This file is indexed.

/usr/lib/python3/dist-packages/nltk/text.py is in python3-nltk 3.2.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
# Natural Language Toolkit: Texts
#
# Copyright (C) 2001-2017 NLTK Project
# Author: Steven Bird <stevenbird1@gmail.com>
#         Edward Loper <edloper@gmail.com>
# URL: <http://nltk.org/>
# For license information, see LICENSE.TXT

"""
This module brings together a variety of NLTK functionality for
text analysis, and provides simple, interactive interfaces.
Functionality includes: concordancing, collocation discovery,
regular expression search over tokenized strings, and
distributional similarity.
"""
from __future__ import print_function, division, unicode_literals

from math import log
from collections import defaultdict, Counter
from functools import reduce
from itertools import islice
import re

from six import text_type

from nltk.probability import FreqDist, LidstoneProbDist
from nltk.probability import ConditionalFreqDist as CFD
from nltk.util import tokenwrap, LazyConcatenation
from nltk.metrics import f_measure, BigramAssocMeasures
from nltk.collocations import BigramCollocationFinder
from nltk.compat import python_2_unicode_compatible


class ContextIndex(object):
    """
    A bidirectional index between words and their 'contexts' in a text.
    The context of a word is usually defined to be the words that occur
    in a fixed window around the word; but other definitions may also
    be used by providing a custom context function.
    """
    @staticmethod
    def _default_context(tokens, i):
        """One left token and one right token, normalized to lowercase"""
        left = (tokens[i-1].lower() if i != 0 else '*START*')
        right = (tokens[i+1].lower() if i != len(tokens) - 1 else '*END*')
        return (left, right)

    def __init__(self, tokens, context_func=None, filter=None, key=lambda x:x):
        self._key = key
        self._tokens = tokens
        if context_func:
            self._context_func = context_func
        else:
            self._context_func = self._default_context
        if filter:
            tokens = [t for t in tokens if filter(t)]
        self._word_to_contexts = CFD((self._key(w), self._context_func(tokens, i))
                                     for i, w in enumerate(tokens))
        self._context_to_words = CFD((self._context_func(tokens, i), self._key(w))
                                     for i, w in enumerate(tokens))

    def tokens(self):
        """
        :rtype: list(str)
        :return: The document that this context index was
            created from.
        """
        return self._tokens

    def word_similarity_dict(self, word):
        """
        Return a dictionary mapping from words to 'similarity scores,'
        indicating how often these two words occur in the same
        context.
        """
        word = self._key(word)
        word_contexts = set(self._word_to_contexts[word])

        scores = {}
        for w, w_contexts in self._word_to_contexts.items():
            scores[w] = f_measure(word_contexts, set(w_contexts))

        return scores

    def similar_words(self, word, n=20):
        scores = defaultdict(int)
        for c in self._word_to_contexts[self._key(word)]:
            for w in self._context_to_words[c]:
                if w != word:
                    scores[w] += self._context_to_words[c][word] * self._context_to_words[c][w]
        return sorted(scores, key=scores.get, reverse=True)[:n]

    def common_contexts(self, words, fail_on_unknown=False):
        """
        Find contexts where the specified words can all appear; and
        return a frequency distribution mapping each context to the
        number of times that context was used.

        :param words: The words used to seed the similarity search
        :type words: str
        :param fail_on_unknown: If true, then raise a value error if
            any of the given words do not occur at all in the index.
        """
        words = [self._key(w) for w in words]
        contexts = [set(self._word_to_contexts[w]) for w in words]
        empty = [words[i] for i in range(len(words)) if not contexts[i]]
        common = reduce(set.intersection, contexts)
        if empty and fail_on_unknown:
            raise ValueError("The following word(s) were not found:",
                             " ".join(words))
        elif not common:
            # nothing in common -- just return an empty freqdist.
            return FreqDist()
        else:
            fd = FreqDist(c for w in words
                          for c in self._word_to_contexts[w]
                          if c in common)
            return fd

@python_2_unicode_compatible
class ConcordanceIndex(object):
    """
    An index that can be used to look up the offset locations at which
    a given word occurs in a document.
    """
    def __init__(self, tokens, key=lambda x:x):
        """
        Construct a new concordance index.

