This file is indexed.

/usr/lib/python3/dist-packages/nltk/tgrep.py is in python3-nltk 3.2.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Natural Language Toolkit: TGrep search
#
# Copyright (C) 2001-2017 NLTK Project
# Author: Will Roberts <wildwilhelm@gmail.com>
# URL: <http://nltk.org/>
# For license information, see LICENSE.TXT

'''
============================================
 TGrep search implementation for NLTK trees
============================================

This module supports TGrep2 syntax for matching parts of NLTK Trees.
Note that many tgrep operators require the tree passed to be a
``ParentedTree``.

External links:

- `Tgrep tutorial <http://www.stanford.edu/dept/linguistics/corpora/cas-tut-tgrep.html>`_
- `Tgrep2 manual <http://tedlab.mit.edu/~dr/Tgrep2/tgrep2.pdf>`_
- `Tgrep2 source <http://tedlab.mit.edu/~dr/Tgrep2/>`_

Usage
=====

>>> from nltk.tree import ParentedTree
>>> from nltk.tgrep import tgrep_nodes, tgrep_positions
>>> tree = ParentedTree.fromstring('(S (NP (DT the) (JJ big) (NN dog)) (VP bit) (NP (DT a) (NN cat)))')
>>> list(tgrep_nodes('NN', [tree]))
[[ParentedTree('NN', ['dog']), ParentedTree('NN', ['cat'])]]
>>> list(tgrep_positions('NN', [tree]))
[[(0, 2), (2, 1)]]
>>> list(tgrep_nodes('DT', [tree]))
[[ParentedTree('DT', ['the']), ParentedTree('DT', ['a'])]]
>>> list(tgrep_nodes('DT $ JJ', [tree]))
[[ParentedTree('DT', ['the'])]]

This implementation adds syntax to select nodes based on their NLTK
tree position.  This syntax is ``N`` plus a Python tuple representing
the tree position.  For instance, ``N()``, ``N(0,)``, ``N(0,0)`` are
valid node selectors.  Example:

>>> tree = ParentedTree.fromstring('(S (NP (DT the) (JJ big) (NN dog)) (VP bit) (NP (DT a) (NN cat)))')
>>> tree[0,0]
ParentedTree('DT', ['the'])
>>> tree[0,0].treeposition()
(0, 0)
>>> list(tgrep_nodes('N(0,0)', [tree]))
[[ParentedTree('DT', ['the'])]]

Caveats:
========

- Link modifiers: "?" and "=" are not implemented.
- Tgrep compatibility: Using "@" for "!", "{" for "<", "}" for ">" are
  not implemented.
- The "=" and "~" links are not implemented.

Known Issues:
=============

- There are some issues with link relations involving leaf nodes
  (which are represented as bare strings in NLTK trees).  For
  instance, consider the tree::

      (S (A x))

  The search string ``* !>> S`` should select all nodes which are not
  dominated in some way by an ``S`` node (i.e., all nodes which are
  not descendants of an ``S``).  Clearly, in this tree, the only node
  which fulfills this criterion is the top node (since it is not
  dominated by anything).  However, the code here will find both the
  top node and the leaf node ``x``.  This is because we cannot recover
  the parent of the leaf, since it is stored as a bare string.

  A possible workaround, when performing this kind of search, would be
  to filter out all leaf nodes.

Implementation notes
====================

This implementation is (somewhat awkwardly) based on lambda functions
which are predicates on a node.  A predicate is a function which is
either True or False; using a predicate function, we can identify sets
of nodes with particular properties.  A predicate function, could, for
instance, return True only if a particular node has a label matching a
particular regular expression, and has a daughter node which has no
sisters.  Because tgrep2 search strings can do things statefully (such
as substituting in macros, and binding nodes with node labels), the
actual predicate function is declared with three arguments::

    pred = lambda n, m, l: return True # some logic here

``n``
    is a node in a tree; this argument must always be given

``m``
    contains a dictionary, mapping macro names onto predicate functions

``l``
    is a dictionary to map node labels onto nodes in the tree

``m`` and ``l`` are declared to default to ``None``, and so need not be
specified in a call to a predicate.  Predicates which call other
predicates must always pass the value of these arguments on.  The
top-level predicate (constructed by ``_tgrep_exprs_action``) binds the
macro definitions to ``m`` and initialises ``l`` to an empty dictionary.
'''

from __future__ import absolute_import, print_function, unicode_literals

import functools
import re

from six import binary_type, text_type

try:
    import pyparsing
except ImportError:
    print('Warning: nltk.tgrep will not work without the `pyparsing` package')
    print('installed.')

