreqDist)
"""
return self._freqdists
def samples(self):
# [xx] nb: this is not too efficient
return set(sum([list(fd) for fd in self._freqdists], []))
def prob(self, sample):
# Find the average probability estimate returned by each
# heldout distribution.
prob = 0.0
for heldout_probdist in self._heldout_probdists:
prob += heldout_probdist.prob(sample)
return prob/len(self._heldout_probdists)
def discount(self):
raise NotImplementedError()
def __repr__(self):
"""
Return a string representation of this ``ProbDist``.
:rtype: str
"""
return '<CrossValidationProbDist: %d-way>' % len(self._freqdists)
@compat.python_2_unicode_compatible
class WittenBellProbDist(ProbDistI):
"""
The Witten-Bell estimate of a probability distribution. This distribution
allocates uniform probability mass to as yet unseen events by using the
number of events that have only been seen once. The probability mass
reserved for unseen events is equal to *T / (N + T)*
where *T* is the number of observed event types and *N* is the total
number of observed events. This equates to the maximum likelihood estimate
of a new type event occurring. The remaining probability mass is discounted
such that all probability estimates sum to one, yielding:
- *p = T / Z (N + T)*, if count = 0
- *p = c / (N + T)*, otherwise
"""
def __init__(self, freqdist, bins=None):
"""
Creates a distribution of Witten-Bell probability estimates. This
distribution allocates uniform probability mass to as yet unseen
events by using the number of events that have only been seen once. The
probability mass reserved for unseen events is equal to *T / (N + T)*
where *T* is the number of observed event types and *N* is the total
number of observed events. This equates to the maximum likelihood
estimate of a new type event occurring. The remaining probability mass
is discounted such that all probability estimates sum to one,
yielding:
- *p = T / Z (N + T)*, if count = 0
- *p = c / (N + T)*, otherwise
The parameters *T* and *N* are taken from the ``freqdist`` parameter
(the ``B()`` and ``N()`` values). The normalizing factor *Z* is
calculated using these values along with the ``bins`` parameter.
:param freqdist: The frequency counts upon which to base the
estimation.
:type freqdist: FreqDist
:param bins: The number of possible event types. This must be at least
as large as the number of bins in the ``freqdist``. If None, then
it's assumed to be equal to that of the ``freqdist``
:type bins: int
"""
assert bins is None or bins >= freqdist.B(),\
'bins parameter must not be less than %d=freqdist.B()' % freqdist.B()
if bins is None:
bins = freqdist.B()
self._freqdist = freqdist
self._T = self._freqdist.B()
self._Z = bins - self._freqdist.B()
self._N = self._freqdist.N()
# self._P0 is P(0), precalculated for efficiency:
if self._N==0:
# if freqdist is empty, we approximate P(0) by a UniformProbDist:
self._P0 = 1.0 / self._Z
else:
self._P0 = self._T / (self._Z * (self._N + self._T))
def prob(self, sample):
# inherit docs from ProbDistI
c = self._freqdist[sample]
return (c / (self._N + self._T) if c != 0 else self._P0)
def max(self):
return self._freqdist.max()
def samples(self):
return self._freqdist.keys()
def freqdist(self):
return self._freqdist
def discount(self):
raise NotImplementedError()
def __repr__(self):
"""
Return a string representation of this ``ProbDist``.
:rtype: str
"""
return '<WittenBellProbDist based on %d samples>' % self._freqdist.N()
##//////////////////////////////////////////////////////
## Good-Turing Probability Distributions
##//////////////////////////////////////////////////////
# Good-Turing frequency estimation was contributed by Alan Turing and
# his statistical assistant I.J. Good, during their collaboration in
# the WWII. It is a statistical technique for predicting the
# probability of occurrence of objects belonging to an unknown number
# of species, given past observations of such objects and their
# species. (In drawing balls from an urn, the 'objects' would be balls
# and the 'species' would be the distinct colors of the balls (finite
# but unknown in number).
#
# Good-Turing method calculates the probability mass to assign to
# events with zero or low counts based on the number of events with
# higher counts. It does so by using the adjusted count *c\**:
#
# - *c\* = (c + 1) N(c + 1) / N(c)* for c >= 1
# - *things with frequency zero in training* = N(1) for c == 0
#
# where *c* is the original count, *N(i)* is the number of event types
# observed with count *i*. We can think the count of unseen as the count
# of frequency one (see Jurafsky & Martin 2nd Edition, p101).
#
# This method is problematic because the situation ``N(c+1) == 0``
# is quite common in the original Good-Turing estimation; smoothing or
# interpolation of *N(i)* values is essential in practice.
#
# Bill Gale and Geoffrey Sampson present a simple and effective approach,
# Simple Good-Turing. As a smoothing curve they simply use a power curve:
#
# Nr = a*r^b (with b < -1 to give the appropriate hyperbolic
# relationship)
#
# They estimate a and b by simple linear regression technique on the
# logarithmic form of the equation:
#
# log Nr = a + b*log(r)
#
# However, they suggest that such a simple curve is probably only
# appropriate for high values of r. For low values of r, they use the
# measured Nr directly. (see M&S, p.213)
#
# Gale and Sampson propose to use r while the difference between r and
# r* is 1.96 greater than the standard deviation, and switch to r* if
# it is less or equal:
#
# |r - r*| > 1.96 * sqrt((r + 1)^2 (Nr+1 / Nr^2) (1 + Nr+1 / Nr))
#
# The 1.96 coefficient correspond to a 0.05 significance criterion,
# some implementations can use a coefficient of 1.65 for a 0.1
# significance criterion.
#
##//////////////////////////////////////////////////////
## Simple Good-Turing Probablity Distributions
##//////////////////////////////////////////////////////
@compat.python_2_unicode_compatible
class SimpleGoodTuringProbDist(ProbDistI):
"""
SimpleGoodTuring ProbDist approximates from frequency to frequency of
frequency into a linear line under log space by linear regression.
