This file is indexed.

/usr/lib/python3/dist-packages/nltk/probability.py is in python3-nltk 3.2.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
# -*- coding: utf-8 -*-
# Natural Language Toolkit: Probability and Statistics
#
# Copyright (C) 2001-2017 NLTK Project
# Author: Edward Loper <edloper@gmail.com>
#         Steven Bird <stevenbird1@gmail.com> (additions)
#         Trevor Cohn <tacohn@cs.mu.oz.au> (additions)
#         Peter Ljunglöf <peter.ljunglof@heatherleaf.se> (additions)
#         Liang Dong <ldong@clemson.edu> (additions)
#         Geoffrey Sampson <sampson@cantab.net> (additions)
#         Ilia Kurenkov <ilia.kurenkov@gmail.com> (additions)
#
# URL: <http://nltk.org/>
# For license information, see LICENSE.TXT

"""
Classes for representing and processing probabilistic information.

The ``FreqDist`` class is used to encode "frequency distributions",
which count the number of times that each outcome of an experiment
occurs.

The ``ProbDistI`` class defines a standard interface for "probability
distributions", which encode the probability of each outcome for an
experiment.  There are two types of probability distribution:

  - "derived probability distributions" are created from frequency
    distributions.  They attempt to model the probability distribution
    that generated the frequency distribution.
  - "analytic probability distributions" are created directly from
    parameters (such as variance).

The ``ConditionalFreqDist`` class and ``ConditionalProbDistI`` interface
are used to encode conditional distributions.  Conditional probability
distributions can be derived or analytic; but currently the only
implementation of the ``ConditionalProbDistI`` interface is
``ConditionalProbDist``, a derived distribution.

"""
from __future__ import print_function, unicode_literals, division

import math
import random
import warnings
import array
from operator import itemgetter
from collections import defaultdict, Counter
from functools import reduce
from abc import ABCMeta, abstractmethod

from six import itervalues, text_type, add_metaclass

from nltk import compat
from nltk.internals import raise_unorderable_types

_NINF = float('-1e300')

##//////////////////////////////////////////////////////
##  Frequency Distributions
##//////////////////////////////////////////////////////

@compat.python_2_unicode_compatible
class FreqDist(Counter):
    """
    A frequency distribution for the outcomes of an experiment.  A
    frequency distribution records the number of times each outcome of
    an experiment has occurred.  For example, a frequency distribution
    could be used to record the frequency of each word type in a
    document.  Formally, a frequency distribution can be defined as a
    function mapping from each sample to the number of times that
    sample occurred as an outcome.

    Frequency distributions are generally constructed by running a
    number of experiments, and incrementing the count for a sample
    every time it is an outcome of an experiment.  For example, the
    following code will produce a frequency distribution that encodes
    how often each word occurs in a text:

        >>> from nltk.tokenize import word_tokenize
        >>> from nltk.probability import FreqDist
        >>> sent = 'This is an example sentence'
        >>> fdist = FreqDist()
        >>> for word in word_tokenize(sent):
        ...    fdist[word.lower()] += 1

    An equivalent way to do this is with the initializer:

        >>> fdist = FreqDist(word.lower() for word in word_tokenize(sent))

    """

    def __init__(self, samples=None):
        """
        Construct a new frequency distribution.  If ``samples`` is
        given, then the frequency distribution will be initialized
        with the count of each object in ``samples``; otherwise, it
        will be initialized to be empty.

        In particular, ``FreqDist()`` returns an empty frequency
        distribution; and ``FreqDist(samples)`` first creates an empty
        frequency distribution, and then calls ``update`` with the
        list ``samples``.

        :param samples: The samples to initialize the frequency
            distribution with.
        :type samples: Sequence
        """
        Counter.__init__(self, samples)

        # Cached number of samples in this FreqDist
        self._N = None

    def N(self):
        """
        Return the total number of sample outcomes that have been
        recorded by this FreqDist.  For the number of unique
        sample values (or bins) with counts greater than zero, use
        ``FreqDist.B()``.

        :rtype: int
        """
        if self._N is None:
            # Not already cached, or cache has been invalidated
            self._N = sum(self.values())
        return self._N

    def __setitem__(self, key, val):
        """
        Override ``Counter.__setitem__()`` to invalidate the cached N
        """
        self._N = None
        super(FreqDist, self).__setitem__(key, val)

    def __delitem__(self, key):
        """
        Override ``Counter.__delitem__()`` to invalidate the cached N
        """
        self._N = None
        super(FreqDist, self).__delitem__(key)

    def update(self, *args, **kwargs):
        """
        Override ``Counter.update()`` to invalidate the cached N
        """
        self._N = None
        super(FreqDist, self).update(*args, **kwargs)

    def setdefault(self, key, val):
        """
        Override ``Counter.setdefault()`` to invalidate the cached N
        """
        self._N = None
        super(FreqDist, self).setdefault(key, val)

    def B(self):
        """
        Return the total number of sample values (or "bins") that
        have counts greater than zero.  For the total
        number of sample outcomes recorded, use ``FreqDist.N()``.
        (FreqDist.B() is the same as len(FreqDist).)

        :rtype: int
        """
        return len(self)

    def hapaxes(self):
        """
        Return a list of all samples that occur once (hapax legomena)

        :rtype: list
        """
        return [item for item in self if self[item] == 1]


    def Nr(self, r, bins=None):
        return self.r_Nr(bins)[r]

    def r_Nr(self, bins=None):
        """
        Return the dictionary mapping r to Nr, the number of samples with frequency r, where Nr > 0.

        :type bins: int
        :param bins: The number of possible sample outcomes.  ``bins``
            is used to calculate Nr(0).  In particular, Nr(0) is
            ``bins-self.B()``.  If ``bins`` is not specified, it
            defaults to ``self.B()`` (so Nr(0) will be 0).
        :rtype: int
        """

        _r_Nr = defaultdict(int)
        for count in self.values():
            _r_Nr[count] += 1

        # Special case for Nr[0]:
        _r_Nr[0] = bins - self.B() if bins is not None else 0

        return _r_Nr

    def _cumulative_frequencies(self, samples):
        """
        Return the cumulative frequencies of the specified samples.
        If no samples are specified, all counts are returned, starting
        with the largest.

        :param samples: the samples whose frequencies should be returned.
        :type samples: any
        :rtype: list(float)
        """
        cf = 0.0
        for sample in samples:
            cf += self[sample]
            yield cf

    # slightly odd nomenclature freq() if FreqDist does counts and ProbDist does probs,
    # here, freq() does probs
    def freq(self, sample):
        """
        Return the frequency of a given sample.  The frequency of a
        sample is defined as the count of that sample divided by the
        total number of sample outcomes that have been recorded by
        this FreqDist.  The count of a sample is defined as the
        number of times that sample outcome was recorded by this
        FreqDist.  Frequencies are always real numbers in the range
        [0, 1].

        :param sample: the sample whose frequency
               should be returned.
        :type sample: any
        :rtype: float
        """
        n = self.N()
        if n == 0:
            return 0
        return self[sample] / n

    def max(self):
        """
        Return the sample with the greatest number of outcomes in this
        frequency distribution.  If two or more samples have the same
        number of outcomes, return one of them; which sample is
        returned is undefined.  If no outcomes have occurred in this
        frequency distribution, return None.

        :return: The sample with the maximum number of outcomes in this
                frequency distribution.
        :rtype: any or None
        """
        if len(self) == 0:
            raise ValueError('A FreqDist must have at least one sample before max is defined.')
        return self.most_common(1)[0][0]

    def plot(self, *args, **kwargs):
        """
        Plot samples from the frequency distribution
        displaying the most frequent sample first.  If an integer
        parameter is supplied, stop after this many samples have been
        plotted.  For a cumulative plot, specify cumulative=True.
        (Requires Matplotlib to be installed.)

        :param title: The title for the graph
        :type title: str
        :param cumulative: A flag to specify whether the plot is cumulative (default = False)
        :type title: bool
        """
        try:
            from matplotlib import pylab
        except ImportError:
            raise ValueError('The plot function requires matplotlib to be installed.'
                         'See http://matplotlib.org/')

        if len(args) == 0:
            args = [len(self)]
        samples = [item for item, _ in self.most_common(*args)]

        cumulative = _get_kwarg(kwargs, 'cumulative', False)
        if cumulative:
            freqs = list(self._cumulative_frequencies(samples))
            ylabel = "Cumulative Counts"
        else:
            freqs = [self[sample] for sample in samples]
            ylabel = "Counts"
        # percents = [f * 100 for f in freqs]  only in ProbDist?

        pylab.grid(True, color="silver")
        if not "linewidth" in kwargs:
            kwargs["linewidth"] = 2
        if "title" in kwargs:
            pylab.title(kwargs["title"])
            del kwargs["title"]
        pylab.plot(freqs, **kwargs)
        pylab.xticks(range(len(samples)), [text_type(s) for s in samples], rotation=90)
        pylab.xlabel("Samples")
        pylab.ylabel(ylabel)
        pylab.show()

    def tabulate(self, *args, **kwargs):
        """
        Tabulate the given samples from the frequency distribution (cumulative),
        displaying the most frequent sample first.  If an integer
        parameter is supplied, stop after this many samples have been
        plotted.

        :param samples: The samples to plot (default is all samples)
        :type samples: list
        :param cumulative: A flag to specify whether the freqs are cumulative (default = False)
        :type title: bool
        """
        if len(args) == 0:
            args = [len(self)]
        samples = [item for item, _ in self.most_common(*args)]

        cumulative = _get_kwarg(kwargs, 'cumulative', False)
        if cumulative:
            freqs = list(self._cumulative_frequencies(samples))
        else:
            freqs = [self[sample] for sample in samples]
        # percents = [f * 100 for f in freqs]  only in ProbDist?

        width = max(len("%s" % s) for s in samples)
        width = max(width, max(len("%d" % f) for f in freqs))

        for i in range(len(samples)):
            print("%*s" % (width, samples[i]), end=' ')
        print()
        for i in range(len(samples)):
            print("%*d" % (width, freqs[i]), end=' ')
        print()

    def copy(self):
        """
        Create a copy of this frequency distribution.