import nltk.tree

class TgrepException(Exception):
    '''Tgrep exception type.'''
    pass

def ancestors(node):
    '''
    Returns the list of all nodes dominating the given tree node.
    This method will not work with leaf nodes, since there is no way
    to recover the parent.
    '''
    results = []
    try:
        current = node.parent()
    except AttributeError:
        # if node is a leaf, we cannot retrieve its parent
        return results
    while current:
        results.append(current)
        current = current.parent()
    return results

def unique_ancestors(node):
    '''
    Returns the list of all nodes dominating the given node, where
    there is only a single path of descent.
    '''
    results = []
    try:
        current = node.parent()
    except AttributeError:
        # if node is a leaf, we cannot retrieve its parent
        return results
    while current and len(current) == 1:
        results.append(current)
        current = current.parent()
    return results

def _descendants(node):
    '''
    Returns the list of all nodes which are descended from the given
    tree node in some way.
    '''
    try:
        treepos = node.treepositions()
    except AttributeError:
        return []
    return [node[x] for x in treepos[1:]]

def _leftmost_descendants(node):
    '''
    Returns the set of all nodes descended in some way through
    left branches from this node.
    '''
    try:
        treepos = node.treepositions()
    except AttributeError:
        return []
    return [node[x] for x in treepos[1:] if all(y == 0 for y in x)]

def _rightmost_descendants(node):
    '''
    Returns the set of all nodes descended in some way through
    right branches from this node.
    '''
    try:
        rightmost_leaf = max(node.treepositions())
    except AttributeError:
        return []
    return [node[rightmost_leaf[:i]] for i in range(1, len(rightmost_leaf) + 1)]

def _istree(obj):
    '''Predicate to check whether `obj` is a nltk.tree.Tree.'''
    return isinstance(obj, nltk.tree.Tree)

def _unique_descendants(node):
    '''
    Returns the list of all nodes descended from the given node, where
    there is only a single path of descent.
    '''
    results = []
    current = node
    while current and _istree(current) and len(current) == 1:
        current = current[0]
        results.append(current)
    return results

def _before(node):
    '''
    Returns the set of all nodes that are before the given node.
    '''
    try:
        pos = node.treeposition()
        tree = node.root()
    except AttributeError:
        return []
    return [tree[x] for x in tree.treepositions()
            if x[:len(pos)] < pos[:len(x)]]

def _immediately_before(node):
    '''
    Returns the set of all nodes that are immediately before the given
    node.

    Tree node A immediately precedes node B if the last terminal
    symbol (word) produced by A immediately precedes the first
    terminal symbol produced by B.
    '''
    try:
        pos = node.treeposition()
        tree = node.root()
    except AttributeError:
        return []
    # go "upwards" from pos until there is a place we can go to the left
    idx = len(pos) - 1
    while 0 <= idx and pos[idx] == 0:
        idx -= 1
    if idx < 0:
        return []
    pos = list(pos[:idx + 1])
    pos[-1] -= 1
    before = tree[pos]
    return [before] + _rightmost_descendants(before)

def _after(node):
    '''
    Returns the set of all nodes that are after the given node.
    '''
    try:
        pos = node.treeposition()
        tree = node.root()
    except AttributeError:
        return []
    return [tree[x] for x in tree.treepositions()
            if x[:len(pos)] > pos[:len(x)]]

def _immediately_after(node):
    '''
    Returns the set of all nodes that are immediately after the given
    node.

    Tree node A immediately follows node B if the first terminal
    symbol (word) produced by A immediately follows the last
    terminal symbol produced by B.
    '''
    try:
        pos = node.treeposition()
        tree = node.root()
        current = node.parent()
    except AttributeError:
        return []
    # go "upwards" from pos until there is a place we can go to the
    # right
    idx = len(pos) - 1
    while 0 <= idx and pos[idx] == len(current) - 1:
        idx -= 1
        current = current.parent()
    if idx < 0:
        return []
    pos = list(pos[:idx + 1])
    pos[-1] += 1
    after = tree[pos]
    return [after] + _leftmost_descendants(after)

def _tgrep_node_literal_value(node):
    '''
    Gets the string value of a given parse tree node, for comparison
    using the tgrep node literal predicates.
    '''
    return (node.label() if _istree(node) else text_type(node))

def _tgrep_macro_use_action(_s, _l, tokens):
    '''
    Builds a lambda function which looks up the macro name used.
    '''
    assert len(tokens) == 1
    assert tokens[0][0] == '@'
    macro_name = tokens[0][1:]
    def macro_use(n, m=None, l=None):
        if m is None or macro_name not in m:
            raise TgrepException('macro {0} not defined'.format(macro_name))
        return m[macro_name](n, m, l)
    return macro_use