Details of Simple Good-Turing algorithm can be found in:
- Good Turing smoothing without tears" (Gale & Sampson 1995),
Journal of Quantitative Linguistics, vol. 2 pp. 217-237.
- "Speech and Language Processing (Jurafsky & Martin),
2nd Edition, Chapter 4.5 p103 (log(Nc) = a + b*log(c))
- http://www.grsampson.net/RGoodTur.html
Given a set of pair (xi, yi), where the xi denotes the frequency and
yi denotes the frequency of frequency, we want to minimize their
square variation. E(x) and E(y) represent the mean of xi and yi.
- slope: b = sigma ((xi-E(x)(yi-E(y))) / sigma ((xi-E(x))(xi-E(x)))
- intercept: a = E(y) - b.E(x)
"""
SUM_TO_ONE = False
def __init__(self, freqdist, bins=None):
"""
:param freqdist: The frequency counts upon which to base the
estimation.
:type freqdist: FreqDist
:param bins: The number of possible event types. This must be
larger than the number of bins in the ``freqdist``. If None,
then it's assumed to be equal to ``freqdist``.B() + 1
:type bins: int
"""
assert bins is None or bins > freqdist.B(),\
'bins parameter must not be less than %d=freqdist.B()+1' % (freqdist.B()+1)
if bins is None:
bins = freqdist.B() + 1
self._freqdist = freqdist
self._bins = bins
r, nr = self._r_Nr()
self.find_best_fit(r, nr)
self._switch(r, nr)
self._renormalize(r, nr)
def _r_Nr_non_zero(self):
r_Nr = self._freqdist.r_Nr()
del r_Nr[0]
return r_Nr
def _r_Nr(self):
"""
Split the frequency distribution in two list (r, Nr), where Nr(r) > 0
"""
nonzero = self._r_Nr_non_zero()
if not nonzero:
return [], []
return zip(*sorted(nonzero.items()))
def find_best_fit(self, r, nr):
"""
Use simple linear regression to tune parameters self._slope and
self._intercept in the log-log space based on count and Nr(count)
(Work in log space to avoid floating point underflow.)
"""
# For higher sample frequencies the data points becomes horizontal
# along line Nr=1. To create a more evident linear model in log-log
# space, we average positive Nr values with the surrounding zero
# values. (Church and Gale, 1991)
if not r or not nr:
# Empty r or nr?
return
zr = []
for j in range(len(r)):
i = (r[j-1] if j > 0 else 0)
k = (2 * r[j] - i if j == len(r) - 1 else r[j+1])
zr_ = 2.0 * nr[j] / (k - i)
zr.append(zr_)
log_r = [math.log(i) for i in r]
log_zr = [math.log(i) for i in zr]
xy_cov = x_var = 0.0
x_mean = sum(log_r) / len(log_r)
y_mean = sum(log_zr) / len(log_zr)
for (x, y) in zip(log_r, log_zr):
xy_cov += (x - x_mean) * (y - y_mean)
x_var += (x - x_mean)**2
self._slope = (xy_cov / x_var if x_var != 0 else 0.0)
if self._slope >= -1:
warnings.warn('SimpleGoodTuring did not find a proper best fit '
'line for smoothing probabilities of occurrences. '
'The probability estimates are likely to be '
'unreliable.')
self._intercept = y_mean - self._slope * x_mean
def _switch(self, r, nr):
"""
Calculate the r frontier where we must switch from Nr to Sr
when estimating E[Nr].
"""
for i, r_ in enumerate(r):
if len(r) == i + 1 or r[i+1] != r_ + 1:
# We are at the end of r, or there is a gap in r
self._switch_at = r_
break
Sr = self.smoothedNr
smooth_r_star = (r_ + 1) * Sr(r_+1) / Sr(r_)
unsmooth_r_star = (r_ + 1) * nr[i+1] / nr[i]
std = math.sqrt(self._variance(r_, nr[i], nr[i+1]))
if abs(unsmooth_r_star-smooth_r_star) <= 1.96 * std:
self._switch_at = r_
break
def _variance(self, r, nr, nr_1):
r = float(r)
nr = float(nr)
nr_1 = float(nr_1)
return (r + 1.0)**2 * (nr_1 / nr**2) * (1.0 + nr_1 / nr)
def _renormalize(self, r, nr):
"""
It is necessary to renormalize all the probability estimates to
ensure a proper probability distribution results. This can be done
by keeping the estimate of the probability mass for unseen items as
N(1)/N and renormalizing all the estimates for previously seen items
(as Gale and Sampson (1995) propose). (See M&S P.213, 1999)
"""
prob_cov = 0.0
for r_, nr_ in zip(r, nr):
prob_cov += nr_ * self._prob_measure(r_)
if prob_cov:
self._renormal = (1 - self._prob_measure(0)) / prob_cov
def smoothedNr(self, r):
"""
Return the number of samples with count r.
