/usr/lib/python3/dist-packages/periodictable/activation.py is in python3-periodictable 1.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 | # -*- coding: iso-8859-15 -*-
r"""
Calculate expected neutron activation from time spent in beam line.
Notation information for activation product:
m, m1, m2: indicate metastable states. Decay may be to the ground state or to
another nuclide.
\+: indicates radioactive daughter production already included in daughter listing
several parent t1/2's required to acheive calculated daughter activity. All
activity assigned at end of irradiation. In most cases the added activity to the
daughter is small.
\*: indicates radioactive daughter production NOT calculated, approximately
secular equilibrium
s: indicates radioactive daughter of this nuclide in secular equilibrium after several
daughter t1/2's
t: indicates transient equilibrium via beta decay. Accumulation of that nuclide
during irradiation is separately calculated.
Reaction = b indicates production via decay from an activation produced parent
Accounts for burnup and 2n, g production.
This is only a gross estimate. Many effects are not taken into account, such as
self-shielding in the sample and secondary activation from the decay products.
Example::
>>> from periodictable import activation
>>> env = activation.ActivationEnvironment(fluence=1e5, Cd_ratio=70, fast_ratio=50, location="BT-2")
>>> sample = activation.Sample("Co30Fe70", 10)
>>> sample.calculate_activation(env, exposure=10, rest_times=[0, 1, 24, 360])
>>> sample.show_table()
----------------- activity (uCi) ------------------
isotope product reaction T1/2 (hrs) 0 hrs 1 hrs 24 hrs 360 hrs
-------- -------- -------- ---------- ------------ ------------ ------------ ------------
Co-59 Co-60 act 5.272 y 0.000496 0.000496 0.0004958 0.0004933
Co-59 Co-60m+ act 10.5 m 1.664 0.0317 --- ---
-------- -------- -------- ---------- ------------ ------------ ------------ ------------
total 1.665 0.03221 0.0005084 0.000505
-------- -------- -------- ---------- ------------ ------------ ------------ ------------
>>> print("%.3f"%sample.decay_time(0.001)) # number of hours to reach 1 nCi
2.053
The default rest times used above show the sample activity at the end of neutron
activation and after 1 hour, 1 day, and 15 days.
Activation cross sections are mostly from IAEA-273\ [#IAEA1987]. See activation.dat in the
package directory for details on individual isotopes.
Activation can be run from the command line using::
$ python -m periodictable.activation FORMULA
where FORMULA is the chemical formula for the material.
..[#IAEA1987] IAEA (1987)
Handbook on Nuclear Activation Data.
TR 273 (International Atomic Energy Agency, Vienna, Austria, 1987).
https://www-nds.iaea.org/publications/tecdocs/sti%252Fdoc%252F10%252F0273/
"""
from __future__ import division, print_function
from math import exp, log
import os
from .formulas import formula as build_formula
from . import core
LN2 = log(2)
def NIST2001_isotopic_abundance(iso):
"""
Isotopic abundance in % from the periodic table package.
Böhlke, et al.
Isotopic Compositions of the Elements, 2001.
J. Phys. Chem. Ref. Data, Vol. 34, No. 1, 2005
"""
return iso.abundance
def IAEA1987_isotopic_abundance(iso):
"""
Isotopic abundance in % from the IAEA, as provided in the activation.dat table.
Note: this will return an abundance of 0 if there is no neutron activation for
the isotope even though for isotopes such as H[1], the natural abundance may in
fact be rather large.
IAEA 273: Handbook on Nuclear Activation Data, 1987.
"""
try:
return iso.neutron_activation[0].abundance
except AttributeError:
return 0
class Sample(object):
"""
Sample properties.
*formula* : chemical formula
Chemical formula. Any format accepted by :func:`periodictable.formula` can be
used, including formula string.
*mass* : float | g
Sample mass.
*name* : string
Name of the sample (defaults to formula).