def _tgrep_node_action(_s, _l, tokens):
    '''
    Builds a lambda function representing a predicate on a tree node
    depending on the name of its node.
    '''
    # print 'node tokens: ', tokens
    if tokens[0] == "'":
        # strip initial apostrophe (tgrep2 print command)
        tokens = tokens[1:]
    if len(tokens) > 1:
        # disjunctive definition of a node name
        assert list(set(tokens[1::2])) == ['|']
        # recursively call self to interpret each node name definition
        tokens = [_tgrep_node_action(None, None, [node])
                  for node in tokens[::2]]
        # capture tokens and return the disjunction
        return (lambda t: lambda n, m=None, l=None: any(f(n, m, l) for f in t))(tokens)
    else:
        if hasattr(tokens[0], '__call__'):
            # this is a previously interpreted parenthetical node
            # definition (lambda function)
            return tokens[0]
        elif tokens[0] == '*' or tokens[0] == '__':
            return lambda n, m=None, l=None: True
        elif tokens[0].startswith('"'):
            assert tokens[0].endswith('"')
            node_lit = tokens[0][1:-1].replace('\\"', '"').replace('\\\\', '\\')
            return (lambda s: lambda n, m=None, l=None: _tgrep_node_literal_value(n) == s)(node_lit)
        elif tokens[0].startswith('/'):
            assert tokens[0].endswith('/')
            node_lit = tokens[0][1:-1]
            return (lambda r: lambda n, m=None, l=None:
                    r.search(_tgrep_node_literal_value(n)))(re.compile(node_lit))
        elif tokens[0].startswith('i@'):
            node_func = _tgrep_node_action(_s, _l, [tokens[0][2:].lower()])
            return (lambda f: lambda n, m=None, l=None:
                    f(_tgrep_node_literal_value(n).lower()))(node_func)
        else:
            return (lambda s: lambda n, m=None, l=None:
                    _tgrep_node_literal_value(n) == s)(tokens[0])

def _tgrep_parens_action(_s, _l, tokens):
    '''
    Builds a lambda function representing a predicate on a tree node
    from a parenthetical notation.
    '''
    # print 'parenthetical tokens: ', tokens
    assert len(tokens) == 3
    assert tokens[0] == '('
    assert tokens[2] == ')'
    return tokens[1]

def _tgrep_nltk_tree_pos_action(_s, _l, tokens):
    '''
    Builds a lambda function representing a predicate on a tree node
    which returns true if the node is located at a specific tree
    position.
    '''
    # recover the tuple from the parsed sting
    node_tree_position = tuple(int(x) for x in tokens if x.isdigit())
    # capture the node's tree position
    return (lambda i: lambda n, m=None, l=None: (hasattr(n, 'treeposition') and
                                                 n.treeposition() == i))(node_tree_position)