:param r: The amount of frequency.
:type r: int
:rtype: float
"""
# Nr = a*r^b (with b < -1 to give the appropriate hyperbolic
# relationship)
# Estimate a and b by simple linear regression technique on
# the logarithmic form of the equation: log Nr = a + b*log(r)
return math.exp(self._intercept + self._slope * math.log(r))
def prob(self, sample):
"""
Return the sample's probability.
:param sample: sample of the event
:type sample: str
:rtype: float
"""
count = self._freqdist[sample]
p = self._prob_measure(count)
if count == 0:
if self._bins == self._freqdist.B():
p = 0.0
else:
p = p / (self._bins - self._freqdist.B())
else:
p = p * self._renormal
return p
def _prob_measure(self, count):
if count == 0 and self._freqdist.N() == 0 :
return 1.0
elif count == 0 and self._freqdist.N() != 0:
return self._freqdist.Nr(1) / self._freqdist.N()
if self._switch_at > count:
Er_1 = self._freqdist.Nr(count+1)
Er = self._freqdist.Nr(count)
else:
Er_1 = self.smoothedNr(count+1)
Er = self.smoothedNr(count)
r_star = (count + 1) * Er_1 / Er
return r_star / self._freqdist.N()
def check(self):
prob_sum = 0.0
for i in range(0, len(self._Nr)):
prob_sum += self._Nr[i] * self._prob_measure(i) / self._renormal
print("Probability Sum:", prob_sum)
#assert prob_sum != 1.0, "probability sum should be one!"
def discount(self):
"""
This function returns the total mass of probability transfers from the
seen samples to the unseen samples.
"""
return self.smoothedNr(1) / self._freqdist.N()
def max(self):
return self._freqdist.max()
def samples(self):
return self._freqdist.keys()
def freqdist(self):
return self._freqdist
def __repr__(self):
"""
Return a string representation of this ``ProbDist``.
:rtype: str
"""
return '<SimpleGoodTuringProbDist based on %d samples>'\
% self._freqdist.N()
class MutableProbDist(ProbDistI):
"""
An mutable probdist where the probabilities may be easily modified. This
simply copies an existing probdist, storing the probability values in a
mutable dictionary and providing an update method.
"""
def __init__(self, prob_dist, samples, store_logs=True):
"""
Creates the mutable probdist based on the given prob_dist and using
the list of samples given. These values are stored as log
probabilities if the store_logs flag is set.
:param prob_dist: the distribution from which to garner the
probabilities
:type prob_dist: ProbDist
:param samples: the complete set of samples
:type samples: sequence of any
:param store_logs: whether to store the probabilities as logarithms
:type store_logs: bool
"""
self._samples = samples
self._sample_dict = dict((samples[i], i) for i in range(len(samples)))
self._data = array.array(str("d"), [0.0]) * len(samples)
for i in range(len(samples)):
if store_logs:
self._data[i] = prob_dist.logprob(samples[i])
else:
self._data[i] = prob_dist.prob(samples[i])
self._logs = store_logs
def samples(self):
# inherit documentation
return self._samples
def prob(self, sample):
# inherit documentation
i = self._sample_dict.get(sample)
if i is None:
return 0.0
return (2**(self._data[i]) if self._logs else self._data[i])
def logprob(self, sample):
# inherit documentation
i = self._sample_dict.get(sample)
if i is None:
return float('-inf')
return (self._data[i] if self._logs else math.log(self._data[i], 2))
def update(self, sample, prob, log=True):
"""
Update the probability for the given sample. This may cause the object
to stop being the valid probability distribution - the user must
ensure that they update the sample probabilities such that all samples
have probabilities between 0 and 1 and that all probabilities sum to
one.
:param sample: the sample for which to update the probability
:type sample: any
:param prob: the new probability
:type prob: float
:param log: is the probability already logged
:type log: bool
"""
i = self._sample_dict.get(sample)
assert i is not None
if self._logs:
self._data[i] = (prob if log else math.log(prob, 2))
else:
self._data[i] = (2**(prob) if log else prob)