        :rtype: FreqDist
        """
        return self.__class__(self)

    # Mathematical operatiors

    def __add__(self, other):
        """
        Add counts from two counters.

        >>> FreqDist('abbb') + FreqDist('bcc')
        FreqDist({'b': 4, 'c': 2, 'a': 1})

        """
        return self.__class__(super(FreqDist, self).__add__(other))

    def __sub__(self, other):
        """
        Subtract count, but keep only results with positive counts.

        >>> FreqDist('abbbc') - FreqDist('bccd')
        FreqDist({'b': 2, 'a': 1})

        """
        return self.__class__(super(FreqDist, self).__sub__(other))

    def __or__(self, other):
        """
        Union is the maximum of value in either of the input counters.

        >>> FreqDist('abbb') | FreqDist('bcc')
        FreqDist({'b': 3, 'c': 2, 'a': 1})

        """
        return self.__class__(super(FreqDist, self).__or__(other))

    def __and__(self, other):
        """
        Intersection is the minimum of corresponding counts.

        >>> FreqDist('abbb') & FreqDist('bcc')
        FreqDist({'b': 1})

        """
        return self.__class__(super(FreqDist, self).__and__(other))

    def __le__(self, other):
        if not isinstance(other, FreqDist):
            raise_unorderable_types("<=", self, other)
        return set(self).issubset(other) and all(self[key] <= other[key] for key in self)

    # @total_ordering doesn't work here, since the class inherits from a builtin class
    __ge__ = lambda self, other: not self <= other or self == other
    __lt__ = lambda self, other: self <= other and not self == other
    __gt__ = lambda self, other: not self <= other

    def __repr__(self):
        """
        Return a string representation of this FreqDist.

        :rtype: string
        """
        return self.pformat()

    def pprint(self, maxlen=10, stream=None):
        """
        Print a string representation of this FreqDist to 'stream'

        :param maxlen: The maximum number of items to print
        :type maxlen: int
        :param stream: The stream to print to. stdout by default
        """
        print(self.pformat(maxlen=maxlen), file=stream)

    def pformat(self, maxlen=10):
        """
        Return a string representation of this FreqDist.

        :param maxlen: The maximum number of items to display
        :type maxlen: int
        :rtype: string
        """
        items = ['{0!r}: {1!r}'.format(*item) for item in self.most_common(maxlen)]
        if len(self) > maxlen:
            items.append('...')
        return 'FreqDist({{{0}}})'.format(', '.join(items))

    def __str__(self):
        """
        Return a string representation of this FreqDist.

        :rtype: string
        """
        return '<FreqDist with %d samples and %d outcomes>' % (len(self), self.N())


##//////////////////////////////////////////////////////
##  Probability Distributions
##//////////////////////////////////////////////////////

@add_metaclass(ABCMeta)
class ProbDistI(object):
    """
    A probability distribution for the outcomes of an experiment.  A
    probability distribution specifies how likely it is that an
    experiment will have any given outcome.  For example, a
    probability distribution could be used to predict the probability
    that a token in a document will have a given type.  Formally, a
    probability distribution can be defined as a function mapping from
    samples to nonnegative real numbers, such that the sum of every
    number in the function's range is 1.0.  A ``ProbDist`` is often
    used to model the probability distribution of the experiment used
    to generate a frequency distribution.
    """
    SUM_TO_ONE = True
    """True if the probabilities of the samples in this probability
       distribution will always sum to one."""

    @abstractmethod
    def __init__(self):
        """
        Classes inheriting from ProbDistI should implement __init__.
        """

    @abstractmethod
    def prob(self, sample):
        """
        Return the probability for a given sample.  Probabilities
        are always real numbers in the range [0, 1].

        :param sample: The sample whose probability
               should be returned.
        :type sample: any
        :rtype: float
        """

    def logprob(self, sample):
        """
        Return the base 2 logarithm of the probability for a given sample.

        :param sample: The sample whose probability
               should be returned.
        :type sample: any
        :rtype: float
        """
        # Default definition, in terms of prob()
        p = self.prob(sample)
        return (math.log(p, 2) if p != 0 else _NINF)

    @abstractmethod
    def max(self):
        """
        Return the sample with the greatest probability.  If two or
        more samples have the same probability, return one of them;
        which sample is returned is undefined.

        :rtype: any
        """

    @abstractmethod
    def samples(self):
        """
        Return a list of all samples that have nonzero probabilities.
        Use ``prob`` to find the probability of each sample.

        :rtype: list
        """

    # cf self.SUM_TO_ONE
    def discount(self):
        """
        Return the ratio by which counts are discounted on average: c*/c

        :rtype: float
        """
        return 0.0

    # Subclasses should define more efficient implementations of this,
    # where possible.
    def generate(self):
        """
        Return a randomly selected sample from this probability distribution.
        The probability of returning each sample ``samp`` is equal to
        ``self.prob(samp)``.
        """
        p = random.random()
        p_init = p
        for sample in self.samples():
            p -= self.prob(sample)
            if p <= 0: return sample
        # allow for some rounding error:
        if p < .0001:
            return sample
        # we *should* never get here
        if self.SUM_TO_ONE:
            warnings.warn("Probability distribution %r sums to %r; generate()"
                          " is returning an arbitrary sample." % (self, p_init-p))
        return random.choice(list(self.samples()))


@compat.python_2_unicode_compatible
class UniformProbDist(ProbDistI):
    """
    A probability distribution that assigns equal probability to each
    sample in a given set; and a zero probability to all other
    samples.
    """
    def __init__(self, samples):
        """
        Construct a new uniform probability distribution, that assigns
        equal probability to each sample in ``samples``.

        :param samples: The samples that should be given uniform
            probability.
        :type samples: list
        :raise ValueError: If ``samples`` is empty.
        """
        if len(samples) == 0:
            raise ValueError('A Uniform probability distribution must '+
                             'have at least one sample.')
        self._sampleset = set(samples)
        self._prob = 1.0/len(self._sampleset)
        self._samples = list(self._sampleset)

    def prob(self, sample):
        return (self._prob if sample in self._sampleset else 0)

    def max(self):
        return self._samples[0]

    def samples(self):
        return self._samples

    def __repr__(self):
        return '<UniformProbDist with %d samples>' % len(self._sampleset)


@compat.python_2_unicode_compatible
class RandomProbDist(ProbDistI):
    """
    Generates a random probability distribution whereby each sample
    will be between 0 and 1 with equal probability (uniform random distribution.
    Also called a continuous uniform distribution).
    """
    def __init__(self, samples):
        if len(samples) == 0:
            raise ValueError('A probability distribution must '+
                             'have at least one sample.')
        self._probs = self.unirand(samples)
        self._samples = list(self._probs.keys())

    @classmethod
    def unirand(cls, samples):
        """
        The key function that creates a randomized initial distribution
        that still sums to 1. Set as a dictionary of prob values so that
        it can still be passed to MutableProbDist and called with identical
        syntax to UniformProbDist
        """
        samples = set(samples)
        randrow = [random.random() for i in range(len(samples))]
        total = sum(randrow)
        for i, x in enumerate(randrow):
            randrow[i] = x/total

        total = sum(randrow)
        if total != 1:
            #this difference, if present, is so small (near NINF) that it
            #can be subtracted from any element without risking probs not (0 1)
            randrow[-1] -= total - 1

        return dict((s, randrow[i]) for i, s in enumerate(samples))

    def prob(self, sample):
        return self._probs.get(sample, 0)

    def samples(self):
        return self._samples

    def __repr__(self):
        return '<RandomUniformProbDist with %d samples>' %len(self._probs)


@compat.python_2_unicode_compatible
class DictionaryProbDist(ProbDistI):
    """
    A probability distribution whose probabilities are directly
    specified by a given dictionary.  The given dictionary maps
    samples to probabilities.
    """
    def __init__(self, prob_dict=None, log=False, normalize=False):
        """
        Construct a new probability distribution from the given
        dictionary, which maps values to probabilities (or to log
        probabilities, if ``log`` is true).  If ``normalize`` is
        true, then the probability values are scaled by a constant
        factor such that they sum to 1.

        If called without arguments, the resulting probability
        distribution assigns zero probability to all values.
        """

        self._prob_dict = (prob_dict.copy() if prob_dict is not None else {})
        self._log = log

        # Normalize the distribution, if requested.
        if normalize:
            if len(prob_dict) == 0:
                raise ValueError('A DictionaryProbDist must have at least one sample ' +
                             'before it can be normalized.')
            if log:
                value_sum = sum_logs(list(self._prob_dict.values()))
                if value_sum <= _NINF:
                    logp = math.log(1.0/len(prob_dict), 2)
                    for x in prob_dict:
                        self._prob_dict[x] = logp
                else:
                    for (x, p) in self._prob_dict.items():
                        self._prob_dict[x] -= value_sum
            else:
                value_sum = sum(self._prob_dict.values())
                if value_sum == 0:
                    p = 1.0/len(prob_dict)
                    for x in prob_dict:
                        self._prob_dict[x] = p
                else:
                    norm_factor = 1.0/value_sum
                    for (x, p) in self._prob_dict.items():
                        self._prob_dict[x] *= norm_factor

    def prob(self, sample):
        if self._log:
            return (2**(self._prob_dict[sample]) if sample in self._prob_dict else 0)
        else:
            return self._prob_dict.get(sample, 0)

    def logprob(self, sample):
        if self._log:
            return self._prob_dict.get(sample, _NINF)
        else:
            if sample not in self._prob_dict: return _NINF
            elif self._prob_dict[sample] == 0: return _NINF
            else: return math.log(self._prob_dict[sample], 2)

    def max(self):
        if not hasattr(self, '_max'):
            self._max = max((p,v) for (v,p) in self._prob_dict.items())[1]
        return self._max
    def samples(self):
        return self._prob_dict.keys()
    def __repr__(self):
        return '<ProbDist with %d samples>' % len(self._prob_dict)


@compat.python_2_unicode_compatible
class MLEProbDist(ProbDistI):
    """
    The maximum likelihood estimate for the probability distribution
    of the experiment used to generate a frequency distribution.  The
    "maximum likelihood estimate" approximates the probability of
    each sample as the frequency of that sample in the frequency
    distribution.
    """
    def __init__(self, freqdist, bins=None):
        """
        Use the maximum likelihood estimate to create a probability
        distribution for the experiment used to generate ``freqdist``.