"""
def __init__(self, formula, mass, name=None):
self.formula = build_formula(formula)
self.mass = mass # cell F19
self.name = name if name else str(self.formula) # cell F20
self.activity = {}
# The following are set in calculation_activation
self.environment = None # type: "ActivationEnvironment"
self.exposure = 0.
self.rest_times = ()
def calculate_activation(self, environment, exposure=1,
rest_times=(0, 1, 24, 360),
abundance=NIST2001_isotopic_abundance):
"""
Calculate sample activation after exposure to a neutron flux.
*environment* is the exposure environment.
*exposure* is the exposure time in hours (default is 1 h).
*rest_times* is the list of deactivation times in hours (default is [0, 1, 24, 360]).
*abundance* is a function that returns the relative abundance of an isotope. By
default it uses :func:`NIST2001_isotopic_abundance`, and there is the alternative
:func:`IAEA273_isotopic_abundance`.
"""
self.activity = {}
self.environment = environment
self.exposure = exposure
self.rest_times = rest_times
for el, frac in self.formula.mass_fraction.items():
if core.isisotope(el):
A = activity(el, self.mass*frac, environment, exposure, rest_times)
self._accumulate(A)
else:
for iso in el.isotopes:
iso_mass = self.mass*frac*abundance(el[iso])*0.01
if iso_mass:
A = activity(el[iso], iso_mass, environment, exposure, rest_times)
self._accumulate(A)
def decay_time(self, target):
"""
After determining the activation, compute the number of hours required to achieve
a total activation level after decay.
"""
if not self.rest_times or not self.activity:
return 0
# Find the small rest time (probably 0 hr)
i, To = min(enumerate(self.rest_times), key=lambda x: x[1])
# Find the activity at that time, and the decay rate
data = [(Ia[i], LN2/a.Thalf_hrs) for a, Ia in self.activity.items()]
# Build functions for total activity at time T - target and its derivative
# This will be zero when activity is at target
f = lambda t: sum(Ia*exp(-La*(t-To)) for Ia, La in data) - target
df = lambda t: sum(-La*Ia*exp(-La*(t-To)) for Ia, La in data)
# Return target time, or 0 if target time is negative
if f(0) < target:
return 0
else:
t, ft = find_root(0, f, df)
return t
def _accumulate(self, activity):
for el, activity_el in activity.items():
el_total = self.activity.get(el, [0]*len(self.rest_times))
self.activity[el] = [T+v for T, v in zip(el_total, activity_el)]
def show_table(self, cutoff=0.0001, format="%.4g"):
"""
Tabulate the daughter products.
*cutoff=1* : float | uCi
The minimum activation value to show.
*format="%.1f"* : string
The number format to use for the activation.
"""
# TODO: need format="auto" which picks an appropriate precision based on
# cutoff and/or activation level.
# Track individual rows with more than 1 uCi of activation, and total activation
# Replace any activation below the cutoff with '---'
rows = []
total = [0]*len(self.rest_times)
for el, activity_el in sorted_activity(self.activity.items()):
total = [t+a for t, a in zip(total, activity_el)]
if all(a < cutoff for a in activity_el):
continue
activity_str = [format%a if a >= cutoff else "---" for a in activity_el]
rows.append([el.isotope, el.daughter, el.reaction, el.Thalf_str]+activity_str)
footer = ["", "", "", "total"] + [format%t if t >= cutoff else "---" for t in total]
# If no significant total activation then don't print the table
if all(t < cutoff for t in total):
print("No significant activation")
return
# Print the table header, with an overbar covering the various rest times
# Print a dashed separator above and below each column
header = ["isotope", "product", "reaction", "T1/2 (hrs)"] \
+ ["%g hrs"%vi for vi in self.rest_times]
separator = ["-"*8, "-"*8, "-"*8, "-"*10] + ["-"*12]*len(self.rest_times)
cformat = "%-8s %-8s %8s %10s " + " ".join(["%12s"]*len(self.rest_times))
width = sum(len(c)+1 for c in separator[4:]) - 1
if width < 16:
width = 16
overbar = "-"*(width//2-8) + " activity (uCi) " + "-"*((width+1)//2-8)
offset = sum(len(c)+1 for c in separator[:4]) - 1
print(" "*(offset+1)+overbar)
print(cformat%tuple(header))
print(cformat%tuple(separator))
# Print the significant table rows, or indicate that there were no
# significant rows if the total is significant but none of the
# individual isotopes
if rows:
for r in rows:
print(cformat%tuple(r))
else:
print("No significant isotope activation")
print(cformat%tuple(separator))
# If there is more than one row, or if there is enough marginally
# significant activation that the total is greater then the one row
# print the total in the footer
if len(rows) != 1 or any(c != t for c, t in zip(rows[0][4:], footer[4:])):
print(cformat%tuple(footer))
print(cformat%tuple(separator))
def find_root(x, f, df, max=20, tol=1e-10):
r"""
Find zero of a function.