        :param tokens: The document (list of tokens) that this
            concordance index was created from.  This list can be used
            to access the context of a given word occurrence.
        :param key: A function that maps each token to a normalized
            version that will be used as a key in the index.  E.g., if
            you use ``key=lambda s:s.lower()``, then the index will be
            case-insensitive.
        """
        self._tokens = tokens
        """The document (list of tokens) that this concordance index
           was created from."""

        self._key = key
        """Function mapping each token to an index key (or None)."""

        self._offsets = defaultdict(list)
        """Dictionary mapping words (or keys) to lists of offset
           indices."""

        # Initialize the index (self._offsets)
        for index, word in enumerate(tokens):
            word = self._key(word)
            self._offsets[word].append(index)

    def tokens(self):
        """
        :rtype: list(str)
        :return: The document that this concordance index was
            created from.
        """
        return self._tokens

    def offsets(self, word):
        """
        :rtype: list(int)
        :return: A list of the offset positions at which the given
            word occurs.  If a key function was specified for the
            index, then given word's key will be looked up.
        """
        word = self._key(word)
        return self._offsets[word]

    def __repr__(self):
        return '<ConcordanceIndex for %d tokens (%d types)>' % (
            len(self._tokens), len(self._offsets))

    def print_concordance(self, word, width=75, lines=25):
        """
        Print a concordance for ``word`` with the specified context window.

        :param word: The target word
        :type word: str
        :param width: The width of each line, in characters (default=80)
        :type width: int
        :param lines: The number of lines to display (default=25)
        :type lines: int
        """
        half_width = (width - len(word) - 2) // 2
        context = width // 4 # approx number of words of context

        offsets = self.offsets(word)
        if offsets:
            lines = min(lines, len(offsets))
            print("Displaying %s of %s matches:" % (lines, len(offsets)))
            for i in offsets:
                if lines <= 0:
                    break
                left = (' ' * half_width +
                        ' '.join(self._tokens[i-context:i]))
                right = ' '.join(self._tokens[i+1:i+context])
                left = left[-half_width:]
                right = right[:half_width]
                print(left, self._tokens[i], right)
                lines -= 1
        else:
            print("No matches")

class TokenSearcher(object):
    """
    A class that makes it easier to use regular expressions to search
    over tokenized strings.  The tokenized string is converted to a
    string where tokens are marked with angle brackets -- e.g.,
    ``'<the><window><is><still><open>'``.  The regular expression
    passed to the ``findall()`` method is modified to treat angle
    brackets as non-capturing parentheses, in addition to matching the
    token boundaries; and to have ``'.'`` not match the angle brackets.
    """
    def __init__(self, tokens):
        self._raw = ''.join('<'+w+'>' for w in tokens)

    def findall(self, regexp):
        """
        Find instances of the regular expression in the text.
        The text is a list of tokens, and a regexp pattern to match
        a single token must be surrounded by angle brackets.  E.g.

        >>> from nltk.text import TokenSearcher
        >>> print('hack'); from nltk.book import text1, text5, text9
        hack...
        >>> text5.findall("<.*><.*><bro>")
        you rule bro; telling you bro; u twizted bro
        >>> text1.findall("<a>(<.*>)<man>")
        monied; nervous; dangerous; white; white; white; pious; queer; good;
        mature; white; Cape; great; wise; wise; butterless; white; fiendish;
        pale; furious; better; certain; complete; dismasted; younger; brave;
        brave; brave; brave
        >>> text9.findall("<th.*>{3,}")
        thread through those; the thought that; that the thing; the thing
        that; that that thing; through these than through; them that the;
        through the thick; them that they; thought that the

