This file is indexed.

/usr/lib/python3/dist-packages/periodictable/activation.py is in python3-periodictable 1.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# -*- coding: iso-8859-15 -*-
r"""
Calculate expected neutron activation from time spent in beam line.

Notation information for activation product:

 m, m1, m2: indicate metastable states.  Decay may be to the ground state or to
 another nuclide.

 \+: indicates radioactive daughter production already included in daughter listing
 several parent t1/2's required to acheive calculated daughter activity.  All
 activity assigned at end of irradiation.  In most cases the added activity to the
 daughter is small.

 \*: indicates radioactive daughter production NOT calculated, approximately
 secular equilibrium

 s: indicates radioactive daughter of this nuclide in secular equilibrium after several
 daughter t1/2's

 t: indicates transient equilibrium via beta decay.  Accumulation of that nuclide
 during irradiation is separately calculated.

Reaction = b indicates production via decay from an activation produced parent

Accounts for burnup and 2n, g production.

This is only a gross estimate.  Many effects are not taken into account, such as
self-shielding in the sample and secondary activation from the decay products.

Example::

    >>> from periodictable import activation
    >>> env = activation.ActivationEnvironment(fluence=1e5, Cd_ratio=70, fast_ratio=50, location="BT-2")
    >>> sample = activation.Sample("Co30Fe70", 10)
    >>> sample.calculate_activation(env, exposure=10, rest_times=[0, 1, 24, 360])
    >>> sample.show_table()
                                          ----------------- activity (uCi) ------------------
    isotope  product  reaction T1/2 (hrs)        0 hrs        1 hrs       24 hrs      360 hrs
    -------- -------- -------- ---------- ------------ ------------ ------------ ------------
    Co-59    Co-60         act    5.272 y     0.000496     0.000496    0.0004958    0.0004933
    Co-59    Co-60m+       act     10.5 m        1.664       0.0317          ---          ---
    -------- -------- -------- ---------- ------------ ------------ ------------ ------------
                                    total        1.665      0.03221    0.0005084     0.000505
    -------- -------- -------- ---------- ------------ ------------ ------------ ------------

    >>> print("%.3f"%sample.decay_time(0.001)) # number of hours to reach 1 nCi
    2.053

The default rest times used above show the sample activity at the end of neutron
activation and after 1 hour, 1 day, and 15 days.

Activation cross sections are mostly from IAEA-273\ [#IAEA1987]. See activation.dat in the
package directory for details on individual isotopes.

Activation can be run from the command line using::

    $ python -m periodictable.activation FORMULA

where FORMULA is the chemical formula for the material.

..[#IAEA1987] IAEA (1987)
Handbook on Nuclear Activation Data.
TR 273 (International Atomic Energy Agency, Vienna, Austria, 1987).
https://www-nds.iaea.org/publications/tecdocs/sti%252Fdoc%252F10%252F0273/
"""

from __future__ import division, print_function

from math import exp, log
import os

from .formulas import formula as build_formula
from . import core

LN2 = log(2)

def NIST2001_isotopic_abundance(iso):
    """
    Isotopic abundance in % from the periodic table package.

    Böhlke, et al.
    Isotopic Compositions of the Elements, 2001.
    J. Phys. Chem. Ref. Data, Vol. 34, No. 1, 2005
    """
    return iso.abundance

def IAEA1987_isotopic_abundance(iso):
    """
    Isotopic abundance in % from the IAEA, as provided in the activation.dat table.

    Note: this will return an abundance of 0 if there is no neutron activation for
    the isotope even though for isotopes such as H[1], the natural abundance may in
    fact be rather large.

    IAEA 273: Handbook on Nuclear Activation Data, 1987.
    """
    try:
        return iso.neutron_activation[0].abundance
    except AttributeError:
        return 0

class Sample(object):
    """
    Sample properties.

    *formula* : chemical formula

        Chemical formula.  Any format accepted by :func:`periodictable.formula` can be
        used, including formula string.

    *mass* : float | g

        Sample mass.