def _tgrep_relation_action(_s, _l, tokens):
    '''
    Builds a lambda function representing a predicate on a tree node
    depending on its relation to other nodes in the tree.
    '''
    # print 'relation tokens: ', tokens
    # process negation first if needed
    negated = False
    if tokens[0] == '!':
        negated = True
        tokens = tokens[1:]
    if tokens[0] == '[':
        # process square-bracketed relation expressions
        assert len(tokens) == 3
        assert tokens[2] == ']'
        retval = tokens[1]
    else:
        # process operator-node relation expressions
        assert len(tokens) == 2
        operator, predicate = tokens
        # A < B       A is the parent of (immediately dominates) B.
        if operator == '<':
            retval = lambda n, m=None, l=None: (_istree(n) and
                                                any(predicate(x, m, l) for x in n))
        # A > B       A is the child of B.
        elif operator == '>':
            retval = lambda n, m=None, l=None: (hasattr(n, 'parent') and
                                                bool(n.parent()) and
                                                predicate(n.parent(), m, l))
        # A <, B      Synonymous with A <1 B.
        elif operator == '<,' or operator == '<1':
            retval = lambda n, m=None, l=None: (_istree(n) and
                                                bool(list(n)) and
                                                predicate(n[0], m, l))
        # A >, B      Synonymous with A >1 B.
        elif operator == '>,' or operator == '>1':
            retval = lambda n, m=None, l=None: (hasattr(n, 'parent') and
                                                bool(n.parent()) and
                                                (n is n.parent()[0]) and
                                                predicate(n.parent(), m, l))
        # A <N B      B is the Nth child of A (the first child is <1).
        elif operator[0] == '<' and operator[1:].isdigit():
            idx = int(operator[1:])
            # capture the index parameter
            retval = (lambda i: lambda n, m=None, l=None: (_istree(n) and
                                                           bool(list(n)) and
                                                           0 <= i < len(n) and
                                                           predicate(n[i], m, l)))(idx - 1)
        # A >N B      A is the Nth child of B (the first child is >1).
        elif operator[0] == '>' and operator[1:].isdigit():
            idx = int(operator[1:])
            # capture the index parameter
            retval = (lambda i: lambda n, m=None, l=None: (hasattr(n, 'parent') and
                                                           bool(n.parent()) and
                                                           0 <= i < len(n.parent()) and
                                                           (n is n.parent()[i]) and
                                                           predicate(n.parent(), m, l)))(idx - 1)
        # A <' B      B is the last child of A (also synonymous with A <-1 B).
        # A <- B      B is the last child of A (synonymous with A <-1 B).
        elif operator == '<\'' or operator == '<-' or operator == '<-1':
            retval = lambda n, m=None, l=None: (_istree(n) and bool(list(n))
                                                and predicate(n[-1], m, l))
        # A >' B      A is the last child of B (also synonymous with A >-1 B).
        # A >- B      A is the last child of B (synonymous with A >-1 B).
        elif operator == '>\'' or operator == '>-' or operator == '>-1':
            retval = lambda n, m=None, l=None: (hasattr(n, 'parent') and
                                                bool(n.parent()) and
                                                (n is n.parent()[-1]) and
                                                predicate(n.parent(), m, l))
        # A <-N B 	  B is the N th-to-last child of A (the last child is <-1).
        elif operator[:2] == '<-' and operator[2:].isdigit():
            idx = -int(operator[2:])
            # capture the index parameter
            retval = (lambda i: lambda n, m=None, l=None: (_istree(n) and
                                                           bool(list(n)) and
                                                           0 <= (i + len(n)) < len(n) and
                                                           predicate(n[i + len(n)], m, l)))(idx)
        # A >-N B 	  A is the N th-to-last child of B (the last child is >-1).
        elif operator[:2] == '>-' and operator[2:].isdigit():
            idx = -int(operator[2:])
            # capture the index parameter
            retval = (lambda i: lambda n, m=None, l=None:
                          (hasattr(n, 'parent') and
                           bool(n.parent()) and
                           0 <= (i + len(n.parent())) < len(n.parent()) and
                           (n is n.parent()[i + len(n.parent())]) and
                           predicate(n.parent(), m, l)))(idx)
        # A <: B      B is the only child of A
        elif operator == '<:':
            retval = lambda n, m=None, l=None: (_istree(n) and
                                                len(n) == 1 and
                                                predicate(n[0], m, l))
        # A >: B      A is the only child of B.
        elif operator == '>:':
            retval = lambda n, m=None, l=None: (hasattr(n, 'parent') and
                                                bool(n.parent()) and
                                                len(n.parent()) == 1 and
                                                predicate(n.parent(), m, l))
        # A << B      A dominates B (A is an ancestor of B).
        elif operator == '<<':
            retval = lambda n, m=None, l=None: (_istree(n) and
                                                any(predicate(x, m, l) for x in _descendants(n)))
        # A >> B      A is dominated by B (A is a descendant of B).
        elif operator == '>>':
            retval = lambda n, m=None, l=None: any(predicate(x, m, l) for x in ancestors(n))
        # A <<, B     B is a left-most descendant of A.
        elif operator == '<<,' or operator == '<<1':
            retval = lambda n, m=None, l=None: (_istree(n) and
                                                any(predicate(x, m, l)
                                                    for x in _leftmost_descendants(n)))
        # A >>, B     A is a left-most descendant of B.
        elif operator == '>>,':
            retval = lambda n, m=None, l=None: any((predicate(x, m, l) and
                                                    n in _leftmost_descendants(x))
                                                   for x in ancestors(n))
        # A <<' B     B is a right-most descendant of A.
        elif operator == '<<\'':
            retval = lambda n, m=None, l=None: (_istree(n) and
                                                any(predicate(x, m, l)
                                                    for x in _rightmost_descendants(n)))
        # A >>' B     A is a right-most descendant of B.
        elif operator == '>>\'':
            retval = lambda n, m=None, l=None: any((predicate(x, m, l) and
                                                    n in _rightmost_descendants(x))
                                                   for x in ancestors(n))
        # A <<: B     There is a single path of descent from A and B is on it.
        elif operator == '<<:':
            retval = lambda n, m=None, l=None: (_istree(n) and
                                                any(predicate(x, m, l)
                                                    for x in _unique_descendants(n)))
        # A >>: B     There is a single path of descent from B and A is on it.
        elif operator == '>>:':
            retval = lambda n, m=None, l=None: any(predicate(x, m, l) for x in unique_ancestors(n))
        # A . B       A immediately precedes B.
        elif operator == '.':
            retval = lambda n, m=None, l=None: any(predicate(x, m, l)
                                                   for x in _immediately_after(n))
        # A , B       A immediately follows B.
        elif operator == ',':
            retval = lambda n, m=None, l=None: any(predicate(x, m, l)
                                                   for x in _immediately_before(n))
        # A .. B      A precedes B.
        elif operator == '..':
            retval = lambda n, m=None, l=None: any(predicate(x, m, l) for x in _after(n))
        # A ,, B      A follows B.
        elif operator == ',,':
            retval = lambda n, m=None, l=None: any(predicate(x, m, l) for x in _before(n))
        # A $ B       A is a sister of B (and A != B).
        elif operator == '$' or operator == '%':
            retval = lambda n, m=None, l=None: (hasattr(n, 'parent') and
                                                bool(n.parent()) and
                                                any(predicate(x, m, l)
                                                    for x in n.parent() if x is not n))
        # A $. B      A is a sister of and immediately precedes B.
        elif operator == '$.' or operator == '%.':
            retval = lambda n, m=None, l=None: (hasattr(n, 'right_sibling') and
                                                bool(n.right_sibling()) and
                                                predicate(n.right_sibling(), m, l))
        # A $, B      A is a sister of and immediately follows B.
        elif operator == '$,' or operator == '%,':
            retval = lambda n, m=None, l=None: (hasattr(n, 'left_sibling') and
                                                bool(n.left_sibling()) and
                                                predicate(n.left_sibling(), m, l))
        # A $.. B     A is a sister of and precedes B.
        elif operator == '$..' or operator == '%..':
            retval = lambda n, m=None, l=None: (hasattr(n, 'parent') and
                                                hasattr(n, 'parent_index') and
                                                bool(n.parent()) and
                                                any(predicate(x, m, l) for x in
                                                    n.parent()[n.parent_index() + 1:]))
        # A $,, B     A is a sister of and follows B.
        elif operator == '$,,' or operator == '%,,':
            retval = lambda n, m=None, l=None: (hasattr(n, 'parent') and
                                                hasattr(n, 'parent_index') and
                                                bool(n.parent()) and
                                                any(predicate(x, m, l) for x in
                                                    n.parent()[:n.parent_index()]))
        else:
            raise TgrepException(
                'cannot interpret tgrep operator "{0}"'.format(operator))
    # now return the built function
    if negated:
        return (lambda r: (lambda n, m=None, l=None: not r(n, m, l)))(retval)
    else:
        return retval