##/////////////////////////////////////////////////////
## Kneser-Ney Probability Distribution
##//////////////////////////////////////////////////////
# This method for calculating probabilities was introduced in 1995 by Reinhard
# Kneser and Hermann Ney. It was meant to improve the accuracy of language
# models that use backing-off to deal with sparse data. The authors propose two
# ways of doing so: a marginal distribution constraint on the back-off
# distribution and a leave-one-out distribution. For a start, the first one is
# implemented as a class below.
#
# The idea behind a back-off n-gram model is that we have a series of
# frequency distributions for our n-grams so that in case we have not seen a
# given n-gram during training (and as a result have a 0 probability for it) we
# can 'back off' (hence the name!) and try testing whether we've seen the
# n-1-gram part of the n-gram in training.
#
# The novelty of Kneser and Ney's approach was that they decided to fiddle
# around with the way this latter, backed off probability was being calculated
# whereas their peers seemed to focus on the primary probability.
#
# The implementation below uses one of the techniques described in their paper
# titled "Improved backing-off for n-gram language modeling." In the same paper
# another technique is introduced to attempt to smooth the back-off
# distribution as well as the primary one. There is also a much-cited
# modification of this method proposed by Chen and Goodman.
#
# In order for the implementation of Kneser-Ney to be more efficient, some
# changes have been made to the original algorithm. Namely, the calculation of
# the normalizing function gamma has been significantly simplified and
# combined slightly differently with beta. None of these changes affect the
# nature of the algorithm, but instead aim to cut out unnecessary calculations
# and take advantage of storing and retrieving information in dictionaries
# where possible.
@compat.python_2_unicode_compatible
class KneserNeyProbDist(ProbDistI):
"""
Kneser-Ney estimate of a probability distribution. This is a version of
back-off that counts how likely an n-gram is provided the n-1-gram had
been seen in training. Extends the ProbDistI interface, requires a trigram
FreqDist instance to train on. Optionally, a different from default discount
value can be specified. The default discount is set to 0.75.
"""
def __init__(self, freqdist, bins=None, discount=0.75):
"""
:param freqdist: The trigram frequency distribution upon which to base
the estimation
:type freqdist: FreqDist
:param bins: Included for compatibility with nltk.tag.hmm
:type bins: int or float
:param discount: The discount applied when retrieving counts of
trigrams
:type discount: float (preferred, but can be set to int)
"""
if not bins:
self._bins = freqdist.B()
else:
self._bins = bins
self._D = discount
# cache for probability calculation
self._cache = {}
# internal bigram and trigram frequency distributions
self._bigrams = defaultdict(int)
self._trigrams = freqdist
# helper dictionaries used to calculate probabilities
self._wordtypes_after = defaultdict(float)
self._trigrams_contain = defaultdict(float)
self._wordtypes_before = defaultdict(float)
for w0, w1, w2 in freqdist:
self._bigrams[(w0,w1)] += freqdist[(w0, w1, w2)]
self._wordtypes_after[(w0,w1)] += 1
self._trigrams_contain[w1] += 1
self._wordtypes_before[(w1,w2)] += 1
def prob(self, trigram):
# sample must be a triple
if len(trigram) != 3:
raise ValueError('Expected an iterable with 3 members.')
trigram = tuple(trigram)
w0, w1, w2 = trigram
if trigram in self._cache:
return self._cache[trigram]
else:
# if the sample trigram was seen during training
if trigram in self._trigrams:
prob = (self._trigrams[trigram]
- self.discount())/self._bigrams[(w0, w1)]
# else if the 'rougher' environment was seen during training
elif (w0,w1) in self._bigrams and (w1,w2) in self._wordtypes_before:
aftr = self._wordtypes_after[(w0, w1)]
bfr = self._wordtypes_before[(w1, w2)]
# the probability left over from alphas
leftover_prob = ((aftr * self.discount())
/ self._bigrams[(w0, w1)])
# the beta (including normalization)
beta = bfr /(self._trigrams_contain[w1] - aftr)
prob = leftover_prob * beta
# else the sample was completely unseen during training
else:
prob = 0.0
self._cache[trigram] = prob
return prob
def discount(self):
"""
Return the value by which counts are discounted. By default set to 0.75.
:rtype: float
"""
return self._D
def set_discount(self, discount):
"""
Set the value by which counts are discounted to the value of discount.
:param discount: the new value to discount counts by
:type discount: float (preferred, but int possible)
:rtype: None
"""
self._D = discount
def samples(self):
return self._trigrams.keys()
def max(self):
return self._trigrams.max()
def __repr__(self):
'''
Return a string representation of this ProbDist
:rtype: str
'''
return '<KneserNeyProbDist based on {0} trigrams'.format(self._trigrams.N())
##//////////////////////////////////////////////////////
## Probability Distribution Operations
##//////////////////////////////////////////////////////
def log_likelihood(test_pdist, actual_pdist):
if (not isinstance(test_pdist, ProbDistI) or
not isinstance(actual_pdist, ProbDistI)):
raise ValueError('expected a ProbDist.')
# Is this right?
return sum(actual_pdist.prob(s) * math.log(test_pdist.prob(s), 2)
for s in actual_pdist)
def entropy(pdist):
probs = (pdist.prob(s) for s in pdist.samples())
return -sum(p * math.log(p,2) for p in probs)
##//////////////////////////////////////////////////////
## Conditional Distributions
##//////////////////////////////////////////////////////
@compat.python_2_unicode_compatible
class ConditionalFreqDist(defaultdict):
"""
A collection of frequency distributions for a single experiment
run under different conditions. Conditional frequency
distributions are used to record the number of times each sample
occurred, given the condition under which the experiment was run.
For example, a conditional frequency distribution could be used to
record the frequency of each word (type) in a document, given its
length. Formally, a conditional frequency distribution can be
defined as a function that maps from each condition to the
FreqDist for the experiment under that condition.