        :type freqdist: FreqDist
        :param freqdist: The frequency distribution that the
            probability estimates should be based on.
        """
        self._freqdist = freqdist

    def freqdist(self):
        """
        Return the frequency distribution that this probability
        distribution is based on.

        :rtype: FreqDist
        """
        return self._freqdist

    def prob(self, sample):
        return self._freqdist.freq(sample)

    def max(self):
        return self._freqdist.max()

    def samples(self):
        return self._freqdist.keys()

    def __repr__(self):
        """
        :rtype: str
        :return: A string representation of this ``ProbDist``.
        """
        return '<MLEProbDist based on %d samples>' % self._freqdist.N()


@compat.python_2_unicode_compatible
class LidstoneProbDist(ProbDistI):
    """
    The Lidstone estimate for the probability distribution of the
    experiment used to generate a frequency distribution.  The
    "Lidstone estimate" is parameterized by a real number *gamma*,
    which typically ranges from 0 to 1.  The Lidstone estimate
    approximates the probability of a sample with count *c* from an
    experiment with *N* outcomes and *B* bins as
    ``c+gamma)/(N+B*gamma)``.  This is equivalent to adding
    *gamma* to the count for each bin, and taking the maximum
    likelihood estimate of the resulting frequency distribution.
    """
    SUM_TO_ONE = False
    def __init__(self, freqdist, gamma, bins=None):
        """
        Use the Lidstone estimate to create a probability distribution
        for the experiment used to generate ``freqdist``.

        :type freqdist: FreqDist
        :param freqdist: The frequency distribution that the
            probability estimates should be based on.
        :type gamma: float
        :param gamma: A real number used to parameterize the
            estimate.  The Lidstone estimate is equivalent to adding
            *gamma* to the count for each bin, and taking the
            maximum likelihood estimate of the resulting frequency
            distribution.
        :type bins: int
        :param bins: The number of sample values that can be generated
            by the experiment that is described by the probability
            distribution.  This value must be correctly set for the
            probabilities of the sample values to sum to one.  If
            ``bins`` is not specified, it defaults to ``freqdist.B()``.
        """
        if (bins == 0) or (bins is None and freqdist.N() == 0):
            name = self.__class__.__name__[:-8]
            raise ValueError('A %s probability distribution ' % name +
                             'must have at least one bin.')
        if (bins is not None) and (bins < freqdist.B()):
            name = self.__class__.__name__[:-8]
            raise ValueError('\nThe number of bins in a %s distribution ' % name +
                             '(%d) must be greater than or equal to\n' % bins +
                             'the number of bins in the FreqDist used ' +
                             'to create it (%d).' % freqdist.B())

        self._freqdist = freqdist
        self._gamma = float(gamma)
        self._N = self._freqdist.N()

        if bins is None:
            bins = freqdist.B()
        self._bins = bins

        self._divisor = self._N + bins * gamma
        if self._divisor == 0.0:
            # In extreme cases we force the probability to be 0,
            # which it will be, since the count will be 0:
            self._gamma = 0
            self._divisor = 1

    def freqdist(self):
        """
        Return the frequency distribution that this probability
        distribution is based on.

        :rtype: FreqDist
        """
        return self._freqdist

    def prob(self, sample):
        c = self._freqdist[sample]
        return (c + self._gamma) / self._divisor

    def max(self):
        # For Lidstone distributions, probability is monotonic with
        # frequency, so the most probable sample is the one that
        # occurs most frequently.
        return self._freqdist.max()

    def samples(self):
        return self._freqdist.keys()

    def discount(self):
        gb = self._gamma * self._bins
        return gb / (self._N + gb)

    def __repr__(self):
        """
        Return a string representation of this ``ProbDist``.

        :rtype: str
        """
        return '<LidstoneProbDist based on %d samples>' % self._freqdist.N()


@compat.python_2_unicode_compatible
class LaplaceProbDist(LidstoneProbDist):
    """
    The Laplace estimate for the probability distribution of the
    experiment used to generate a frequency distribution.  The
    "Laplace estimate" approximates the probability of a sample with
    count *c* from an experiment with *N* outcomes and *B* bins as
    *(c+1)/(N+B)*.  This is equivalent to adding one to the count for
    each bin, and taking the maximum likelihood estimate of the
    resulting frequency distribution.
    """
    def __init__(self, freqdist, bins=None):
        """
        Use the Laplace estimate to create a probability distribution
        for the experiment used to generate ``freqdist``.

        :type freqdist: FreqDist
        :param freqdist: The frequency distribution that the
            probability estimates should be based on.
        :type bins: int
        :param bins: The number of sample values that can be generated
            by the experiment that is described by the probability
            distribution.  This value must be correctly set for the
            probabilities of the sample values to sum to one.  If
            ``bins`` is not specified, it defaults to ``freqdist.B()``.
        """
        LidstoneProbDist.__init__(self, freqdist, 1, bins)

    def __repr__(self):
        """
        :rtype: str
        :return: A string representation of this ``ProbDist``.
        """
        return '<LaplaceProbDist based on %d samples>' % self._freqdist.N()


@compat.python_2_unicode_compatible
class ELEProbDist(LidstoneProbDist):
    """
    The expected likelihood estimate for the probability distribution
    of the experiment used to generate a frequency distribution.  The
    "expected likelihood estimate" approximates the probability of a
    sample with count *c* from an experiment with *N* outcomes and
    *B* bins as *(c+0.5)/(N+B/2)*.  This is equivalent to adding 0.5
    to the count for each bin, and taking the maximum likelihood
    estimate of the resulting frequency distribution.
    """
    def __init__(self, freqdist, bins=None):
        """
        Use the expected likelihood estimate to create a probability
        distribution for the experiment used to generate ``freqdist``.

        :type freqdist: FreqDist
        :param freqdist: The frequency distribution that the
            probability estimates should be based on.
        :type bins: int
        :param bins: The number of sample values that can be generated
            by the experiment that is described by the probability
            distribution.  This value must be correctly set for the
            probabilities of the sample values to sum to one.  If
            ``bins`` is not specified, it defaults to ``freqdist.B()``.
        """
        LidstoneProbDist.__init__(self, freqdist, 0.5, bins)

    def __repr__(self):
        """
        Return a string representation of this ``ProbDist``.

        :rtype: str
        """
        return '<ELEProbDist based on %d samples>' % self._freqdist.N()


@compat.python_2_unicode_compatible
class HeldoutProbDist(ProbDistI):
    """
    The heldout estimate for the probability distribution of the
    experiment used to generate two frequency distributions.  These
    two frequency distributions are called the "heldout frequency
    distribution" and the "base frequency distribution."  The
    "heldout estimate" uses uses the "heldout frequency
    distribution" to predict the probability of each sample, given its
    frequency in the "base frequency distribution".

    In particular, the heldout estimate approximates the probability
    for a sample that occurs *r* times in the base distribution as
    the average frequency in the heldout distribution of all samples
    that occur *r* times in the base distribution.

    This average frequency is *Tr[r]/(Nr[r].N)*, where:

    - *Tr[r]* is the total count in the heldout distribution for
      all samples that occur *r* times in the base distribution.
    - *Nr[r]* is the number of samples that occur *r* times in
      the base distribution.
    - *N* is the number of outcomes recorded by the heldout
      frequency distribution.

    In order to increase the efficiency of the ``prob`` member
    function, *Tr[r]/(Nr[r].N)* is precomputed for each value of *r*
    when the ``HeldoutProbDist`` is created.

    :type _estimate: list(float)
    :ivar _estimate: A list mapping from *r*, the number of
        times that a sample occurs in the base distribution, to the
        probability estimate for that sample.  ``_estimate[r]`` is
        calculated by finding the average frequency in the heldout
        distribution of all samples that occur *r* times in the base
        distribution.  In particular, ``_estimate[r]`` =
        *Tr[r]/(Nr[r].N)*.
    :type _max_r: int
    :ivar _max_r: The maximum number of times that any sample occurs
        in the base distribution.  ``_max_r`` is used to decide how
        large ``_estimate`` must be.
    """
    SUM_TO_ONE = False
    def __init__(self, base_fdist, heldout_fdist, bins=None):
        """
        Use the heldout estimate to create a probability distribution
        for the experiment used to generate ``base_fdist`` and
        ``heldout_fdist``.