Returns when $|f(x)| < tol$ or when max iterations have been reached,
so check that $|f(x)|$ is small enough for your purposes.
Returns x, f(x).
"""
fx = f(x)
for _ in range(max):
if abs(f(x)) < tol:
break
x -= fx / df(x)
fx = f(x)
return x, fx
def sorted_activity(activity_pair):
"""Interator over activity pairs sorted by isotope then daughter product."""
return sorted(activity_pair, key=lambda x: (x[0].isotope, x[0].daughter))
class ActivationEnvironment(object):
"""
Neutron activation environment.
The activation environment provides details of the neutron flux at the
sample position.
*fluence* : float | n/cm^2/s
Thermal neutron fluence on sample. For COLD neutrons enter equivalent
thermal neutron fluence.
*Cd_ratio* : float
Neutron cadmium ratio. Use 0 to suppress epithermal contribution.
*fast_ratio* : float
Thermal/fast ratio needed for fast reactions. Use 0 to suppress fast contribution.
"""
def __init__(self, fluence=1e5, Cd_ratio=0., fast_ratio=0., location=""):
self.fluence = fluence # cell F13
self.Cd_ratio = Cd_ratio # cell F15
self.fast_ratio = fast_ratio # cell F17
self.location = location # cell F21
# Cell Q1
@property
def epithermal_reduction_factor(self):
"""
Used as a multiplier times the resonance cross section to add to the
thermal cross section for all thermal induced reactions.
"""
return 1./self.Cd_ratio if self.Cd_ratio >= 1 else 0
COLUMN_NAMES = [
"_symbol", # 0 AF
"_index", # 1 AG
"Z", # 2 AH
"symbol", # 3 AI
"A", # 4 AJ
"isotope", # 5 AK
"abundance", # 6 AL
"daughter", # 7 AM
"_Thalf", # 8 AN
"_Thalf_unit", # 9 AO
"isomer", # 10 AP
"percentIT", # 11 AQ
"reaction", # 12 AR
"fast", # 13 AS
"thermalXS", # 14 AT
"gT", # 15 AU
"resonance", # 16 AV
"Thalf_hrs", # 17 AW
"Thalf_str", # 18 AX
"Thalf_parent", # 19 AY
"thermalXS_parent", # 20 AZ
"resonance_parent", # 21 BA
"comments", # 22 BB
]
INT_COLUMNS = [1, 2, 4]
BOOL_COLUMNS = [13]
FLOAT_COLUMNS = [6, 11, 14, 15, 16, 17, 19, 20, 21]
def activity(isotope, mass, env, exposure, rest_times):
"""
Compute isotope specific daughter products after the given exposure time and rest period.