Conditional frequency distributions are typically constructed by
repeatedly running an experiment under a variety of conditions,
and incrementing the sample outcome counts for the appropriate
conditions. For example, the following code will produce a
conditional frequency distribution that encodes how often each
word type occurs, given the length of that word type:
>>> from nltk.probability import ConditionalFreqDist
>>> from nltk.tokenize import word_tokenize
>>> sent = "the the the dog dog some other words that we do not care about"
>>> cfdist = ConditionalFreqDist()
>>> for word in word_tokenize(sent):
... condition = len(word)
... cfdist[condition][word] += 1
An equivalent way to do this is with the initializer:
>>> cfdist = ConditionalFreqDist((len(word), word) for word in word_tokenize(sent))
The frequency distribution for each condition is accessed using
the indexing operator:
>>> cfdist[3]
FreqDist({'the': 3, 'dog': 2, 'not': 1})
>>> cfdist[3].freq('the')
0.5
>>> cfdist[3]['dog']
2
When the indexing operator is used to access the frequency
distribution for a condition that has not been accessed before,
``ConditionalFreqDist`` creates a new empty FreqDist for that
condition.
"""
def __init__(self, cond_samples=None):
"""
Construct a new empty conditional frequency distribution. In
particular, the count for every sample, under every condition,
is zero.
:param cond_samples: The samples to initialize the conditional
frequency distribution with
:type cond_samples: Sequence of (condition, sample) tuples
"""
defaultdict.__init__(self, FreqDist)
if cond_samples:
for (cond, sample) in cond_samples:
self[cond][sample] += 1
def __reduce__(self):
kv_pairs = ((cond, self[cond]) for cond in self.conditions())
return (self.__class__, (), None, None, kv_pairs)
def conditions(self):
"""
Return a list of the conditions that have been accessed for
this ``ConditionalFreqDist``. Use the indexing operator to
access the frequency distribution for a given condition.
Note that the frequency distributions for some conditions
may contain zero sample outcomes.
:rtype: list
"""
return list(self.keys())
def N(self):
"""
Return the total number of sample outcomes that have been
recorded by this ``ConditionalFreqDist``.
:rtype: int
"""
return sum(fdist.N() for fdist in itervalues(self))
def plot(self, *args, **kwargs):
"""
Plot the given samples from the conditional frequency distribution.
For a cumulative plot, specify cumulative=True.
(Requires Matplotlib to be installed.)
:param samples: The samples to plot
:type samples: list
:param title: The title for the graph
:type title: str
:param conditions: The conditions to plot (default is all)
:type conditions: list
"""
try:
from matplotlib import pylab
except ImportError:
raise ValueError('The plot function requires matplotlib to be installed.'
'See http://matplotlib.org/')
cumulative = _get_kwarg(kwargs, 'cumulative', False)
conditions = _get_kwarg(kwargs, 'conditions', sorted(self.conditions()))
title = _get_kwarg(kwargs, 'title', '')
samples = _get_kwarg(kwargs, 'samples',
sorted(set(v for c in conditions for v in self[c]))) # this computation could be wasted
if not "linewidth" in kwargs:
kwargs["linewidth"] = 2
for condition in conditions:
if cumulative:
freqs = list(self[condition]._cumulative_frequencies(samples))
ylabel = "Cumulative Counts"
legend_loc = 'lower right'
else:
freqs = [self[condition][sample] for sample in samples]
ylabel = "Counts"
legend_loc = 'upper right'
# percents = [f * 100 for f in freqs] only in ConditionalProbDist?
kwargs['label'] = "%s" % condition
pylab.plot(freqs, *args, **kwargs)
pylab.legend(loc=legend_loc)
pylab.grid(True, color="silver")
pylab.xticks(range(len(samples)), [text_type(s) for s in samples], rotation=90)
if title:
pylab.title(title)
pylab.xlabel("Samples")
pylab.ylabel(ylabel)
pylab.show()
def tabulate(self, *args, **kwargs):
"""
Tabulate the given samples from the conditional frequency distribution.
:param samples: The samples to plot
:type samples: list
:param conditions: The conditions to plot (default is all)
:type conditions: list
:param cumulative: A flag to specify whether the freqs are cumulative (default = False)
:type title: bool
"""
cumulative = _get_kwarg(kwargs, 'cumulative', False)
conditions = _get_kwarg(kwargs, 'conditions', sorted(self.conditions()))
samples = _get_kwarg(kwargs, 'samples',
sorted(set(v for c in conditions for v in self[c]))) # this computation could be wasted
width = max(len("%s" % s) for s in samples)
freqs = dict()
for c in conditions:
if cumulative:
freqs[c] = list(self[c]._cumulative_frequencies(samples))
else:
freqs[c] = [self[c][sample] for sample in samples]
width = max(width, max(len("%d" % f) for f in freqs[c]))
condition_size = max(len("%s" % c) for c in conditions)
print(' ' * condition_size, end=' ')
for s in samples:
print("%*s" % (width, s), end=' ')
print()
for c in conditions:
print("%*s" % (condition_size, c), end=' ')
for f in freqs[c]:
print("%*d" % (width, f), end=' ')
print()
# Mathematical operators
def __add__(self, other):
"""
Add counts from two ConditionalFreqDists.
"""
if not isinstance(other, ConditionalFreqDist):
return NotImplemented
result = ConditionalFreqDist()
for cond in self.conditions():
newfreqdist = self[cond] + other[cond]
if newfreqdist:
result[cond] = newfreqdist
for cond in other.conditions():
if cond not in self.conditions():
for elem, count in other[cond].items():
if count > 0:
result[cond][elem] = count
return result
def __sub__(self, other):
"""
Subtract count, but keep only results with positive counts.