        :type base_fdist: FreqDist
        :param base_fdist: The base frequency distribution.
        :type heldout_fdist: FreqDist
        :param heldout_fdist: The heldout frequency distribution.
        :type bins: int
        :param bins: The number of sample values that can be generated
            by the experiment that is described by the probability
            distribution.  This value must be correctly set for the
            probabilities of the sample values to sum to one.  If
            ``bins`` is not specified, it defaults to ``freqdist.B()``.
        """

        self._base_fdist = base_fdist
        self._heldout_fdist = heldout_fdist

        # The max number of times any sample occurs in base_fdist.
        self._max_r = base_fdist[base_fdist.max()]

        # Calculate Tr, Nr, and N.
        Tr = self._calculate_Tr()
        r_Nr = base_fdist.r_Nr(bins)
        Nr = [r_Nr[r] for r in range(self._max_r+1)]
        N = heldout_fdist.N()

        # Use Tr, Nr, and N to compute the probability estimate for
        # each value of r.
        self._estimate = self._calculate_estimate(Tr, Nr, N)

    def _calculate_Tr(self):
        """
        Return the list *Tr*, where *Tr[r]* is the total count in
        ``heldout_fdist`` for all samples that occur *r*
        times in ``base_fdist``.

        :rtype: list(float)
        """
        Tr = [0.0] * (self._max_r+1)
        for sample in self._heldout_fdist:
            r = self._base_fdist[sample]
            Tr[r] += self._heldout_fdist[sample]
        return Tr

    def _calculate_estimate(self, Tr, Nr, N):
        """
        Return the list *estimate*, where *estimate[r]* is the probability
        estimate for any sample that occurs *r* times in the base frequency
        distribution.  In particular, *estimate[r]* is *Tr[r]/(N[r].N)*.
        In the special case that *N[r]=0*, *estimate[r]* will never be used;
        so we define *estimate[r]=None* for those cases.

        :rtype: list(float)
        :type Tr: list(float)
        :param Tr: the list *Tr*, where *Tr[r]* is the total count in
            the heldout distribution for all samples that occur *r*
            times in base distribution.
        :type Nr: list(float)
        :param Nr: The list *Nr*, where *Nr[r]* is the number of
            samples that occur *r* times in the base distribution.
        :type N: int
        :param N: The total number of outcomes recorded by the heldout
            frequency distribution.
        """
        estimate = []
        for r in range(self._max_r+1):
            if Nr[r] == 0: estimate.append(None)
            else: estimate.append(Tr[r]/(Nr[r]*N))
        return estimate

    def base_fdist(self):
        """
        Return the base frequency distribution that this probability
        distribution is based on.

        :rtype: FreqDist
        """
        return self._base_fdist

    def heldout_fdist(self):
        """
        Return the heldout frequency distribution that this
        probability distribution is based on.

        :rtype: FreqDist
        """
        return self._heldout_fdist

    def samples(self):
        return self._base_fdist.keys()

    def prob(self, sample):
        # Use our precomputed probability estimate.
        r = self._base_fdist[sample]
        return self._estimate[r]

    def max(self):
        # Note: the Heldout estimation is *not* necessarily monotonic;
        # so this implementation is currently broken.  However, it
        # should give the right answer *most* of the time. :)
        return self._base_fdist.max()

    def discount(self):
        raise NotImplementedError()

    def __repr__(self):
        """
        :rtype: str
        :return: A string representation of this ``ProbDist``.
        """
        s = '<HeldoutProbDist: %d base samples; %d heldout samples>'
        return s % (self._base_fdist.N(), self._heldout_fdist.N())


@compat.python_2_unicode_compatible
class CrossValidationProbDist(ProbDistI):
    """
    The cross-validation estimate for the probability distribution of
    the experiment used to generate a set of frequency distribution.
    The "cross-validation estimate" for the probability of a sample
    is found by averaging the held-out estimates for the sample in
    each pair of frequency distributions.
    """
    SUM_TO_ONE = False
    def __init__(self, freqdists, bins):
        """
        Use the cross-validation estimate to create a probability
        distribution for the experiment used to generate
        ``freqdists``.

        :type freqdists: list(FreqDist)
        :param freqdists: A list of the frequency distributions
            generated by the experiment.
        :type bins: int
        :param bins: The number of sample values that can be generated
            by the experiment that is described by the probability
            distribution.  This value must be correctly set for the
            probabilities of the sample values to sum to one.  If
            ``bins`` is not specified, it defaults to ``freqdist.B()``.
        """
        self._freqdists = freqdists

        # Create a heldout probability distribution for each pair of
        # frequency distributions in freqdists.
        self._heldout_probdists = []
        for fdist1 in freqdists:
            for fdist2 in freqdists:
                if fdist1 is not fdist2:
                    probdist = HeldoutProbDist(fdist1, fdist2, bins)
                    self._heldout_probdists.append(probdist)

    def freqdists(self):
        """
        Return the list of frequency distributions that this ``ProbDist`` is based on.

        :rtype: list(FreqDist)
        """
        return self._freqdists

    def samples(self):
        # [xx] nb: this is not too efficient
        return set(sum([list(fd) for fd in self._freqdists], []))

    def prob(self, sample):
        # Find the average probability estimate returned by each
        # heldout distribution.
        prob = 0.0
        for heldout_probdist in self._heldout_probdists:
            prob += heldout_probdist.prob(sample)
        return prob/len(self._heldout_probdists)

    def discount(self):
        raise NotImplementedError()

    def __repr__(self):
        """
        Return a string representation of this ``ProbDist``.

        :rtype: str
        """
        return '<CrossValidationProbDist: %d-way>' % len(self._freqdists)


@compat.python_2_unicode_compatible
class WittenBellProbDist(ProbDistI):
    """
    The Witten-Bell estimate of a probability distribution. This distribution
    allocates uniform probability mass to as yet unseen events by using the
    number of events that have only been seen once. The probability mass
    reserved for unseen events is equal to *T / (N + T)*
    where *T* is the number of observed event types and *N* is the total
    number of observed events. This equates to the maximum likelihood estimate
    of a new type event occurring. The remaining probability mass is discounted
    such that all probability estimates sum to one, yielding:

        - *p = T / Z (N + T)*, if count = 0
        - *p = c / (N + T)*, otherwise
    """

    def __init__(self, freqdist, bins=None):
        """
        Creates a distribution of Witten-Bell probability estimates.  This
        distribution allocates uniform probability mass to as yet unseen
        events by using the number of events that have only been seen once. The
        probability mass reserved for unseen events is equal to *T / (N + T)*
        where *T* is the number of observed event types and *N* is the total
        number of observed events. This equates to the maximum likelihood
        estimate of a new type event occurring. The remaining probability mass
        is discounted such that all probability estimates sum to one,
        yielding:

            - *p = T / Z (N + T)*, if count = 0
            - *p = c / (N + T)*, otherwise

        The parameters *T* and *N* are taken from the ``freqdist`` parameter
        (the ``B()`` and ``N()`` values). The normalizing factor *Z* is
        calculated using these values along with the ``bins`` parameter.

        :param freqdist: The frequency counts upon which to base the
            estimation.
        :type freqdist: FreqDist
        :param bins: The number of possible event types. This must be at least
            as large as the number of bins in the ``freqdist``. If None, then
            it's assumed to be equal to that of the ``freqdist``
        :type bins: int
        """
        assert bins is None or bins >= freqdist.B(),\
               'bins parameter must not be less than %d=freqdist.B()' % freqdist.B()
        if bins is None:
            bins = freqdist.B()
        self._freqdist = freqdist
        self._T = self._freqdist.B()
        self._Z = bins - self._freqdist.B()
        self._N = self._freqdist.N()
        # self._P0 is P(0), precalculated for efficiency:
        if self._N==0:
            # if freqdist is empty, we approximate P(0) by a UniformProbDist:
            self._P0 = 1.0 / self._Z
        else:
            self._P0 = self._T / (self._Z * (self._N + self._T))

    def prob(self, sample):
        # inherit docs from ProbDistI
        c = self._freqdist[sample]
        return (c / (self._N + self._T) if c != 0 else self._P0)

    def max(self):
        return self._freqdist.max()

    def samples(self):
        return self._freqdist.keys()

    def freqdist(self):
        return self._freqdist

    def discount(self):
        raise NotImplementedError()

    def __repr__(self):
        """
        Return a string representation of this ``ProbDist``.

        :rtype: str
        """
        return '<WittenBellProbDist based on %d samples>' % self._freqdist.N()


##//////////////////////////////////////////////////////
##  Good-Turing Probability Distributions
##//////////////////////////////////////////////////////

# Good-Turing frequency estimation was contributed by Alan Turing and
# his statistical assistant I.J. Good, during their collaboration in
# the WWII.  It is a statistical technique for predicting the
# probability of occurrence of objects belonging to an unknown number
# of species, given past observations of such objects and their
# species. (In drawing balls from an urn, the 'objects' would be balls
# and the 'species' would be the distinct colors of the balls (finite
# but unknown in number).
#
# Good-Turing method calculates the probability mass to assign to
# events with zero or low counts based on the number of events with
# higher counts. It does so by using the adjusted count *c\**:
#
#     - *c\* = (c + 1) N(c + 1) / N(c)*   for c >= 1
#     - *things with frequency zero in training* = N(1)  for c == 0
#
# where *c* is the original count, *N(i)* is the number of event types
# observed with count *i*. We can think the count of unseen as the count
# of frequency one (see Jurafsky & Martin 2nd Edition, p101).
#
# This method is problematic because the situation ``N(c+1) == 0``
# is quite common in the original Good-Turing estimation; smoothing or
# interpolation of *N(i)* values is essential in practice.
#
# Bill Gale and Geoffrey Sampson present a simple and effective approach,
# Simple Good-Turing.  As a smoothing curve they simply use a power curve:
#
#     Nr = a*r^b (with b < -1 to give the appropriate hyperbolic
#     relationship)
#
# They estimate a and b by simple linear regression technique on the
# logarithmic form of the equation:
#
#     log Nr = a + b*log(r)
#
# However, they suggest that such a simple curve is probably only
# appropriate for high values of r. For low values of r, they use the
# measured Nr directly.  (see M&S, p.213)
#
# Gale and Sampson propose to use r while the difference between r and
# r* is 1.96 greater than the standard deviation, and switch to r* if
# it is less or equal:
#
#     |r - r*| > 1.96 * sqrt((r + 1)^2 (Nr+1 / Nr^2) (1 + Nr+1 / Nr))
#
# The 1.96 coefficient correspond to a 0.05 significance criterion,
# some implementations can use a coefficient of 1.65 for a 0.1
# significance criterion.
#