    *name* : string

        Name of the sample (defaults to formula).
    """
    def __init__(self, formula, mass, name=None):
        self.formula = build_formula(formula)
        self.mass = mass               # cell F19
        self.name = name if name else str(self.formula) # cell F20
        self.activity = {}

        # The following are set in calculation_activation
        self.environment = None  # type: "ActivationEnvironment"
        self.exposure = 0.
        self.rest_times = ()

    def calculate_activation(self, environment, exposure=1,
                             rest_times=(0, 1, 24, 360),
                             abundance=NIST2001_isotopic_abundance):
        """
        Calculate sample activation after exposure to a neutron flux.

        *environment* is the exposure environment.

        *exposure* is the exposure time in hours (default is 1 h).

        *rest_times* is the list of deactivation times in hours (default is [0, 1, 24, 360]).

        *abundance* is a function that returns the relative abundance of an isotope.  By
        default it uses :func:`NIST2001_isotopic_abundance`, and there is the alternative
        :func:`IAEA273_isotopic_abundance`.
        """
        self.activity = {}
        self.environment = environment
        self.exposure = exposure
        self.rest_times = rest_times
        for el, frac in self.formula.mass_fraction.items():
            if core.isisotope(el):
                A = activity(el, self.mass*frac, environment, exposure, rest_times)
                self._accumulate(A)
            else:
                for iso in el.isotopes:
                    iso_mass = self.mass*frac*abundance(el[iso])*0.01
                    if iso_mass:
                        A = activity(el[iso], iso_mass, environment, exposure, rest_times)
                        self._accumulate(A)

    def decay_time(self, target):
        """
        After determining the activation, compute the number of hours required to achieve
        a total activation level after decay.
        """
        if not self.rest_times or not self.activity:
            return 0

        # Find the small rest time (probably 0 hr)
        i, To = min(enumerate(self.rest_times), key=lambda x: x[1])
        # Find the activity at that time, and the decay rate
        data = [(Ia[i], LN2/a.Thalf_hrs) for a, Ia in self.activity.items()]
        # Build functions for total activity at time T - target and its derivative
        # This will be zero when activity is at target
        f = lambda t: sum(Ia*exp(-La*(t-To)) for Ia, La in data) - target
        df = lambda t: sum(-La*Ia*exp(-La*(t-To)) for Ia, La in data)
        # Return target time, or 0 if target time is negative
        if f(0) < target:
            return 0
        else:
            t, ft = find_root(0, f, df)
            return t

    def _accumulate(self, activity):
        for el, activity_el in activity.items():
            el_total = self.activity.get(el, [0]*len(self.rest_times))
            self.activity[el] = [T+v for T, v in zip(el_total, activity_el)]

    def show_table(self, cutoff=0.0001, format="%.4g"):
        """
        Tabulate the daughter products.

        *cutoff=1* : float | uCi

              The minimum activation value to show.

        *format="%.1f"* : string

              The number format to use for the activation.
        """
        # TODO: need format="auto" which picks an appropriate precision based on
        # cutoff and/or activation level.

        # Track individual rows with more than 1 uCi of activation, and total activation
        # Replace any activation below the cutoff with '---'
        rows = []
        total = [0]*len(self.rest_times)
        for el, activity_el in sorted_activity(self.activity.items()):
            total = [t+a for t, a in zip(total, activity_el)]
            if all(a < cutoff for a in activity_el):
                continue
            activity_str = [format%a if a >= cutoff else "---" for a in activity_el]
            rows.append([el.isotope, el.daughter, el.reaction, el.Thalf_str]+activity_str)
        footer = ["", "", "", "total"] + [format%t if t >= cutoff else "---" for t in total]

        # If no significant total activation then don't print the table
        if all(t < cutoff for t in total):
            print("No significant activation")
            return

        # Print the table header, with an overbar covering the various rest times
        # Print a dashed separator above and below each column
        header = ["isotope", "product", "reaction", "T1/2 (hrs)"] \
                 + ["%g hrs"%vi for vi in self.rest_times]
        separator = ["-"*8, "-"*8, "-"*8, "-"*10] + ["-"*12]*len(self.rest_times)
        cformat = "%-8s %-8s %8s %10s " + " ".join(["%12s"]*len(self.rest_times))

        width = sum(len(c)+1 for c in separator[4:]) - 1
        if width < 16:
            width = 16
        overbar = "-"*(width//2-8) + " activity (uCi) " + "-"*((width+1)//2-8)
        offset = sum(len(c)+1 for c in separator[:4]) - 1
        print(" "*(offset+1)+overbar)
        print(cformat%tuple(header))
        print(cformat%tuple(separator))