"""
if not isinstance(other, ConditionalFreqDist):
return NotImplemented
result = ConditionalFreqDist()
for cond in self.conditions():
newfreqdist = self[cond] - other[cond]
if newfreqdist:
result[cond] = newfreqdist
for cond in other.conditions():
if cond not in self.conditions():
for elem, count in other[cond].items():
if count < 0:
result[cond][elem] = 0 - count
return result
def __or__(self, other):
"""
Union is the maximum of value in either of the input counters.
"""
if not isinstance(other, ConditionalFreqDist):
return NotImplemented
result = ConditionalFreqDist()
for cond in self.conditions():
newfreqdist = self[cond] | other[cond]
if newfreqdist:
result[cond] = newfreqdist
for cond in other.conditions():
if cond not in self.conditions():
for elem, count in other[cond].items():
if count > 0:
result[cond][elem] = count
return result
def __and__(self, other):
"""
Intersection is the minimum of corresponding counts.
"""
if not isinstance(other, ConditionalFreqDist):
return NotImplemented
result = ConditionalFreqDist()
for cond in self.conditions():
newfreqdist = self[cond] & other[cond]
if newfreqdist:
result[cond] = newfreqdist
return result
# @total_ordering doesn't work here, since the class inherits from a builtin class
def __le__(self, other):
if not isinstance(other, ConditionalFreqDist):
raise_unorderable_types("<=", self, other)
return set(self.conditions()).issubset(other.conditions()) \
and all(self[c] <= other[c] for c in self.conditions())
def __lt__(self, other):
if not isinstance(other, ConditionalFreqDist):
raise_unorderable_types("<", self, other)
return self <= other and self != other
def __ge__(self, other):
if not isinstance(other, ConditionalFreqDist):
raise_unorderable_types(">=", self, other)
return other <= self
def __gt__(self, other):
if not isinstance(other, ConditionalFreqDist):
raise_unorderable_types(">", self, other)
return other < self
def __repr__(self):
"""
Return a string representation of this ``ConditionalFreqDist``.
:rtype: str
"""
return '<ConditionalFreqDist with %d conditions>' % len(self)
@compat.python_2_unicode_compatible
@add_metaclass(ABCMeta)
class ConditionalProbDistI(dict):
"""
A collection of probability distributions for a single experiment
run under different conditions. Conditional probability
distributions are used to estimate the likelihood of each sample,
given the condition under which the experiment was run. For
example, a conditional probability distribution could be used to
estimate the probability of each word type in a document, given
the length of the word type. Formally, a conditional probability
distribution can be defined as a function that maps from each
condition to the ``ProbDist`` for the experiment under that
condition.
"""
@abstractmethod
def __init__(self):
"""
Classes inheriting from ConditionalProbDistI should implement __init__.
"""
def conditions(self):
"""
Return a list of the conditions that are represented by
this ``ConditionalProbDist``. Use the indexing operator to
access the probability distribution for a given condition.
:rtype: list
"""
return list(self.keys())
def __repr__(self):
"""
Return a string representation of this ``ConditionalProbDist``.
:rtype: str
"""
return '<%s with %d conditions>' % (type(self).__name__, len(self))
class ConditionalProbDist(ConditionalProbDistI):
"""
A conditional probability distribution modeling the experiments
that were used to generate a conditional frequency distribution.
A ConditionalProbDist is constructed from a
``ConditionalFreqDist`` and a ``ProbDist`` factory:
- The ``ConditionalFreqDist`` specifies the frequency
distribution for each condition.
- The ``ProbDist`` factory is a function that takes a
condition's frequency distribution, and returns its
probability distribution. A ``ProbDist`` class's name (such as
``MLEProbDist`` or ``HeldoutProbDist``) can be used to specify
that class's constructor.
The first argument to the ``ProbDist`` factory is the frequency
distribution that it should model; and the remaining arguments are
specified by the ``factory_args`` parameter to the
``ConditionalProbDist`` constructor. For example, the following
code constructs a ``ConditionalProbDist``, where the probability
distribution for each condition is an ``ELEProbDist`` with 10 bins:
>>> from nltk.corpus import brown
>>> from nltk.probability import ConditionalFreqDist
>>> from nltk.probability import ConditionalProbDist, ELEProbDist
>>> cfdist = ConditionalFreqDist(brown.tagged_words()[:5000])
>>> cpdist = ConditionalProbDist(cfdist, ELEProbDist, 10)
>>> cpdist['passed'].max()
'VBD'
>>> cpdist['passed'].prob('VBD')
0.423...
"""
def __init__(self, cfdist, probdist_factory,
*factory_args, **factory_kw_args):
"""
Construct a new conditional probability distribution, based on
the given conditional frequency distribution and ``ProbDist``
factory.
:type cfdist: ConditionalFreqDist
:param cfdist: The ``ConditionalFreqDist`` specifying the
frequency distribution for each condition.
:type probdist_factory: class or function
:param probdist_factory: The function or class that maps
a condition's frequency distribution to its probability
distribution. The function is called with the frequency
distribution as its first argument,
``factory_args`` as its remaining arguments, and
``factory_kw_args`` as keyword arguments.