##//////////////////////////////////////////////////////
##  Simple Good-Turing Probablity Distributions
##//////////////////////////////////////////////////////

@compat.python_2_unicode_compatible
class SimpleGoodTuringProbDist(ProbDistI):
    """
    SimpleGoodTuring ProbDist approximates from frequency to frequency of
    frequency into a linear line under log space by linear regression.
    Details of Simple Good-Turing algorithm can be found in:

    - Good Turing smoothing without tears" (Gale & Sampson 1995),
      Journal of Quantitative Linguistics, vol. 2 pp. 217-237.
    - "Speech and Language Processing (Jurafsky & Martin),
      2nd Edition, Chapter 4.5 p103 (log(Nc) =  a + b*log(c))
    - http://www.grsampson.net/RGoodTur.html

    Given a set of pair (xi, yi),  where the xi denotes the frequency and
    yi denotes the frequency of frequency, we want to minimize their
    square variation. E(x) and E(y) represent the mean of xi and yi.

    - slope: b = sigma ((xi-E(x)(yi-E(y))) / sigma ((xi-E(x))(xi-E(x)))
    - intercept: a = E(y) - b.E(x)
    """
    SUM_TO_ONE = False
    def __init__(self, freqdist, bins=None):
        """
        :param freqdist: The frequency counts upon which to base the
            estimation.
        :type freqdist: FreqDist
        :param bins: The number of possible event types. This must be
            larger than the number of bins in the ``freqdist``. If None,
            then it's assumed to be equal to ``freqdist``.B() + 1
        :type bins: int
        """
        assert bins is None or bins > freqdist.B(),\
               'bins parameter must not be less than %d=freqdist.B()+1' % (freqdist.B()+1)
        if bins is None:
            bins = freqdist.B() + 1
        self._freqdist = freqdist
        self._bins = bins
        r, nr = self._r_Nr()
        self.find_best_fit(r, nr)
        self._switch(r, nr)
        self._renormalize(r, nr)

    def _r_Nr_non_zero(self):
        r_Nr = self._freqdist.r_Nr()
        del r_Nr[0]
        return r_Nr

    def _r_Nr(self):
        """
        Split the frequency distribution in two list (r, Nr), where Nr(r) > 0
        """
        nonzero = self._r_Nr_non_zero()

        if not nonzero:
            return [], []
        return zip(*sorted(nonzero.items()))

    def find_best_fit(self, r, nr):
        """
        Use simple linear regression to tune parameters self._slope and
        self._intercept in the log-log space based on count and Nr(count)
        (Work in log space to avoid floating point underflow.)
        """
        # For higher sample frequencies the data points becomes horizontal
        # along line Nr=1. To create a more evident linear model in log-log
        # space, we average positive Nr values with the surrounding zero
        # values. (Church and Gale, 1991)

        if not r or not nr:
            # Empty r or nr?
            return

        zr = []
        for j in range(len(r)):
            i = (r[j-1] if j > 0 else 0)
            k = (2 * r[j] - i if j == len(r) - 1 else r[j+1])
            zr_ = 2.0 * nr[j] / (k - i)
            zr.append(zr_)

        log_r = [math.log(i) for i in r]
        log_zr = [math.log(i) for i in zr]

        xy_cov = x_var = 0.0
        x_mean = sum(log_r) / len(log_r)
        y_mean = sum(log_zr) / len(log_zr)
        for (x, y) in zip(log_r, log_zr):
            xy_cov += (x - x_mean) * (y - y_mean)
            x_var += (x - x_mean)**2
        self._slope = (xy_cov / x_var if x_var != 0 else 0.0)
        if self._slope >= -1:
            warnings.warn('SimpleGoodTuring did not find a proper best fit '
                          'line for smoothing probabilities of occurrences. '
                          'The probability estimates are likely to be '
                          'unreliable.')
        self._intercept = y_mean - self._slope * x_mean

    def _switch(self, r, nr):
        """
        Calculate the r frontier where we must switch from Nr to Sr
        when estimating E[Nr].
        """
        for i, r_ in enumerate(r):
            if len(r) == i + 1 or r[i+1] != r_ + 1:
                # We are at the end of r, or there is a gap in r
                self._switch_at = r_
                break

            Sr = self.smoothedNr
            smooth_r_star = (r_ + 1) * Sr(r_+1) / Sr(r_)
            unsmooth_r_star = (r_ + 1) * nr[i+1] / nr[i]

            std = math.sqrt(self._variance(r_, nr[i], nr[i+1]))
            if abs(unsmooth_r_star-smooth_r_star) <= 1.96 * std:
                self._switch_at = r_
                break

    def _variance(self, r, nr, nr_1):
        r = float(r)
        nr = float(nr)
        nr_1 = float(nr_1)
        return (r + 1.0)**2 * (nr_1 / nr**2) * (1.0 + nr_1 / nr)

    def _renormalize(self, r, nr):
        """
        It is necessary to renormalize all the probability estimates to
        ensure a proper probability distribution results. This can be done
        by keeping the estimate of the probability mass for unseen items as
        N(1)/N and renormalizing all the estimates for previously seen items
        (as Gale and Sampson (1995) propose). (See M&S P.213, 1999)
        """
        prob_cov = 0.0
        for r_, nr_ in zip(r, nr):
            prob_cov  += nr_ * self._prob_measure(r_)
        if prob_cov:
            self._renormal = (1 - self._prob_measure(0)) / prob_cov

    def smoothedNr(self, r):
        """
        Return the number of samples with count r.

        :param r: The amount of frequency.
        :type r: int
        :rtype: float
        """

        # Nr = a*r^b (with b < -1 to give the appropriate hyperbolic
        # relationship)
        # Estimate a and b by simple linear regression technique on
        # the logarithmic form of the equation: log Nr = a + b*log(r)

        return math.exp(self._intercept + self._slope * math.log(r))

    def prob(self, sample):
        """
        Return the sample's probability.

        :param sample: sample of the event
        :type sample: str
        :rtype: float
        """
        count = self._freqdist[sample]
        p = self._prob_measure(count)
        if count == 0:
            if self._bins == self._freqdist.B():
                p = 0.0
            else:
                p = p / (self._bins - self._freqdist.B())
        else:
            p = p * self._renormal
        return p

    def _prob_measure(self, count):
        if count == 0 and self._freqdist.N() == 0 :
            return 1.0
        elif count == 0 and self._freqdist.N() != 0:
            return self._freqdist.Nr(1) / self._freqdist.N()

        if self._switch_at > count:
            Er_1 = self._freqdist.Nr(count+1)
            Er = self._freqdist.Nr(count)
        else:
            Er_1 = self.smoothedNr(count+1)
            Er = self.smoothedNr(count)

        r_star = (count + 1) * Er_1 / Er
        return r_star / self._freqdist.N()

    def check(self):
        prob_sum = 0.0
        for i in  range(0, len(self._Nr)):
            prob_sum += self._Nr[i] * self._prob_measure(i) / self._renormal
        print("Probability Sum:", prob_sum)
        #assert prob_sum != 1.0, "probability sum should be one!"

    def discount(self):
        """
        This function returns the total mass of probability transfers from the
        seen samples to the unseen samples.
        """
        return  self.smoothedNr(1) / self._freqdist.N()

    def max(self):
        return self._freqdist.max()

    def samples(self):
        return self._freqdist.keys()

    def freqdist(self):
        return self._freqdist

    def __repr__(self):
        """
        Return a string representation of this ``ProbDist``.

        :rtype: str
        """
        return '<SimpleGoodTuringProbDist based on %d samples>'\
                % self._freqdist.N()


class MutableProbDist(ProbDistI):
    """
    An mutable probdist where the probabilities may be easily modified. This
    simply copies an existing probdist, storing the probability values in a
    mutable dictionary and providing an update method.
    """

    def __init__(self, prob_dist, samples, store_logs=True):
        """
        Creates the mutable probdist based on the given prob_dist and using
        the list of samples given. These values are stored as log
        probabilities if the store_logs flag is set.

        :param prob_dist: the distribution from which to garner the
            probabilities
        :type prob_dist: ProbDist
        :param samples: the complete set of samples
        :type samples: sequence of any
        :param store_logs: whether to store the probabilities as logarithms
        :type store_logs: bool
        """
        self._samples = samples
        self._sample_dict = dict((samples[i], i) for i in range(len(samples)))
        self._data = array.array(str("d"), [0.0]) * len(samples)
        for i in range(len(samples)):
            if store_logs:
                self._data[i] = prob_dist.logprob(samples[i])
            else:
                self._data[i] = prob_dist.prob(samples[i])
        self._logs = store_logs

    def samples(self):
        # inherit documentation
        return self._samples

    def prob(self, sample):
        # inherit documentation
        i = self._sample_dict.get(sample)
        if i is None:
            return 0.0
        return (2**(self._data[i]) if self._logs else self._data[i])

    def logprob(self, sample):
        # inherit documentation
        i = self._sample_dict.get(sample)
        if i is None:
            return float('-inf')
        return (self._data[i] if self._logs else math.log(self._data[i], 2))

    def update(self, sample, prob, log=True):
        """
        Update the probability for the given sample. This may cause the object
        to stop being the valid probability distribution - the user must
        ensure that they update the sample probabilities such that all samples
        have probabilities between 0 and 1 and that all probabilities sum to
        one.