        # Print the significant table rows, or indicate that there were no
        # significant rows if the total is significant but none of the
        # individual isotopes
        if rows:
            for r in rows:
                print(cformat%tuple(r))
        else:
            print("No significant isotope activation")
        print(cformat%tuple(separator))

        # If there is more than one row, or if there is enough marginally
        # significant activation that the total is greater then the one row
        # print the total in the footer
        if len(rows) != 1 or any(c != t for c, t in zip(rows[0][4:], footer[4:])):
            print(cformat%tuple(footer))
            print(cformat%tuple(separator))

def find_root(x, f, df, max=20, tol=1e-10):
    r"""
    Find zero of a function.

    Returns when $|f(x)| < tol$ or when max iterations have been reached,
    so check that $|f(x)|$ is small enough for your purposes.

    Returns x, f(x).
    """
    fx = f(x)
    for _ in range(max):
        if abs(f(x)) < tol:
            break
        x -= fx / df(x)
        fx = f(x)
    return x, fx


def sorted_activity(activity_pair):
    """Interator over activity pairs sorted by isotope then daughter product."""
    return sorted(activity_pair, key=lambda x: (x[0].isotope, x[0].daughter))


class ActivationEnvironment(object):
    """
    Neutron activation environment.

    The activation environment provides details of the neutron flux at the
    sample position.

    *fluence* : float | n/cm^2/s

        Thermal neutron fluence on sample.  For COLD neutrons enter equivalent
        thermal neutron fluence.

    *Cd_ratio* : float

        Neutron cadmium ratio.  Use 0 to suppress epithermal contribution.

    *fast_ratio* : float

        Thermal/fast ratio needed for fast reactions. Use 0 to suppress fast contribution.
    """
    def __init__(self, fluence=1e5, Cd_ratio=0., fast_ratio=0., location=""):
        self.fluence = fluence     # cell F13
        self.Cd_ratio = Cd_ratio   # cell F15
        self.fast_ratio = fast_ratio # cell F17
        self.location = location   # cell F21

    # Cell Q1
    @property
    def epithermal_reduction_factor(self):
        """
        Used as a multiplier times the resonance cross section to add to the
        thermal cross section for all thermal induced reactions.
        """
        return 1./self.Cd_ratio if self.Cd_ratio >= 1 else 0

COLUMN_NAMES = [
    "_symbol",     # 0 AF
    "_index",      # 1 AG
    "Z",           # 2 AH
    "symbol",      # 3 AI
    "A",           # 4 AJ
    "isotope",     # 5 AK
    "abundance",   # 6 AL
    "daughter",    # 7 AM
    "_Thalf",      # 8 AN
    "_Thalf_unit", # 9 AO
    "isomer",      # 10 AP
    "percentIT",   # 11 AQ
    "reaction",    # 12 AR
    "fast",        # 13 AS
    "thermalXS",   # 14 AT
    "gT",          # 15 AU
    "resonance",   # 16 AV
    "Thalf_hrs",   # 17 AW
    "Thalf_str",   # 18 AX
    "Thalf_parent", # 19 AY
    "thermalXS_parent",  # 20 AZ
    "resonance_parent",  # 21 BA
    "comments",          # 22 BB
]
INT_COLUMNS = [1, 2, 4]
BOOL_COLUMNS = [13]
FLOAT_COLUMNS = [6, 11, 14, 15, 16, 17, 19, 20, 21]

def activity(isotope, mass, env, exposure, rest_times):
    """
    Compute isotope specific daughter products after the given exposure time and rest period.
    """
    result = {}
    if not hasattr(isotope, 'neutron_activation'):
        return result