:type factory_args: (any)
:param factory_args: Extra arguments for ``probdist_factory``.
These arguments are usually used to specify extra
properties for the probability distributions of individual
conditions, such as the number of bins they contain.
:type factory_kw_args: (any)
:param factory_kw_args: Extra keyword arguments for ``probdist_factory``.
"""
self._probdist_factory = probdist_factory
self._factory_args = factory_args
self._factory_kw_args = factory_kw_args
for condition in cfdist:
self[condition] = probdist_factory(cfdist[condition],
*factory_args, **factory_kw_args)
def __missing__(self, key):
self[key] = self._probdist_factory(FreqDist(),
*self._factory_args,
**self._factory_kw_args)
return self[key]
class DictionaryConditionalProbDist(ConditionalProbDistI):
"""
An alternative ConditionalProbDist that simply wraps a dictionary of
ProbDists rather than creating these from FreqDists.
"""
def __init__(self, probdist_dict):
"""
:param probdist_dict: a dictionary containing the probdists indexed
by the conditions
:type probdist_dict: dict any -> probdist
"""
self.update(probdist_dict)
def __missing__(self, key):
self[key] = DictionaryProbDist()
return self[key]
##//////////////////////////////////////////////////////
## Adding in log-space.
##//////////////////////////////////////////////////////
# If the difference is bigger than this, then just take the bigger one:
_ADD_LOGS_MAX_DIFF = math.log(1e-30, 2)
def add_logs(logx, logy):
"""
Given two numbers ``logx`` = *log(x)* and ``logy`` = *log(y)*, return
*log(x+y)*. Conceptually, this is the same as returning
``log(2**(logx)+2**(logy))``, but the actual implementation
avoids overflow errors that could result from direct computation.
"""
if (logx < logy + _ADD_LOGS_MAX_DIFF):
return logy
if (logy < logx + _ADD_LOGS_MAX_DIFF):
return logx
base = min(logx, logy)
return base + math.log(2**(logx-base) + 2**(logy-base), 2)
def sum_logs(logs):
return (reduce(add_logs, logs[1:], logs[0]) if len(logs) != 0 else _NINF)
##//////////////////////////////////////////////////////
## Probabilistic Mix-in
##//////////////////////////////////////////////////////
class ProbabilisticMixIn(object):
"""
A mix-in class to associate probabilities with other classes
(trees, rules, etc.). To use the ``ProbabilisticMixIn`` class,
define a new class that derives from an existing class and from
ProbabilisticMixIn. You will need to define a new constructor for
the new class, which explicitly calls the constructors of both its
parent classes. For example:
>>> from nltk.probability import ProbabilisticMixIn
>>> class A:
... def __init__(self, x, y): self.data = (x,y)
...
>>> class ProbabilisticA(A, ProbabilisticMixIn):
... def __init__(self, x, y, **prob_kwarg):
... A.__init__(self, x, y)
... ProbabilisticMixIn.__init__(self, **prob_kwarg)
See the documentation for the ProbabilisticMixIn
``constructor<__init__>`` for information about the arguments it
expects.
You should generally also redefine the string representation
methods, the comparison methods, and the hashing method.
"""
def __init__(self, **kwargs):
"""
Initialize this object's probability. This initializer should
be called by subclass constructors. ``prob`` should generally be
the first argument for those constructors.
:param prob: The probability associated with the object.
:type prob: float
:param logprob: The log of the probability associated with
the object.
:type logprob: float
"""
if 'prob' in kwargs:
if 'logprob' in kwargs:
raise TypeError('Must specify either prob or logprob '
'(not both)')
else:
ProbabilisticMixIn.set_prob(self, kwargs['prob'])
elif 'logprob' in kwargs:
ProbabilisticMixIn.set_logprob(self, kwargs['logprob'])
else:
self.__prob = self.__logprob = None
def set_prob(self, prob):
"""
Set the probability associated with this object to ``prob``.
:param prob: The new probability
:type prob: float
"""
self.__prob = prob
self.__logprob = None
def set_logprob(self, logprob):
"""
Set the log probability associated with this object to
``logprob``. I.e., set the probability associated with this
object to ``2**(logprob)``.
:param logprob: The new log probability
:type logprob: float
"""
self.__logprob = logprob
self.__prob = None
def prob(self):
"""
Return the probability associated with this object.
:rtype: float
"""
if self.__prob is None:
if self.__logprob is None: return None
self.__prob = 2**(self.__logprob)
return self.__prob
def logprob(self):
"""
Return ``log(p)``, where ``p`` is the probability associated
with this object.
:rtype: float
"""
if self.__logprob is None:
if self.__prob is None: return None
self.__logprob = math.log(self.__prob, 2)
return self.__logprob
class ImmutableProbabilisticMixIn(ProbabilisticMixIn):
def set_prob(self, prob):
raise ValueError('%s is immutable' % self.__class__.__name__)
def set_logprob(self, prob):
raise ValueError('%s is immutable' % self.__class__.__name__)
## Helper function for processing keyword arguments
def _get_kwarg(kwargs, key, default):
if key in kwargs:
arg = kwargs[key]
del kwargs[key]
else:
arg = default
return arg
##//////////////////////////////////////////////////////
## Demonstration
##//////////////////////////////////////////////////////
def _create_rand_fdist(numsamples, numoutcomes):
"""
Create a new frequency distribution, with random samples. The
samples are numbers from 1 to ``numsamples``, and are generated by
summing two numbers, each of which has a uniform distribution.