        :param sample: the sample for which to update the probability
        :type sample: any
        :param prob: the new probability
        :type prob: float
        :param log: is the probability already logged
        :type log: bool
        """
        i = self._sample_dict.get(sample)
        assert i is not None
        if self._logs:
            self._data[i] = (prob if log else math.log(prob, 2))
        else:
            self._data[i] = (2**(prob) if log else prob)

##/////////////////////////////////////////////////////
##  Kneser-Ney Probability Distribution
##//////////////////////////////////////////////////////

# This method for calculating probabilities was introduced in 1995 by Reinhard
# Kneser and Hermann Ney. It was meant to improve the accuracy of language
# models that use backing-off to deal with sparse data. The authors propose two
# ways of doing so: a marginal distribution constraint on the back-off
# distribution and a leave-one-out distribution. For a start, the first one is
# implemented as a class below.
#
# The idea behind a back-off n-gram model is that we have a series of
# frequency distributions for our n-grams so that in case we have not seen a
# given n-gram during training (and as a result have a 0 probability for it) we
# can 'back off' (hence the name!) and try testing whether we've seen the
# n-1-gram part of the n-gram in training.
#
# The novelty of Kneser and Ney's approach was that they decided to fiddle
# around with the way this latter, backed off probability was being calculated
# whereas their peers seemed to focus on the primary probability.
#
# The implementation below uses one of the techniques described in their paper
# titled "Improved backing-off for n-gram language modeling." In the same paper
# another technique is introduced to attempt to smooth the back-off
# distribution as well as the primary one. There is also a much-cited
# modification of this method proposed by Chen and Goodman.
#
# In order for the implementation of Kneser-Ney to be more efficient, some
# changes have been made to the original algorithm. Namely, the calculation of
# the normalizing function gamma has been significantly simplified and
# combined slightly differently with beta. None of these changes affect the
# nature of the algorithm, but instead aim to cut out unnecessary calculations
# and take advantage of storing and retrieving information in dictionaries
# where possible.

@compat.python_2_unicode_compatible
class KneserNeyProbDist(ProbDistI):
    """
    Kneser-Ney estimate of a probability distribution. This is a version of
    back-off that counts how likely an n-gram is provided the n-1-gram had
    been seen in training. Extends the ProbDistI interface, requires a trigram
    FreqDist instance to train on. Optionally, a different from default discount
    value can be specified. The default discount is set to 0.75.

    """
    def __init__(self, freqdist, bins=None, discount=0.75):
        """
        :param freqdist: The trigram frequency distribution upon which to base
            the estimation
        :type freqdist: FreqDist
        :param bins: Included for compatibility with nltk.tag.hmm
        :type bins: int or float
        :param discount: The discount applied when retrieving counts of
            trigrams
        :type discount: float (preferred, but can be set to int)
        """

        if not bins:
            self._bins = freqdist.B()
        else:
            self._bins = bins
        self._D = discount

        # cache for probability calculation
        self._cache = {}

        # internal bigram and trigram frequency distributions
        self._bigrams = defaultdict(int)
        self._trigrams = freqdist

        # helper dictionaries used to calculate probabilities
        self._wordtypes_after = defaultdict(float)
        self._trigrams_contain = defaultdict(float)
        self._wordtypes_before = defaultdict(float)
        for w0, w1, w2 in freqdist:
            self._bigrams[(w0,w1)] += freqdist[(w0, w1, w2)]
            self._wordtypes_after[(w0,w1)] += 1
            self._trigrams_contain[w1] += 1
            self._wordtypes_before[(w1,w2)] += 1

    def prob(self, trigram):
        # sample must be a triple
        if len(trigram) != 3:
            raise ValueError('Expected an iterable with 3 members.')
        trigram = tuple(trigram)
        w0, w1, w2 = trigram

        if trigram in self._cache:
            return self._cache[trigram]
        else:
            # if the sample trigram was seen during training
            if trigram in self._trigrams:
                prob = (self._trigrams[trigram]
                        - self.discount())/self._bigrams[(w0, w1)]

            # else if the 'rougher' environment was seen during training
            elif (w0,w1) in self._bigrams and (w1,w2) in self._wordtypes_before:
                aftr = self._wordtypes_after[(w0, w1)]
                bfr = self._wordtypes_before[(w1, w2)]

                # the probability left over from alphas
                leftover_prob = ((aftr * self.discount())
                                 / self._bigrams[(w0, w1)])

                # the beta (including normalization)
                beta = bfr /(self._trigrams_contain[w1] - aftr)

                prob = leftover_prob * beta

            # else the sample was completely unseen during training
            else:
                prob = 0.0

            self._cache[trigram] = prob
            return prob

    def discount(self):
        """
        Return the value by which counts are discounted. By default set to 0.75.

        :rtype: float
        """
        return self._D

    def set_discount(self, discount):
        """
        Set the value by which counts are discounted to the value of discount.

        :param discount: the new value to discount counts by
        :type discount: float (preferred, but int possible)
        :rtype: None
        """
        self._D = discount

    def samples(self):
        return self._trigrams.keys()

    def max(self):
        return self._trigrams.max()

    def __repr__(self):
        '''
        Return a string representation of this ProbDist

        :rtype: str
        '''
        return '<KneserNeyProbDist based on {0} trigrams'.format(self._trigrams.N())

##//////////////////////////////////////////////////////
##  Probability Distribution Operations
##//////////////////////////////////////////////////////

def log_likelihood(test_pdist, actual_pdist):
    if (not isinstance(test_pdist, ProbDistI) or
        not isinstance(actual_pdist, ProbDistI)):
        raise ValueError('expected a ProbDist.')
    # Is this right?
    return sum(actual_pdist.prob(s) * math.log(test_pdist.prob(s), 2)
               for s in actual_pdist)

def entropy(pdist):
    probs = (pdist.prob(s) for s in pdist.samples())
    return -sum(p * math.log(p,2) for p in probs)

##//////////////////////////////////////////////////////
##  Conditional Distributions
##//////////////////////////////////////////////////////

@compat.python_2_unicode_compatible
class ConditionalFreqDist(defaultdict):
    """
    A collection of frequency distributions for a single experiment
    run under different conditions.  Conditional frequency
    distributions are used to record the number of times each sample
    occurred, given the condition under which the experiment was run.
    For example, a conditional frequency distribution could be used to
    record the frequency of each word (type) in a document, given its
    length.  Formally, a conditional frequency distribution can be
    defined as a function that maps from each condition to the
    FreqDist for the experiment under that condition.

    Conditional frequency distributions are typically constructed by
    repeatedly running an experiment under a variety of conditions,
    and incrementing the sample outcome counts for the appropriate
    conditions.  For example, the following code will produce a
    conditional frequency distribution that encodes how often each
    word type occurs, given the length of that word type:

        >>> from nltk.probability import ConditionalFreqDist
        >>> from nltk.tokenize import word_tokenize
        >>> sent = "the the the dog dog some other words that we do not care about"
        >>> cfdist = ConditionalFreqDist()
        >>> for word in word_tokenize(sent):
        ...     condition = len(word)
        ...     cfdist[condition][word] += 1

    An equivalent way to do this is with the initializer:

        >>> cfdist = ConditionalFreqDist((len(word), word) for word in word_tokenize(sent))

    The frequency distribution for each condition is accessed using
    the indexing operator:

        >>> cfdist[3]
        FreqDist({'the': 3, 'dog': 2, 'not': 1})
        >>> cfdist[3].freq('the')
        0.5
        >>> cfdist[3]['dog']
        2

    When the indexing operator is used to access the frequency
    distribution for a condition that has not been accessed before,
    ``ConditionalFreqDist`` creates a new empty FreqDist for that
    condition.

    """
    def __init__(self, cond_samples=None):
        """
        Construct a new empty conditional frequency distribution.  In
        particular, the count for every sample, under every condition,
        is zero.

        :param cond_samples: The samples to initialize the conditional
            frequency distribution with
        :type cond_samples: Sequence of (condition, sample) tuples
        """
        defaultdict.__init__(self, FreqDist)

        if cond_samples:
            for (cond, sample) in cond_samples:
                self[cond][sample] += 1

    def __reduce__(self):
        kv_pairs = ((cond, self[cond]) for cond in self.conditions())
        return (self.__class__, (), None, None, kv_pairs)

    def conditions(self):
        """
        Return a list of the conditions that have been accessed for
        this ``ConditionalFreqDist``.  Use the indexing operator to
        access the frequency distribution for a given condition.
        Note that the frequency distributions for some conditions
        may contain zero sample outcomes.

        :rtype: list
        """
        return list(self.keys())

    def N(self):
        """
        Return the total number of sample outcomes that have been
        recorded by this ``ConditionalFreqDist``.

        :rtype: int
        """
        return sum(fdist.N() for fdist in itervalues(self))

    def plot(self, *args, **kwargs):
        """
        Plot the given samples from the conditional frequency distribution.
        For a cumulative plot, specify cumulative=True.
        (Requires Matplotlib to be installed.)