        :param regexp: A regular expression
        :type regexp: str
        """
        # preprocess the regular expression
        regexp = re.sub(r'\s', '', regexp)
        regexp = re.sub(r'<', '(?:<(?:', regexp)
        regexp = re.sub(r'>', ')>)', regexp)
        regexp = re.sub(r'(?<!\\)\.', '[^>]', regexp)

        # perform the search
        hits = re.findall(regexp, self._raw)

        # Sanity check
        for h in hits:
            if not h.startswith('<') and h.endswith('>'):
                raise ValueError('Bad regexp for TokenSearcher.findall')

        # postprocess the output
        hits = [h[1:-1].split('><') for h in hits]
        return hits


@python_2_unicode_compatible
class Text(object):
    """
    A wrapper around a sequence of simple (string) tokens, which is
    intended to support initial exploration of texts (via the
    interactive console).  Its methods perform a variety of analyses
    on the text's contexts (e.g., counting, concordancing, collocation
    discovery), and display the results.  If you wish to write a
    program which makes use of these analyses, then you should bypass
    the ``Text`` class, and use the appropriate analysis function or
    class directly instead.

    A ``Text`` is typically initialized from a given document or
    corpus.  E.g.:

    >>> import nltk.corpus
    >>> from nltk.text import Text
    >>> moby = Text(nltk.corpus.gutenberg.words('melville-moby_dick.txt'))

    """
    # This defeats lazy loading, but makes things faster.  This
    # *shouldn't* be necessary because the corpus view *should* be
    # doing intelligent caching, but without this it's running slow.
    # Look into whether the caching is working correctly.
    _COPY_TOKENS = True

    def __init__(self, tokens, name=None):
        """
        Create a Text object.

        :param tokens: The source text.
        :type tokens: sequence of str
        """
        if self._COPY_TOKENS:
            tokens = list(tokens)
        self.tokens = tokens

        if name:
            self.name = name
        elif ']' in tokens[:20]:
            end = tokens[:20].index(']')
            self.name = " ".join(text_type(tok) for tok in tokens[1:end])
        else:
            self.name = " ".join(text_type(tok) for tok in tokens[:8]) + "..."

    #////////////////////////////////////////////////////////////
    # Support item & slice access
    #////////////////////////////////////////////////////////////

    def __getitem__(self, i):
        if isinstance(i, slice):
            return self.tokens[i.start:i.stop]
        else:
            return self.tokens[i]

    def __len__(self):
        return len(self.tokens)

    #////////////////////////////////////////////////////////////
    # Interactive console methods
    #////////////////////////////////////////////////////////////

    def concordance(self, word, width=79, lines=25):
        """
        Print a concordance for ``word`` with the specified context window.
        Word matching is not case-sensitive.
        :seealso: ``ConcordanceIndex``
        """
        if '_concordance_index' not in self.__dict__:
            #print("Building index...")
            self._concordance_index = ConcordanceIndex(self.tokens,
                                                       key=lambda s:s.lower())

        self._concordance_index.print_concordance(word, width, lines)

    def collocations(self, num=20, window_size=2):
        """
        Print collocations derived from the text, ignoring stopwords.

        :seealso: find_collocations
        :param num: The maximum number of collocations to print.
        :type num: int
        :param window_size: The number of tokens spanned by a collocation (default=2)
        :type window_size: int
        """
        if not ('_collocations' in self.__dict__ and self._num == num and self._window_size == window_size):
            self._num = num
            self._window_size = window_size