def _tgrep_conjunction_action(_s, _l, tokens, join_char = '&'):
    '''
    Builds a lambda function representing a predicate on a tree node
    from the conjunction of several other such lambda functions.

    This is prototypically called for expressions like
    (`tgrep_rel_conjunction`)::

        < NP & < AP < VP

    where tokens is a list of predicates representing the relations
    (`< NP`, `< AP`, and `< VP`), possibly with the character `&`
    included (as in the example here).

    This is also called for expressions like (`tgrep_node_expr2`)::

        NP < NN
        S=s < /NP/=n : s < /VP/=v : n .. v

    tokens[0] is a tgrep_expr predicate; tokens[1:] are an (optional)
    list of segmented patterns (`tgrep_expr_labeled`, processed by
    `_tgrep_segmented_pattern_action`).
    '''
    # filter out the ampersand
    tokens = [x for x in tokens if x != join_char]
    # print 'relation conjunction tokens: ', tokens
    if len(tokens) == 1:
        return tokens[0]
    else:
        return (lambda ts: lambda n, m=None, l=None: all(predicate(n, m, l)
                                                         for predicate in ts))(tokens)

def _tgrep_segmented_pattern_action(_s, _l, tokens):
    '''
    Builds a lambda function representing a segmented pattern.

    Called for expressions like (`tgrep_expr_labeled`)::

        =s .. =v < =n

    This is a segmented pattern, a tgrep2 expression which begins with
    a node label.

    The problem is that for segemented_pattern_action (': =v < =s'),
    the first element (in this case, =v) is specifically selected by
    virtue of matching a particular node in the tree; to retrieve
    the node, we need the label, not a lambda function.  For node
    labels inside a tgrep_node_expr, we need a lambda function which
    returns true if the node visited is the same as =v.