        :param samples: The samples to plot
        :type samples: list
        :param title: The title for the graph
        :type title: str
        :param conditions: The conditions to plot (default is all)
        :type conditions: list
        """
        try:
            from matplotlib import pylab
        except ImportError:
            raise ValueError('The plot function requires matplotlib to be installed.'
                         'See http://matplotlib.org/')

        cumulative = _get_kwarg(kwargs, 'cumulative', False)
        conditions = _get_kwarg(kwargs, 'conditions', sorted(self.conditions()))
        title = _get_kwarg(kwargs, 'title', '')
        samples = _get_kwarg(kwargs, 'samples',
                             sorted(set(v for c in conditions for v in self[c])))  # this computation could be wasted
        if not "linewidth" in kwargs:
            kwargs["linewidth"] = 2

        for condition in conditions:
            if cumulative:
                freqs = list(self[condition]._cumulative_frequencies(samples))
                ylabel = "Cumulative Counts"
                legend_loc = 'lower right'
            else:
                freqs = [self[condition][sample] for sample in samples]
                ylabel = "Counts"
                legend_loc = 'upper right'
            # percents = [f * 100 for f in freqs] only in ConditionalProbDist?
            kwargs['label'] = "%s" % condition
            pylab.plot(freqs, *args, **kwargs)

        pylab.legend(loc=legend_loc)
        pylab.grid(True, color="silver")
        pylab.xticks(range(len(samples)), [text_type(s) for s in samples], rotation=90)
        if title:
            pylab.title(title)
        pylab.xlabel("Samples")
        pylab.ylabel(ylabel)
        pylab.show()

    def tabulate(self, *args, **kwargs):
        """
        Tabulate the given samples from the conditional frequency distribution.

        :param samples: The samples to plot
        :type samples: list
        :param conditions: The conditions to plot (default is all)
        :type conditions: list
        :param cumulative: A flag to specify whether the freqs are cumulative (default = False)
        :type title: bool
        """

        cumulative = _get_kwarg(kwargs, 'cumulative', False)
        conditions = _get_kwarg(kwargs, 'conditions', sorted(self.conditions()))
        samples = _get_kwarg(kwargs, 'samples',
                             sorted(set(v for c in conditions for v in self[c])))  # this computation could be wasted

        width = max(len("%s" % s) for s in samples)
        freqs = dict()
        for c in conditions:
            if cumulative:
                freqs[c] = list(self[c]._cumulative_frequencies(samples))
            else:
                freqs[c] = [self[c][sample] for sample in samples]
            width = max(width, max(len("%d" % f) for f in freqs[c]))

        condition_size = max(len("%s" % c) for c in conditions)
        print(' ' * condition_size, end=' ')
        for s in samples:
            print("%*s" % (width, s), end=' ')
        print()
        for c in conditions:
            print("%*s" % (condition_size, c), end=' ')
            for f in freqs[c]:
                print("%*d" % (width, f), end=' ')
            print()

    # Mathematical operators

    def __add__(self, other):
        """
        Add counts from two ConditionalFreqDists.
        """
        if not isinstance(other, ConditionalFreqDist):
            return NotImplemented
        result = ConditionalFreqDist()
        for cond in self.conditions():
            newfreqdist = self[cond] + other[cond]
            if newfreqdist:
                result[cond] = newfreqdist
        for cond in other.conditions():
            if cond not in self.conditions():
                for elem, count in other[cond].items():
                    if count > 0:
                        result[cond][elem] = count
        return result

    def __sub__(self, other):
        """
        Subtract count, but keep only results with positive counts.
        """
        if not isinstance(other, ConditionalFreqDist):
            return NotImplemented
        result = ConditionalFreqDist()
        for cond in self.conditions():
            newfreqdist = self[cond] - other[cond]
            if newfreqdist:
                result[cond] = newfreqdist
        for cond in other.conditions():
            if cond not in self.conditions():
                for elem, count in other[cond].items():
                    if count < 0:
                        result[cond][elem] = 0 - count
        return result

    def __or__(self, other):
        """
        Union is the maximum of value in either of the input counters.
        """
        if not isinstance(other, ConditionalFreqDist):
            return NotImplemented
        result = ConditionalFreqDist()
        for cond in self.conditions():
            newfreqdist = self[cond] | other[cond]
            if newfreqdist:
                result[cond] = newfreqdist
        for cond in other.conditions():
            if cond not in self.conditions():
                for elem, count in other[cond].items():
                    if count > 0:
                        result[cond][elem] = count
        return result

    def __and__(self, other):
        """
        Intersection is the minimum of corresponding counts.
        """
        if not isinstance(other, ConditionalFreqDist):
            return NotImplemented
        result = ConditionalFreqDist()
        for cond in self.conditions():
            newfreqdist = self[cond] & other[cond]
            if newfreqdist:
                result[cond] = newfreqdist
        return result

    # @total_ordering doesn't work here, since the class inherits from a builtin class
    def __le__(self, other):
        if not isinstance(other, ConditionalFreqDist):
            raise_unorderable_types("<=", self, other)
        return set(self.conditions()).issubset(other.conditions()) \
               and all(self[c] <= other[c] for c in self.conditions())
    def __lt__(self, other):
        if not isinstance(other, ConditionalFreqDist):
            raise_unorderable_types("<", self, other)
        return self <= other and self != other
    def __ge__(self, other):
        if not isinstance(other, ConditionalFreqDist):
            raise_unorderable_types(">=", self, other)
        return other <= self
    def __gt__(self, other):
        if not isinstance(other, ConditionalFreqDist):
            raise_unorderable_types(">", self, other)
        return other < self

    def __repr__(self):
        """
        Return a string representation of this ``ConditionalFreqDist``.

        :rtype: str
        """
        return '<ConditionalFreqDist with %d conditions>' % len(self)


@compat.python_2_unicode_compatible
@add_metaclass(ABCMeta)
class ConditionalProbDistI(dict):
    """
    A collection of probability distributions for a single experiment
    run under different conditions.  Conditional probability
    distributions are used to estimate the likelihood of each sample,
    given the condition under which the experiment was run.  For
    example, a conditional probability distribution could be used to
    estimate the probability of each word type in a document, given
    the length of the word type.  Formally, a conditional probability
    distribution can be defined as a function that maps from each
    condition to the ``ProbDist`` for the experiment under that
    condition.
    """
    @abstractmethod
    def __init__(self):
        """
        Classes inheriting from ConditionalProbDistI should implement __init__.
        """

    def conditions(self):
        """
        Return a list of the conditions that are represented by
        this ``ConditionalProbDist``.  Use the indexing operator to
        access the probability distribution for a given condition.

        :rtype: list
        """
        return list(self.keys())

    def __repr__(self):
        """
        Return a string representation of this ``ConditionalProbDist``.

        :rtype: str
        """
        return '<%s with %d conditions>' % (type(self).__name__, len(self))


class ConditionalProbDist(ConditionalProbDistI):
    """
    A conditional probability distribution modeling the experiments
    that were used to generate a conditional frequency distribution.
    A ConditionalProbDist is constructed from a
    ``ConditionalFreqDist`` and a ``ProbDist`` factory:

    - The ``ConditionalFreqDist`` specifies the frequency
      distribution for each condition.
    - The ``ProbDist`` factory is a function that takes a
      condition's frequency distribution, and returns its
      probability distribution.  A ``ProbDist`` class's name (such as
      ``MLEProbDist`` or ``HeldoutProbDist``) can be used to specify
      that class's constructor.

    The first argument to the ``ProbDist`` factory is the frequency
    distribution that it should model; and the remaining arguments are
    specified by the ``factory_args`` parameter to the
    ``ConditionalProbDist`` constructor.  For example, the following
    code constructs a ``ConditionalProbDist``, where the probability
    distribution for each condition is an ``ELEProbDist`` with 10 bins:

        >>> from nltk.corpus import brown
        >>> from nltk.probability import ConditionalFreqDist
        >>> from nltk.probability import ConditionalProbDist, ELEProbDist
        >>> cfdist = ConditionalFreqDist(brown.tagged_words()[:5000])
        >>> cpdist = ConditionalProbDist(cfdist, ELEProbDist, 10)
        >>> cpdist['passed'].max()
        'VBD'
        >>> cpdist['passed'].prob('VBD')
        0.423...

    """
    def __init__(self, cfdist, probdist_factory,
                 *factory_args, **factory_kw_args):
        """
        Construct a new conditional probability distribution, based on
        the given conditional frequency distribution and ``ProbDist``
        factory.

        :type cfdist: ConditionalFreqDist
        :param cfdist: The ``ConditionalFreqDist`` specifying the
            frequency distribution for each condition.
        :type probdist_factory: class or function
        :param probdist_factory: The function or class that maps
            a condition's frequency distribution to its probability
            distribution.  The function is called with the frequency
            distribution as its first argument,
            ``factory_args`` as its remaining arguments, and
            ``factory_kw_args`` as keyword arguments.
        :type factory_args: (any)
        :param factory_args: Extra arguments for ``probdist_factory``.
            These arguments are usually used to specify extra
            properties for the probability distributions of individual
            conditions, such as the number of bins they contain.
        :type factory_kw_args: (any)
        :param factory_kw_args: Extra keyword arguments for ``probdist_factory``.
        """
        self._probdist_factory = probdist_factory
        self._factory_args = factory_args
        self._factory_kw_args = factory_kw_args

        for condition in cfdist:
            self[condition] = probdist_factory(cfdist[condition],
                                               *factory_args, **factory_kw_args)

    def __missing__(self, key):
        self[key] = self._probdist_factory(FreqDist(),
                                           *self._factory_args,
                                           **self._factory_kw_args)
        return self[key]

class DictionaryConditionalProbDist(ConditionalProbDistI):
    """
    An alternative ConditionalProbDist that simply wraps a dictionary of
    ProbDists rather than creating these from FreqDists.
    """

    def __init__(self, probdist_dict):
        """
        :param probdist_dict: a dictionary containing the probdists indexed
            by the conditions
        :type probdist_dict: dict any -> probdist
        """
        self.update(probdist_dict)

    def __missing__(self, key):
        self[key] = DictionaryProbDist()
        return self[key]