            #print("Building collocations list")
            from nltk.corpus import stopwords
            ignored_words = stopwords.words('english')
            finder = BigramCollocationFinder.from_words(self.tokens, window_size)
            finder.apply_freq_filter(2)
            finder.apply_word_filter(lambda w: len(w) < 3 or w.lower() in ignored_words)
            bigram_measures = BigramAssocMeasures()
            self._collocations = finder.nbest(bigram_measures.likelihood_ratio, num)
        colloc_strings = [w1+' '+w2 for w1, w2 in self._collocations]
        print(tokenwrap(colloc_strings, separator="; "))

    def count(self, word):
        """
        Count the number of times this word appears in the text.
        """
        return self.tokens.count(word)

    def index(self, word):
        """
        Find the index of the first occurrence of the word in the text.
        """
        return self.tokens.index(word)

    def readability(self, method):
        # code from nltk_contrib.readability
        raise NotImplementedError

    def similar(self, word, num=20):
        """
        Distributional similarity: find other words which appear in the
        same contexts as the specified word; list most similar words first.

        :param word: The word used to seed the similarity search
        :type word: str
        :param num: The number of words to generate (default=20)
        :type num: int
        :seealso: ContextIndex.similar_words()
        """
        if '_word_context_index' not in self.__dict__:
            #print('Building word-context index...')
            self._word_context_index = ContextIndex(self.tokens,
                                                    filter=lambda x:x.isalpha(),
                                                    key=lambda s:s.lower())

#        words = self._word_context_index.similar_words(word, num)

        word = word.lower()
        wci = self._word_context_index._word_to_contexts
        if word in wci.conditions():
            contexts = set(wci[word])
            fd = Counter(w for w in wci.conditions() for c in wci[w]
                          if c in contexts and not w == word)
            words = [w for w, _ in fd.most_common(num)]
            print(tokenwrap(words))
        else:
            print("No matches")


    def common_contexts(self, words, num=20):
        """
        Find contexts where the specified words appear; list
        most frequent common contexts first.

        :param word: The word used to seed the similarity search
        :type word: str
        :param num: The number of words to generate (default=20)
        :type num: int
        :seealso: ContextIndex.common_contexts()
        """
        if '_word_context_index' not in self.__dict__:
            #print('Building word-context index...')
            self._word_context_index = ContextIndex(self.tokens,
                                                    key=lambda s:s.lower())

        try:
            fd = self._word_context_index.common_contexts(words, True)
            if not fd:
                print("No common contexts were found")
            else:
                ranked_contexts = [w for w, _ in fd.most_common(num)]
                print(tokenwrap(w1+"_"+w2 for w1,w2 in ranked_contexts))

        except ValueError as e:
            print(e)

    def dispersion_plot(self, words):
        """
        Produce a plot showing the distribution of the words through the text.
        Requires pylab to be installed.

        :param words: The words to be plotted
        :type words: list(str)
        :seealso: nltk.draw.dispersion_plot()
        """
        from nltk.draw import dispersion_plot
        dispersion_plot(self, words)

    def generate(self, words):
        """
        Issues a reminder to users following the book online
        """
        import warnings
        warnings.warn('The generate() method is no longer available.', DeprecationWarning)

    def plot(self, *args):
        """
        See documentation for FreqDist.plot()
        :seealso: nltk.prob.FreqDist.plot()
        """
        self.vocab().plot(*args)

    def vocab(self):
        """
        :seealso: nltk.prob.FreqDist
        """
        if "_vocab" not in self.__dict__:
            #print("Building vocabulary index...")
            self._vocab = FreqDist(self)
        return self._vocab

    def findall(self, regexp):
        """
        Find instances of the regular expression in the text.
        The text is a list of tokens, and a regexp pattern to match
        a single token must be surrounded by angle brackets.  E.g.

        >>> print('hack'); from nltk.book import text1, text5, text9
        hack...
        >>> text5.findall("<.*><.*><bro>")
        you rule bro; telling you bro; u twizted bro
        >>> text1.findall("<a>(<.*>)<man>")
        monied; nervous; dangerous; white; white; white; pious; queer; good;
        mature; white; Cape; great; wise; wise; butterless; white; fiendish;
        pale; furious; better; certain; complete; dismasted; younger; brave;
        brave; brave; brave
        >>> text9.findall("<th.*>{3,}")
        thread through those; the thought that; that the thing; the thing
        that; that that thing; through these than through; them that the;
        through the thick; them that they; thought that the