    We solve this by creating two copies of a node_label_use in the
    grammar; the label use inside a tgrep_expr_labeled has a separate
    parse action to the pred use inside a node_expr.  See
    `_tgrep_node_label_use_action` and
    `_tgrep_node_label_pred_use_action`.
    '''
    # tokens[0] is a string containing the node label
    node_label = tokens[0]
    # tokens[1:] is an (optional) list of predicates which must all
    # hold of the bound node
    reln_preds = tokens[1:]
    def pattern_segment_pred(n, m=None, l=None):
        '''This predicate function ignores its node argument.'''
        # look up the bound node using its label
        if l is None or node_label not in l:
            raise TgrepException('node_label ={0} not bound in pattern'.format(
                node_label))
        node = l[node_label]
        # match the relation predicates against the node
        return all(pred(node, m, l) for pred in reln_preds)
    return pattern_segment_pred

def _tgrep_node_label_use_action(_s, _l, tokens):
    '''
    Returns the node label used to begin a tgrep_expr_labeled.  See
    `_tgrep_segmented_pattern_action`.

    Called for expressions like (`tgrep_node_label_use`)::

        =s

    when they appear as the first element of a `tgrep_expr_labeled`
    expression (see `_tgrep_segmented_pattern_action`).

    It returns the node label.
    '''
    assert len(tokens) == 1
    assert tokens[0].startswith('=')
    return tokens[0][1:]

def _tgrep_node_label_pred_use_action(_s, _l, tokens):
    '''
    Builds a lambda function representing a predicate on a tree node
    which describes the use of a previously bound node label.

    Called for expressions like (`tgrep_node_label_use_pred`)::

        =s

    when they appear inside a tgrep_node_expr (for example, inside a
    relation).  The predicate returns true if and only if its node
    argument is identical the the node looked up in the node label
    dictionary using the node's label.
    '''
    assert len(tokens) == 1
    assert tokens[0].startswith('=')
    node_label = tokens[0][1:]
    def node_label_use_pred(n, m=None, l=None):
        # look up the bound node using its label
        if l is None or node_label not in l:
            raise TgrepException('node_label ={0} not bound in pattern'.format(
                node_label))
        node = l[node_label]
        # truth means the given node is this node
        return n is node
    return node_label_use_pred

def _tgrep_bind_node_label_action(_s, _l, tokens):
    '''
    Builds a lambda function representing a predicate on a tree node
    which can optionally bind a matching node into the tgrep2 string's
    label_dict.

    Called for expressions like (`tgrep_node_expr2`)::

        /NP/
        @NP=n
    '''
    # tokens[0] is a tgrep_node_expr
    if len(tokens) == 1:
        return tokens[0]
    else:
        # if present, tokens[1] is the character '=', and tokens[2] is
        # a tgrep_node_label, a string value containing the node label
        assert len(tokens) == 3
        assert tokens[1] == '='
        node_pred = tokens[0]
        node_label = tokens[2]
        def node_label_bind_pred(n, m=None, l=None):
            if node_pred(n, m, l):
                # bind `n` into the dictionary `l`
                if l is None:
                    raise TgrepException(
                        'cannot bind node_label {0}: label_dict is None'.format(
                            node_label))
                l[node_label] = n
                return True
            else:
                return False
        return node_label_bind_pred

def _tgrep_rel_disjunction_action(_s, _l, tokens):
    '''
    Builds a lambda function representing a predicate on a tree node
    from the disjunction of several other such lambda functions.
    '''
    # filter out the pipe
    tokens = [x for x in tokens if x != '|']
    # print 'relation disjunction tokens: ', tokens
    if len(tokens) == 1:
        return tokens[0]
    elif len(tokens) == 2:
        return (lambda a, b: lambda n, m=None, l=None:
                a(n, m, l) or b(n, m, l))(tokens[0], tokens[1])

def _macro_defn_action(_s, _l, tokens):
    '''
    Builds a dictionary structure which defines the given macro.
    '''
    assert len(tokens) == 3
    assert tokens[0] == '@'
    return {tokens[1]: tokens[2]}

def _tgrep_exprs_action(_s, _l, tokens):
    '''
    This is the top-lebel node in a tgrep2 search string; the
    predicate function it returns binds together all the state of a
    tgrep2 search string.