##//////////////////////////////////////////////////////
## Adding in log-space.
##//////////////////////////////////////////////////////

# If the difference is bigger than this, then just take the bigger one:
_ADD_LOGS_MAX_DIFF = math.log(1e-30, 2)

def add_logs(logx, logy):
    """
    Given two numbers ``logx`` = *log(x)* and ``logy`` = *log(y)*, return
    *log(x+y)*.  Conceptually, this is the same as returning
    ``log(2**(logx)+2**(logy))``, but the actual implementation
    avoids overflow errors that could result from direct computation.
    """
    if (logx < logy + _ADD_LOGS_MAX_DIFF):
        return logy
    if (logy < logx + _ADD_LOGS_MAX_DIFF):
        return logx
    base = min(logx, logy)
    return base + math.log(2**(logx-base) + 2**(logy-base), 2)

def sum_logs(logs):
    return (reduce(add_logs, logs[1:], logs[0]) if len(logs) != 0 else _NINF)

##//////////////////////////////////////////////////////
##  Probabilistic Mix-in
##//////////////////////////////////////////////////////

class ProbabilisticMixIn(object):
    """
    A mix-in class to associate probabilities with other classes
    (trees, rules, etc.).  To use the ``ProbabilisticMixIn`` class,
    define a new class that derives from an existing class and from
    ProbabilisticMixIn.  You will need to define a new constructor for
    the new class, which explicitly calls the constructors of both its
    parent classes.  For example:

        >>> from nltk.probability import ProbabilisticMixIn
        >>> class A:
        ...     def __init__(self, x, y): self.data = (x,y)
        ...
        >>> class ProbabilisticA(A, ProbabilisticMixIn):
        ...     def __init__(self, x, y, **prob_kwarg):
        ...         A.__init__(self, x, y)
        ...         ProbabilisticMixIn.__init__(self, **prob_kwarg)

    See the documentation for the ProbabilisticMixIn
    ``constructor<__init__>`` for information about the arguments it
    expects.

    You should generally also redefine the string representation
    methods, the comparison methods, and the hashing method.
    """
    def __init__(self, **kwargs):
        """
        Initialize this object's probability.  This initializer should
        be called by subclass constructors.  ``prob`` should generally be
        the first argument for those constructors.

        :param prob: The probability associated with the object.
        :type prob: float
        :param logprob: The log of the probability associated with
            the object.
        :type logprob: float
        """
        if 'prob' in kwargs:
            if 'logprob' in kwargs:
                raise TypeError('Must specify either prob or logprob '
                                '(not both)')
            else:
                ProbabilisticMixIn.set_prob(self, kwargs['prob'])
        elif 'logprob' in kwargs:
            ProbabilisticMixIn.set_logprob(self, kwargs['logprob'])
        else:
            self.__prob = self.__logprob = None

    def set_prob(self, prob):
        """
        Set the probability associated with this object to ``prob``.

        :param prob: The new probability
        :type prob: float
        """
        self.__prob = prob
        self.__logprob = None

    def set_logprob(self, logprob):
        """
        Set the log probability associated with this object to
        ``logprob``.  I.e., set the probability associated with this
        object to ``2**(logprob)``.

        :param logprob: The new log probability
        :type logprob: float
        """
        self.__logprob = logprob
        self.__prob = None

    def prob(self):
        """
        Return the probability associated with this object.

        :rtype: float
        """
        if self.__prob is None:
            if self.__logprob is None: return None
            self.__prob = 2**(self.__logprob)
        return self.__prob

    def logprob(self):
        """
        Return ``log(p)``, where ``p`` is the probability associated
        with this object.

        :rtype: float
        """
        if self.__logprob is None:
            if self.__prob is None: return None
            self.__logprob = math.log(self.__prob, 2)
        return self.__logprob

class ImmutableProbabilisticMixIn(ProbabilisticMixIn):
    def set_prob(self, prob):
        raise ValueError('%s is immutable' % self.__class__.__name__)
    def set_logprob(self, prob):
        raise ValueError('%s is immutable' % self.__class__.__name__)

## Helper function for processing keyword arguments

def _get_kwarg(kwargs, key, default):
    if key in kwargs:
        arg = kwargs[key]
        del kwargs[key]
    else:
        arg = default
    return arg

##//////////////////////////////////////////////////////
##  Demonstration
##//////////////////////////////////////////////////////

def _create_rand_fdist(numsamples, numoutcomes):
    """
    Create a new frequency distribution, with random samples.  The
    samples are numbers from 1 to ``numsamples``, and are generated by
    summing two numbers, each of which has a uniform distribution.
    """
    import random
    fdist = FreqDist()
    for x in range(numoutcomes):
        y = (random.randint(1, (1 + numsamples) // 2) +
             random.randint(0, numsamples // 2))
        fdist[y] += 1
    return fdist

def _create_sum_pdist(numsamples):
    """
    Return the true probability distribution for the experiment
    ``_create_rand_fdist(numsamples, x)``.
    """
    fdist = FreqDist()
    for x in range(1, (1 + numsamples) // 2 + 1):
        for y in range(0, numsamples // 2 + 1):
            fdist[x+y] += 1
    return MLEProbDist(fdist)

def demo(numsamples=6, numoutcomes=500):
    """
    A demonstration of frequency distributions and probability
    distributions.  This demonstration creates three frequency
    distributions with, and uses them to sample a random process with
    ``numsamples`` samples.  Each frequency distribution is sampled
    ``numoutcomes`` times.  These three frequency distributions are
    then used to build six probability distributions.  Finally, the
    probability estimates of these distributions are compared to the
    actual probability of each sample.

    :type numsamples: int
    :param numsamples: The number of samples to use in each demo
        frequency distributions.
    :type numoutcomes: int
    :param numoutcomes: The total number of outcomes for each
        demo frequency distribution.  These outcomes are divided into
        ``numsamples`` bins.
    :rtype: None
    """

    # Randomly sample a stochastic process three times.
    fdist1 = _create_rand_fdist(numsamples, numoutcomes)
    fdist2 = _create_rand_fdist(numsamples, numoutcomes)
    fdist3 = _create_rand_fdist(numsamples, numoutcomes)

    # Use our samples to create probability distributions.
    pdists = [
        MLEProbDist(fdist1),
        LidstoneProbDist(fdist1, 0.5, numsamples),
        HeldoutProbDist(fdist1, fdist2, numsamples),
        HeldoutProbDist(fdist2, fdist1, numsamples),
        CrossValidationProbDist([fdist1, fdist2, fdist3], numsamples),
        SimpleGoodTuringProbDist(fdist1),
        SimpleGoodTuringProbDist(fdist1, 7),
        _create_sum_pdist(numsamples),
    ]

    # Find the probability of each sample.
    vals = []
    for n in range(1,numsamples+1):
        vals.append(tuple([n, fdist1.freq(n)] +
                          [pdist.prob(n) for pdist in pdists]))

    # Print the results in a formatted table.
    print(('%d samples (1-%d); %d outcomes were sampled for each FreqDist' %
           (numsamples, numsamples, numoutcomes)))
    print('='*9*(len(pdists)+2))
    FORMATSTR = '      FreqDist '+ '%8s '*(len(pdists)-1) + '|  Actual'
    print(FORMATSTR % tuple(repr(pdist)[1:9] for pdist in pdists[:-1]))
    print('-'*9*(len(pdists)+2))
    FORMATSTR = '%3d   %8.6f ' + '%8.6f '*(len(pdists)-1) + '| %8.6f'
    for val in vals:
        print(FORMATSTR % val)

    # Print the totals for each column (should all be 1.0)
    zvals = list(zip(*vals))
    sums = [sum(val) for val in zvals[1:]]
    print('-'*9*(len(pdists)+2))
    FORMATSTR = 'Total ' + '%8.6f '*(len(pdists)) + '| %8.6f'
    print(FORMATSTR % tuple(sums))
    print('='*9*(len(pdists)+2))

    # Display the distributions themselves, if they're short enough.
    if len("%s" % fdist1) < 70:
        print('  fdist1: %s' % fdist1)
        print('  fdist2: %s' % fdist2)
        print('  fdist3: %s' % fdist3)
    print()

    print('Generating:')
    for pdist in pdists:
        fdist = FreqDist(pdist.generate() for i in range(5000))
        print('%20s %s' % (pdist.__class__.__name__[:20], ("%s" % fdist)[:55]))
    print()

def gt_demo():
    from nltk import corpus
    emma_words = corpus.gutenberg.words('austen-emma.txt')
    fd = FreqDist(emma_words)
    sgt = SimpleGoodTuringProbDist(fd)
    print('%18s %8s  %14s' \
        % ("word", "freqency", "SimpleGoodTuring"))
    fd_keys_sorted=(key for key, value in sorted(fd.items(), key=lambda item: item[1], reverse=True))
    for key in fd_keys_sorted:
        print('%18s %8d  %14e' \
            % (key, fd[key], sgt.prob(key)))

if __name__ == '__main__':
    demo(6, 10)
    demo(5, 5000)
    gt_demo()

__all__ = ['ConditionalFreqDist', 'ConditionalProbDist',
           'ConditionalProbDistI', 'CrossValidationProbDist',
           'DictionaryConditionalProbDist', 'DictionaryProbDist', 'ELEProbDist',
           'FreqDist', 'SimpleGoodTuringProbDist', 'HeldoutProbDist',
           'ImmutableProbabilisticMixIn', 'LaplaceProbDist', 'LidstoneProbDist',
           'MLEProbDist', 'MutableProbDist', 'KneserNeyProbDist', 'ProbDistI', 'ProbabilisticMixIn',
           'UniformProbDist', 'WittenBellProbDist', 'add_logs',
           'log_likelihood', 'sum_logs', 'entropy']