        :param regexp: A regular expression
        :type regexp: str
        """

        if "_token_searcher" not in self.__dict__:
            self._token_searcher = TokenSearcher(self)

        hits = self._token_searcher.findall(regexp)
        hits = [' '.join(h) for h in hits]
        print(tokenwrap(hits, "; "))

    #////////////////////////////////////////////////////////////
    # Helper Methods
    #////////////////////////////////////////////////////////////

    _CONTEXT_RE = re.compile('\w+|[\.\!\?]')
    def _context(self, tokens, i):
        """
        One left & one right token, both case-normalized.  Skip over
        non-sentence-final punctuation.  Used by the ``ContextIndex``
        that is created for ``similar()`` and ``common_contexts()``.
        """
        # Left context
        j = i-1
        while j>=0 and not self._CONTEXT_RE.match(tokens[j]):
            j -= 1
        left = (tokens[j] if j != 0 else '*START*')

        # Right context
        j = i+1
        while j<len(tokens) and not self._CONTEXT_RE.match(tokens[j]):
            j += 1
        right = (tokens[j] if j != len(tokens) else '*END*')

        return (left, right)

    #////////////////////////////////////////////////////////////
    # String Display
    #////////////////////////////////////////////////////////////

    def __str__(self):
        return '<Text: %s>' % self.name

    def __repr__(self):
        return '<Text: %s>' % self.name


# Prototype only; this approach will be slow to load
class TextCollection(Text):
    """A collection of texts, which can be loaded with list of texts, or
    with a corpus consisting of one or more texts, and which supports
    counting, concordancing, collocation discovery, etc.  Initialize a
    TextCollection as follows:

    >>> import nltk.corpus
    >>> from nltk.text import TextCollection
    >>> print('hack'); from nltk.book import text1, text2, text3
    hack...
    >>> gutenberg = TextCollection(nltk.corpus.gutenberg)
    >>> mytexts = TextCollection([text1, text2, text3])

    Iterating over a TextCollection produces all the tokens of all the
    texts in order.
    """
    def __init__(self, source):
        if hasattr(source, 'words'): # bridge to the text corpus reader
            source = [source.words(f) for f in source.fileids()]

        self._texts = source
        Text.__init__(self, LazyConcatenation(source))
        self._idf_cache = {}

    def tf(self, term, text):
        """ The frequency of the term in text. """
        return text.count(term) / len(text)

    def idf(self, term):
        """ The number of texts in the corpus divided by the
        number of texts that the term appears in.
        If a term does not appear in the corpus, 0.0 is returned. """
        # idf values are cached for performance.
        idf = self._idf_cache.get(term)
        if idf is None:
            matches = len([True for text in self._texts if term in text])
            # FIXME Should this raise some kind of error instead?
            idf = (log(len(self._texts) / matches) if matches else 0.0)
            self._idf_cache[term] = idf
        return idf

    def tf_idf(self, term, text):
        return self.tf(term, text) * self.idf(term)

def demo():
    from nltk.corpus import brown
    text = Text(brown.words(categories='news'))
    print(text)
    print()
    print("Concordance:")
    text.concordance('news')
    print()
    print("Distributionally similar words:")
    text.similar('news')
    print()
    print("Collocations:")
    text.collocations()
    print()
    #print("Automatically generated text:")
    #text.generate()
    #print()
    print("Dispersion plot:")
    text.dispersion_plot(['news', 'report', 'said', 'announced'])
    print()
    print("Vocabulary plot:")
    text.plot(50)
    print()
    print("Indexing:")
    print("text[3]:", text[3])
    print("text[3:5]:", text[3:5])
    print("text.vocab()['news']:", text.vocab()['news'])

if __name__ == '__main__':
    demo()

__all__ = ["ContextIndex",
           "ConcordanceIndex",
           "TokenSearcher",
           "Text",
           "TextCollection"]