    for ai in isotope.neutron_activation:
        # Ignore fast neutron interactions if not using fast ratio
        if ai.fast and env.fast_ratio == 0:
            continue
        # Column D: elemental % mass content of sample
        #    mass fraction and abundance already included in mass calculation, so not needed
        # Column E: target nuclide and comment
        #    str(isotope), ai.comment
        # Column F: Nuclide Produced
        #    ai.daughter
        # Column G: Half-life
        #    ai.Thalf_str
        # Column H: initial efective cross-section (b)
        initialXS = ai.thermalXS + env.epithermal_reduction_factor*ai.resonance
        # Column I: reaction
        #    ai.reaction
        # Column J: fast?
        #    ai.fast
        # Column K: effective reaction flux (n/cm^2/s)
        flux = env.fluence/env.fast_ratio if ai.fast else env.fluence
        # Column L: root part of activation calculation
        # Decay correction portion done in column M
        # The given mass is sample mass * sample fraction * isotope abundance
        root = flux * initialXS * 1e-24 * mass / isotope.isotope * 1.6278e19
        # Column M: 0.69/t1/2  (1/h) lambda of produced nuclide
        lam = LN2/ai.Thalf_hrs
        #print(ai.thermalXS, ai.resonance, env.epithermal_reduction_factor)
        #print(isotope, "D", mass, "F", ai.daughter, "G", ai.Thalf_str,
        #      "H", initialXS, "I", ai.reaction, "J", ai.fast, "K", flux,
        #      "L", root, "M", lam)

        # Column Y: activity at the end of irradiation (uCi)
        if ai.reaction == 'b':
            # Column N: 0.69/t1/2 (1/h) lambda of parent nuclide
            parent_lam = LN2 / ai.Thalf_parent
            # Column O: Activation if "b" mode production
            # Note: problems resulting from precision limitiation not addredd in "b"
            # mode production
            activity = root*(1 - exp(-lam*exposure)/(1 - (lam/parent_lam))
                             + exp(-parent_lam*exposure)/((parent_lam/lam)-1))
            #print "N", parent_lam, "O", activity
        elif ai.reaction == '2n':
            # Column N: 0.69/t1/2 (1/h) lambda of parent nuclide
            parent_lam = LN2 / ai.Thalf_parent
            # Column P: effective cross-section 2n product and n, g burnup (b)
            # Note: This cross-section always uses the total thermal flux
            effectiveXS = ai.thermalXS_parent + env.epithermal_reduction_factor*ai.resonance_parent
            # Column Q: 2n mode effective lambda of stable target (1/h)
            lam_2n = flux*initialXS*1e-24*3600
            # Column R: radioactive parent (1/h)
            parent_activity = env.fluence*1e-24*3600*effectiveXS+parent_lam
            # Column S: resulting product (1/h)
            product_2n = lam if ai.reaction == '2n' else 0
            # Column T: activity if 2n mode
            activity = root*lam*(parent_activity-parent_lam)*(
                exp(-lam_2n*exposure) / ((parent_activity-lam_2n)*(product_2n-lam_2n))
                + exp(-parent_activity*exposure) / ((lam_2n-parent_activity)*(product_2n-parent_activity))
                + exp(-product_2n*exposure) / ((lam_2n-product_2n)*(parent_activity-product_2n))
                )
            #print("N", parent_lam, "P", effectiveXS, "Q", lam_2n,
            #      "R", parent_activity, "S", product_2n, "T", activity)
        else:
            # Provide the fix for the limitied precision (15 digits) in the
            # floating point calculation.  For neutron fluence rates above
            # 1e16 the precision in certain cells needs to be improved to
            # avoid erroneous results.  Also, burnup for single capture
            # reactions (excluding 'b') is included here.
            # See README file for details.