    Builds a lambda function representing a predicate on a tree node
    from the disjunction of several tgrep expressions.  Also handles
    macro definitions and macro name binding, and node label
    definitions and node label binding.
    '''
    if len(tokens) == 1:
        return lambda n, m=None, l=None: tokens[0](n, None, {})
    # filter out all the semicolons
    tokens = [x for x in tokens if x != ';']
    # collect all macro definitions
    macro_dict = {}
    macro_defs = [tok for tok in tokens if isinstance(tok, dict)]
    for macro_def in macro_defs:
        macro_dict.update(macro_def)
    # collect all tgrep expressions
    tgrep_exprs = [tok for tok in tokens if not isinstance(tok, dict)]
    # create a new scope for the node label dictionary
    def top_level_pred(n, m=macro_dict, l=None):
        label_dict = {}
        # bind macro definitions and OR together all tgrep_exprs
        return any(predicate(n, m, label_dict) for predicate in tgrep_exprs)
    return top_level_pred

def _build_tgrep_parser(set_parse_actions = True):
    '''
    Builds a pyparsing-based parser object for tokenizing and
    interpreting tgrep search strings.
    '''
    tgrep_op = (pyparsing.Optional('!') +
                pyparsing.Regex('[$%,.<>][%,.<>0-9-\':]*'))
    tgrep_qstring = pyparsing.QuotedString(quoteChar='"', escChar='\\',
                                           unquoteResults=False)
    tgrep_node_regex = pyparsing.QuotedString(quoteChar='/', escChar='\\',
                                              unquoteResults=False)
    tgrep_qstring_icase = pyparsing.Regex(
        'i@\\"(?:[^"\\n\\r\\\\]|(?:\\\\.))*\\"')
    tgrep_node_regex_icase = pyparsing.Regex(
        'i@\\/(?:[^/\\n\\r\\\\]|(?:\\\\.))*\\/')
    tgrep_node_literal = pyparsing.Regex('[^][ \r\t\n;:.,&|<>()$!@%\'^=]+')
    tgrep_expr = pyparsing.Forward()
    tgrep_relations = pyparsing.Forward()
    tgrep_parens = pyparsing.Literal('(') + tgrep_expr + ')'
    tgrep_nltk_tree_pos = (
        pyparsing.Literal('N(') +
        pyparsing.Optional(pyparsing.Word(pyparsing.nums) + ',' +
                           pyparsing.Optional(pyparsing.delimitedList(
                    pyparsing.Word(pyparsing.nums), delim=',') +
                                              pyparsing.Optional(','))) + ')')
    tgrep_node_label = pyparsing.Regex('[A-Za-z0-9]+')
    tgrep_node_label_use = pyparsing.Combine('=' + tgrep_node_label)
    # see _tgrep_segmented_pattern_action
    tgrep_node_label_use_pred = tgrep_node_label_use.copy()
    macro_name = pyparsing.Regex('[^];:.,&|<>()[$!@%\'^=\r\t\n ]+')
    macro_name.setWhitespaceChars('')
    macro_use = pyparsing.Combine('@' + macro_name)
    tgrep_node_expr = (tgrep_node_label_use_pred |
                       macro_use |
                       tgrep_nltk_tree_pos |
                       tgrep_qstring_icase |
                       tgrep_node_regex_icase |
                       tgrep_qstring |
                       tgrep_node_regex |
                       '*' |
                       tgrep_node_literal)
    tgrep_node_expr2 = ((tgrep_node_expr +
                         pyparsing.Literal('=').setWhitespaceChars('') +
                         tgrep_node_label.copy().setWhitespaceChars('')) |
                        tgrep_node_expr)
    tgrep_node = (tgrep_parens |
                  (pyparsing.Optional("'") +
                   tgrep_node_expr2 +
                   pyparsing.ZeroOrMore("|" + tgrep_node_expr)))
    tgrep_brackets = pyparsing.Optional('!') + '[' + tgrep_relations + ']'
    tgrep_relation = tgrep_brackets | (tgrep_op + tgrep_node)
    tgrep_rel_conjunction = pyparsing.Forward()
    tgrep_rel_conjunction << (tgrep_relation +
                              pyparsing.ZeroOrMore(pyparsing.Optional('&') +
                                                   tgrep_rel_conjunction))
    tgrep_relations << tgrep_rel_conjunction + pyparsing.ZeroOrMore(
        "|" + tgrep_relations)
    tgrep_expr << tgrep_node + pyparsing.Optional(tgrep_relations)
    tgrep_expr_labeled = tgrep_node_label_use + pyparsing.Optional(tgrep_relations)
    tgrep_expr2 = tgrep_expr + pyparsing.ZeroOrMore(':' + tgrep_expr_labeled)
    macro_defn = (pyparsing.Literal('@') +
                  pyparsing.White().suppress() +
                  macro_name +
                  tgrep_expr2)
    tgrep_exprs = (pyparsing.Optional(macro_defn + pyparsing.ZeroOrMore(';' + macro_defn) + ';') +
                   tgrep_expr2 +
                   pyparsing.ZeroOrMore(';' + (macro_defn | tgrep_expr2)) +
                   pyparsing.ZeroOrMore(';').suppress())
    if set_parse_actions:
        tgrep_node_label_use.setParseAction(_tgrep_node_label_use_action)
        tgrep_node_label_use_pred.setParseAction(_tgrep_node_label_pred_use_action)
        macro_use.setParseAction(_tgrep_macro_use_action)
        tgrep_node.setParseAction(_tgrep_node_action)
        tgrep_node_expr2.setParseAction(_tgrep_bind_node_label_action)
        tgrep_parens.setParseAction(_tgrep_parens_action)
        tgrep_nltk_tree_pos.setParseAction(_tgrep_nltk_tree_pos_action)
        tgrep_relation.setParseAction(_tgrep_relation_action)
        tgrep_rel_conjunction.setParseAction(_tgrep_conjunction_action)
        tgrep_relations.setParseAction(_tgrep_rel_disjunction_action)
        macro_defn.setParseAction(_macro_defn_action)
        # the whole expression is also the conjunction of two
        # predicates: the first node predicate, and the remaining
        # relation predicates
        tgrep_expr.setParseAction(_tgrep_conjunction_action)
        tgrep_expr_labeled.setParseAction(_tgrep_segmented_pattern_action)
        tgrep_expr2.setParseAction(functools.partial(_tgrep_conjunction_action,
                                                     join_char = ':'))
        tgrep_exprs.setParseAction(_tgrep_exprs_action)
    return tgrep_exprs.ignore('#' + pyparsing.restOfLine)