"""
result = {}
if not hasattr(isotope, 'neutron_activation'):
return result
for ai in isotope.neutron_activation:
# Ignore fast neutron interactions if not using fast ratio
if ai.fast and env.fast_ratio == 0:
continue
# Column D: elemental % mass content of sample
# mass fraction and abundance already included in mass calculation, so not needed
# Column E: target nuclide and comment
# str(isotope), ai.comment
# Column F: Nuclide Produced
# ai.daughter
# Column G: Half-life
# ai.Thalf_str
# Column H: initial efective cross-section (b)
initialXS = ai.thermalXS + env.epithermal_reduction_factor*ai.resonance
# Column I: reaction
# ai.reaction
# Column J: fast?
# ai.fast
# Column K: effective reaction flux (n/cm^2/s)
flux = env.fluence/env.fast_ratio if ai.fast else env.fluence
# Column L: root part of activation calculation
# Decay correction portion done in column M
# The given mass is sample mass * sample fraction * isotope abundance
root = flux * initialXS * 1e-24 * mass / isotope.isotope * 1.6278e19
# Column M: 0.69/t1/2 (1/h) lambda of produced nuclide
lam = LN2/ai.Thalf_hrs
#print(ai.thermalXS, ai.resonance, env.epithermal_reduction_factor)
#print(isotope, "D", mass, "F", ai.daughter, "G", ai.Thalf_str,
# "H", initialXS, "I", ai.reaction, "J", ai.fast, "K", flux,
# "L", root, "M", lam)
# Column Y: activity at the end of irradiation (uCi)
if ai.reaction == 'b':
# Column N: 0.69/t1/2 (1/h) lambda of parent nuclide
parent_lam = LN2 / ai.Thalf_parent
# Column O: Activation if "b" mode production
# Note: problems resulting from precision limitiation not addredd in "b"
# mode production
activity = root*(1 - exp(-lam*exposure)/(1 - (lam/parent_lam))
+ exp(-parent_lam*exposure)/((parent_lam/lam)-1))
#print "N", parent_lam, "O", activity
elif ai.reaction == '2n':
# Column N: 0.69/t1/2 (1/h) lambda of parent nuclide
parent_lam = LN2 / ai.Thalf_parent
# Column P: effective cross-section 2n product and n, g burnup (b)
# Note: This cross-section always uses the total thermal flux
effectiveXS = ai.thermalXS_parent + env.epithermal_reduction_factor*ai.resonance_parent
# Column Q: 2n mode effective lambda of stable target (1/h)
lam_2n = flux*initialXS*1e-24*3600
# Column R: radioactive parent (1/h)
parent_activity = env.fluence*1e-24*3600*effectiveXS+parent_lam
# Column S: resulting product (1/h)
product_2n = lam if ai.reaction == '2n' else 0
# Column T: activity if 2n mode
activity = root*lam*(parent_activity-parent_lam)*(
exp(-lam_2n*exposure) / ((parent_activity-lam_2n)*(product_2n-lam_2n))
+ exp(-parent_activity*exposure) / ((lam_2n-parent_activity)*(product_2n-parent_activity))
+ exp(-product_2n*exposure) / ((lam_2n-product_2n)*(parent_activity-product_2n))
)
#print("N", parent_lam, "P", effectiveXS, "Q", lam_2n,
# "R", parent_activity, "S", product_2n, "T", activity)
else:
# Provide the fix for the limitied precision (15 digits) in the
# floating point calculation. For neutron fluence rates above
# 1e16 the precision in certain cells needs to be improved to
# avoid erroneous results. Also, burnup for single capture
# reactions (excluding 'b') is included here.
# See README file for details.
# Column P: effective cross-section 2n product and n, g burnup (b)
# Note: This cross-section always uses the total thermal flux
effectiveXS = ai.thermalXS_parent + env.epithermal_reduction_factor*ai.resonance_parent
# Column U: nv1s1t
U = flux*initialXS*3600*1e-24*exposure
# Column V: nv2s2t+L2*t
V = (env.fluence*effectiveXS*3600*1e-24+lam)*exposure
# Column W: L/(L-nvs1+nvs2)
W = lam/(lam-flux*initialXS*3600*1e-24+env.fluence*effectiveXS*3600*1e-24)
# Column X: V#*[e(-S#)-e(U#)]
if abs(U) < 1e-10 and abs(V) < 1e-10:
precision_correction = W * (V-U+(V+U)/2)
else:
precision_correction = W * (exp(-U)-exp(-V))
activity = root*precision_correction
#print(ai.thermalXS_parent, ai.resonance_parent, exposure)
#print("P", effectiveXS, "U", U, "V", V, "W", W, "X",
# precision_correction, "Y", activity)
# columns: F32 H K L U V W X
#data = env.fluence, initialXS, flux, root, U, V, W, precision_correction
#print " ".join("%.5e"%v for v in data)
result[ai] = [activity*exp(-lam*Ti) for Ti in rest_times]
#print [(Ti, Ai) for Ti, Ai in zip(rest_times, result[ai])]
return result
def init(table, reload=False):
"""
Add neutron activation levels to each isotope.
"""
if 'neutron_activation' in table.properties and not reload:
return
table.properties.append('neutron_activation')
# Clear the existing activation table
for el in table:
for iso in el.isotopes:
if hasattr(el[iso], 'neutron_activation'):
del el[iso].neutron_activation
path = os.path.join(core.get_data_path('.'), 'activation.dat')
lastA = 0
for row in open(path, 'r'):
columns = row.split('\t')
if columns[0].strip() in ('', 'xx'):
continue
columns = [c[1:-1] if c.startswith('"') else c
for c in columns]
#print columns
for c in INT_COLUMNS:
columns[c] = int(columns[c])
for c in BOOL_COLUMNS:
columns[c] = (columns[c] == 'y')
for c in FLOAT_COLUMNS:
columns[c] = float(columns[c]) if columns[c].strip() else 0.
# clean up comment column
columns[-1] = columns[-1].replace('"', '').strip()
kw = dict(zip(COLUMN_NAMES, columns))
kw['Thalf_str'] = " ".join((kw['_Thalf'], kw['_Thalf_unit']))
# Strip columns whose names start with underscore
kw = dict((k, v) for k, v in kw.items() if not k.startswith('_'))
# Create an Activation record and add it to the isotope
iso = table[kw['Z']][kw['A']]
activation = getattr(iso, 'neutron_activation', [])
activation.append(ActivationResult(**kw))
iso.neutron_activation = activation
# Check abundance values
#if abs(iso.abundance - kw['abundance']) > 0.001*kw['abundance']:
# percent = 100*abs(iso.abundance - kw['abundance'])/kw['abundance']
# print "Abundance of", iso, "is", iso.abundance, \
# "but activation.dat has", kw['abundance'], "(%.1f%%)"%percent
class ActivationResult(object):
def __init__(self, **kw):
self.__dict__ = kw
def demo(): # pragma: nocover
import sys
formula = sys.argv[1]
fluence = 1e5
exposure = 10
env = ActivationEnvironment(fluence=fluence, Cd_ratio=70, fast_ratio=50, location="BT-2")
sample = Sample(formula, 1)
sample.calculate_activation(
env, exposure=exposure, rest_times=(0, 1, 24, 360),
abundance=IAEA1987_isotopic_abundance,
#abundance=NIST2001_isotopic_abundance,
)
print("1g %s for %g hours at %g n/cm^2/s"%(formula, exposure, fluence))
sample.show_table(cutoff=0.0)
## Print a table of flux vs. activity so we can debug the
## precision_correction value in the activity() function.
## Note that you also need to uncomment the print statement
## at the end of activity() that shows the column values.
#import numpy as np
#sample = Sample('Co', mass=10)
#for fluence in np.logspace(3, 20, 20-3+1):
# env = ActivationEnvironment(fluence=fluence)
# sample.calculate_activation(
# env, exposure=exposure, rest_times=[0],
# abundance=IAEA1987_isotopic_abundance)
if __name__ == "__main__":
demo() # pragma: nocover
|