            # Column P: effective cross-section 2n product and n, g burnup (b)
            # Note: This cross-section always uses the total thermal flux
            effectiveXS = ai.thermalXS_parent + env.epithermal_reduction_factor*ai.resonance_parent
            # Column U: nv1s1t
            U = flux*initialXS*3600*1e-24*exposure
            # Column V: nv2s2t+L2*t
            V = (env.fluence*effectiveXS*3600*1e-24+lam)*exposure
            # Column W: L/(L-nvs1+nvs2)
            W = lam/(lam-flux*initialXS*3600*1e-24+env.fluence*effectiveXS*3600*1e-24)
            # Column X: V#*[e(-S#)-e(U#)]
            if abs(U) < 1e-10 and abs(V) < 1e-10:
                precision_correction = W * (V-U+(V+U)/2)
            else:
                precision_correction = W * (exp(-U)-exp(-V))

            activity = root*precision_correction
            #print(ai.thermalXS_parent, ai.resonance_parent, exposure)
            #print("P", effectiveXS, "U", U, "V", V, "W", W, "X",
            #      precision_correction, "Y", activity)
            # columns: F32 H K L U V W X
            #data = env.fluence, initialXS, flux, root, U, V, W, precision_correction
            #print " ".join("%.5e"%v for v in data)

        result[ai] = [activity*exp(-lam*Ti) for Ti in rest_times]
        #print [(Ti, Ai) for Ti, Ai in zip(rest_times, result[ai])]

    return result

def init(table, reload=False):
    """
    Add neutron activation levels to each isotope.
    """
    if 'neutron_activation' in table.properties and not reload:
        return
    table.properties.append('neutron_activation')

    # Clear the existing activation table
    for el in table:
        for iso in el.isotopes:
            if hasattr(el[iso], 'neutron_activation'):
                del el[iso].neutron_activation

    path = os.path.join(core.get_data_path('.'), 'activation.dat')
    lastA = 0
    for row in open(path, 'r'):
        columns = row.split('\t')
        if columns[0].strip() in ('', 'xx'):
            continue
        columns = [c[1:-1] if c.startswith('"') else c
                   for c in columns]
        #print columns
        for c in INT_COLUMNS:
            columns[c] = int(columns[c])
        for c in BOOL_COLUMNS:
            columns[c] = (columns[c] == 'y')
        for c in FLOAT_COLUMNS:
            columns[c] = float(columns[c]) if columns[c].strip() else 0.
        # clean up comment column
        columns[-1] = columns[-1].replace('"', '').strip()
        kw = dict(zip(COLUMN_NAMES, columns))
        kw['Thalf_str'] = " ".join((kw['_Thalf'], kw['_Thalf_unit']))

        # Strip columns whose names start with underscore
        kw = dict((k, v) for k, v in kw.items() if not k.startswith('_'))

        # Create an Activation record and add it to the isotope
        iso = table[kw['Z']][kw['A']]
        activation = getattr(iso, 'neutron_activation', [])
        activation.append(ActivationResult(**kw))
        iso.neutron_activation = activation

        # Check abundance values
        #if abs(iso.abundance - kw['abundance']) > 0.001*kw['abundance']:
        #    percent = 100*abs(iso.abundance - kw['abundance'])/kw['abundance']
        #    print "Abundance of", iso, "is", iso.abundance, \
        #        "but activation.dat has", kw['abundance'], "(%.1f%%)"%percent

class ActivationResult(object):
    def __init__(self, **kw):
        self.__dict__ = kw


def demo():  # pragma: nocover
    import sys
    formula = sys.argv[1]
    fluence = 1e5
    exposure = 10
    env = ActivationEnvironment(fluence=fluence, Cd_ratio=70, fast_ratio=50, location="BT-2")
    sample = Sample(formula, 1)
    sample.calculate_activation(
        env, exposure=exposure, rest_times=(0, 1, 24, 360),
        abundance=IAEA1987_isotopic_abundance,
        #abundance=NIST2001_isotopic_abundance,
        )
    print("1g %s for %g hours at %g n/cm^2/s"%(formula, exposure, fluence))
    sample.show_table(cutoff=0.0)

    ## Print a table of flux vs. activity so we can debug the
    ## precision_correction value in the activity() function.
    ## Note that you also need to uncomment the print statement
    ## at the end of activity() that shows the column values.
    #import numpy as np
    #sample = Sample('Co', mass=10)
    #for fluence in np.logspace(3, 20, 20-3+1):
    #    env = ActivationEnvironment(fluence=fluence)
    #    sample.calculate_activation(
    #        env, exposure=exposure, rest_times=[0],
    #        abundance=IAEA1987_isotopic_abundance)

if __name__ == "__main__":
    demo()  # pragma: nocover