def tgrep_tokenize(tgrep_string):
    '''
    Tokenizes a TGrep search string into separate tokens.
    '''
    parser = _build_tgrep_parser(False)
    if isinstance(tgrep_string, binary_type):
        tgrep_string = tgrep_string.decode()
    return list(parser.parseString(tgrep_string))

def tgrep_compile(tgrep_string):
    '''
    Parses (and tokenizes, if necessary) a TGrep search string into a
    lambda function.
    '''
    parser = _build_tgrep_parser(True)
    if isinstance(tgrep_string, binary_type):
        tgrep_string = tgrep_string.decode()
    return list(parser.parseString(tgrep_string, parseAll=True))[0]

def treepositions_no_leaves(tree):
    '''
    Returns all the tree positions in the given tree which are not
    leaf nodes.
    '''
    treepositions = tree.treepositions()
    # leaves are treeposition tuples that are not prefixes of any
    # other treeposition
    prefixes = set()
    for pos in treepositions:
        for length in range(len(pos)):
            prefixes.add(pos[:length])
    return [pos for pos in treepositions if pos in prefixes]

def tgrep_positions(pattern, trees, search_leaves=True):
    """
    Return the tree positions in the trees which match the given pattern.

    :param pattern: a tgrep search pattern
    :type pattern: str or output of tgrep_compile()
    :param trees: a sequence of NLTK trees (usually ParentedTrees)
    :type trees: iter(ParentedTree) or iter(Tree)
    :param search_leaves: whether ot return matching leaf nodes
    :type search_leaves: bool
    :rtype: iter(tree positions)
    """

    if isinstance(pattern, (binary_type, text_type)):
        pattern = tgrep_compile(pattern)

    for tree in trees:
        try:
            if search_leaves:
                positions = tree.treepositions()
            else:
                positions = treepositions_no_leaves(tree)
            yield [position for position in positions
                      if pattern(tree[position])]
        except AttributeError:
            yield []

def tgrep_nodes(pattern, trees, search_leaves=True):
    """
    Return the tree nodes in the trees which match the given pattern.

    :param pattern: a tgrep search pattern
    :type pattern: str or output of tgrep_compile()
    :param trees: a sequence of NLTK trees (usually ParentedTrees)
    :type trees: iter(ParentedTree) or iter(Tree)
    :param search_leaves: whether ot return matching leaf nodes
    :type search_leaves: bool
    :rtype: iter(tree nodes)
    """

    if isinstance(pattern, (binary_type, text_type)):
        pattern = tgrep_compile(pattern)

    for tree in trees:
        try:
            if search_leaves:
                positions = tree.treepositions()
            else:
                positions = treepositions_no_leaves(tree)
            yield [tree[position] for position in positions
                      if pattern(tree[position])]
        except AttributeError:
            yield []