"""
import random
fdist = FreqDist()
for x in range(numoutcomes):
y = (random.randint(1, (1 + numsamples) // 2) +
random.randint(0, numsamples // 2))
fdist[y] += 1
return fdist
def _create_sum_pdist(numsamples):
"""
Return the true probability distribution for the experiment
``_create_rand_fdist(numsamples, x)``.
"""
fdist = FreqDist()
for x in range(1, (1 + numsamples) // 2 + 1):
for y in range(0, numsamples // 2 + 1):
fdist[x+y] += 1
return MLEProbDist(fdist)
def demo(numsamples=6, numoutcomes=500):
"""
A demonstration of frequency distributions and probability
distributions. This demonstration creates three frequency
distributions with, and uses them to sample a random process with
``numsamples`` samples. Each frequency distribution is sampled
``numoutcomes`` times. These three frequency distributions are
then used to build six probability distributions. Finally, the
probability estimates of these distributions are compared to the
actual probability of each sample.
:type numsamples: int
:param numsamples: The number of samples to use in each demo
frequency distributions.
:type numoutcomes: int
:param numoutcomes: The total number of outcomes for each
demo frequency distribution. These outcomes are divided into
``numsamples`` bins.
:rtype: None
"""
# Randomly sample a stochastic process three times.
fdist1 = _create_rand_fdist(numsamples, numoutcomes)
fdist2 = _create_rand_fdist(numsamples, numoutcomes)
fdist3 = _create_rand_fdist(numsamples, numoutcomes)
# Use our samples to create probability distributions.
pdists = [
MLEProbDist(fdist1),
LidstoneProbDist(fdist1, 0.5, numsamples),
HeldoutProbDist(fdist1, fdist2, numsamples),
HeldoutProbDist(fdist2, fdist1, numsamples),
CrossValidationProbDist([fdist1, fdist2, fdist3], numsamples),
SimpleGoodTuringProbDist(fdist1),
SimpleGoodTuringProbDist(fdist1, 7),
_create_sum_pdist(numsamples),
]
# Find the probability of each sample.
vals = []
for n in range(1,numsamples+1):
vals.append(tuple([n, fdist1.freq(n)] +
[pdist.prob(n) for pdist in pdists]))
# Print the results in a formatted table.
print(('%d samples (1-%d); %d outcomes were sampled for each FreqDist' %
(numsamples, numsamples, numoutcomes)))
print('='*9*(len(pdists)+2))
FORMATSTR = ' FreqDist '+ '%8s '*(len(pdists)-1) + '| Actual'
print(FORMATSTR % tuple(repr(pdist)[1:9] for pdist in pdists[:-1]))
print('-'*9*(len(pdists)+2))
FORMATSTR = '%3d %8.6f ' + '%8.6f '*(len(pdists)-1) + '| %8.6f'
for val in vals:
print(FORMATSTR % val)
# Print the totals for each column (should all be 1.0)
zvals = list(zip(*vals))
sums = [sum(val) for val in zvals[1:]]
print('-'*9*(len(pdists)+2))
FORMATSTR = 'Total ' + '%8.6f '*(len(pdists)) + '| %8.6f'
print(FORMATSTR % tuple(sums))
print('='*9*(len(pdists)+2))
# Display the distributions themselves, if they're short enough.
if len("%s" % fdist1) < 70:
print(' fdist1: %s' % fdist1)
print(' fdist2: %s' % fdist2)
print(' fdist3: %s' % fdist3)
print()
print('Generating:')
for pdist in pdists:
fdist = FreqDist(pdist.generate() for i in range(5000))
print('%20s %s' % (pdist.__class__.__name__[:20], ("%s" % fdist)[:55]))
print()
def gt_demo():
from nltk import corpus
emma_words = corpus.gutenberg.words('austen-emma.txt')
fd = FreqDist(emma_words)
sgt = SimpleGoodTuringProbDist(fd)
print('%18s %8s %14s' \
% ("word", "freqency", "SimpleGoodTuring"))
fd_keys_sorted=(key for key, value in sorted(fd.items(), key=lambda item: item[1], reverse=True))
for key in fd_keys_sorted:
print('%18s %8d %14e' \
% (key, fd[key], sgt.prob(key)))
if __name__ == '__main__':
demo(6, 10)
demo(5, 5000)
gt_demo()
__all__ = ['ConditionalFreqDist', 'ConditionalProbDist',
'ConditionalProbDistI', 'CrossValidationProbDist',
'DictionaryConditionalProbDist', 'DictionaryProbDist', 'ELEProbDist',
'FreqDist', 'SimpleGoodTuringProbDist', 'HeldoutProbDist',
'ImmutableProbabilisticMixIn', 'LaplaceProbDist', 'LidstoneProbDist',
'MLEProbDist', 'MutableProbDist', 'KneserNeyProbDist', 'ProbDistI', 'ProbabilisticMixIn',
'UniformProbDist', 'WittenBellProbDist', 'add_logs',
'log_likelihood', 'sum_logs', 'entropy']
|