/usr/lib/python3/dist-packages/periodictable/density.py is in python3-periodictable 1.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | # This program is public domain
# Author: Paul Kienzle
r"""
The following properties are added:
* density, density_units (|g/cm^3|)
Densities for solids and liquids are given as specific
gravities at 20\ |deg| C unless other wise indicated by
*density_caveat*. Densities for gaseous elements
are given for the liquids at their boiling points.
Missing data are represented by *None*.
* density_caveat
Comments on the density, if not taken in standard conditions.
* interatomic_distance, interatomic_distance_units (|Ang|)
Interatomic distance estimated from element density.
* number_density, number_density_units (|1/cm^3|)
Number density estimated from mass and density.
Density for the isotope is computed assuming that the atomic spacing
is the same as that for the element in the natural abundance.
.. doctest::
>>> from periodictable import D, H
>>> print("H: %.4f, D: %.4f"%(H.density, D.density))
H: 0.0708, D: 0.1415
>>> print((D.density/H.density) / (D.mass/H.mass))
1.0
The following plot shows density for all elements:
.. plot:: plots/density_plot.py
From the X-ray data book: http://xdb.lbl.gov/Section5/Sec_5-2.html
Data were taken mostly from [#Lide1999]_. These values are reproduced in [#ILL]_.
.. [#Lide1999] Lide. D. R., Ed., CRC Handbook of Chemistry and Physics, 80th ed.
(CRC Press, Boca Raton, Florida, 1999)
.. [#ILL] The ILL Neutron Data Booklet, Second Edition.
"""
from .core import Element, Isotope
from .constants import avogadro_number
def density(iso_el):
"""
Element density for natural abundance. For isotopes, return
the equivalent density assuming identical inter-atomic spacing as the
naturally occuring material.
:Parameters:
*iso_el* : isotope or element
Name of the element or isotope.
:Returns:
*density* : float | |g/cm^3|
Reference:
*ILL Neutron Data Booklet, original values from CRC Handbook of Chemistry and Physics,
80th ed. (1999).*
"""
if hasattr(iso_el, 'element'):
return iso_el.element._density * (iso_el.mass/iso_el.element.mass)
else:
return iso_el._density
def interatomic_distance(element):
r"""
Estimated interatomic distance from atomic weight and density. The
distance between isotopes is assumed to match that between atoms in
the natural abundance.
:Parameters:
*element* : Element
The element whose interatomic distance is to be calculated.
:Returns:
*distance* : float | |Ang|
Estimated interatomic distance.
Interatomic distance is computed using:
.. math::
d = (m/(\rho_m N_A 10^{-24}))^{1/3}
with units:
.. math::
(\rm (g\cdot mol^{-1})
/ ( (g\cdot cm^{-3})
(atoms\cdot mol^{-1})
(10^{-8} cm\cdot \AA^{-1})^3))^{1/3} = \AA
"""
if hasattr(element, 'isotope'):
element = element.element
if element.density is None or element.mass is None:
return None
return (element.mass/(element.density*avogadro_number*1e-24))**(1./3.)
def number_density(element):
r"""
Estimate the number density from atomic weight and density. The density
for isotopes is assumed to match that of between atoms in natural abundance.
:Parameters:
*element* : element
Name of the element whose number density needs to be calculated.
:Returns:
*Nb* : float | |1/cm^3|
Number density of a element.
Number density is computed using:
.. math::
d = N_A \frac{\rho}{m}
with units:
.. math::
\rm (atoms\cdot mol^{-1}) (g\cdot cm^{-3}) / (g\cdot mol^{-1})
= atoms\cdot cm^{-3}
"""
if hasattr(element, 'isotope'): element = element.element
if element.density is None or element.mass is None: return None
return (element.density/element.mass)*avogadro_number
def init(table, reload=False):
if 'density' in table.properties and not reload: return
table.properties.append('density')
Isotope.density \
= property(density, "density using inter-atomic spacing from naturally occurring form")
Element.density \
= property(density, "density using inter-atomic spacing from naturally occurring form")
Element.density_units = "g/cm^3"
Element.interatomic_distance \
= property(interatomic_distance,
"interatomic distance estimated from density")
Element.interatomic_distance_units = "angstrom"
Element.number_density \
= property(number_density,
"number density estimated from mass and density")
Element.number_density_units = "1/cm^3"
for k, v in element_densities.items():
el = getattr(table, k)
if isinstance(v, tuple):
el._density = v[0]
el.density_caveat = v[1]
elif v is None:
el._density = None
el.density_caveat = "unavailable"
else:
el._density = v
el.density_caveat = ""
element_densities = dict(
n=None, # Unless someone wants to look up neutron star densities...
H=(0.0708, "T=-252.87"),
He=(0.122, "T=-268.93"),
Li=0.534,
Be=1.848,
B=2.34,
C=(2.1, "1.9-2.3 (graphite)"),
N=(0.808, "T=-195.79"),
O=(1.14, "T=-182.95"),
F=(1.50, "T=-188.12"),
Ne=(1.207, "T=-246.08"),
Na=0.971,
Mg=1.738,
Al=2.6989,
Si=(2.33, "T=25"),
P=1.82,
S=2.07,
Cl=(1.56, "T=-33.6, 0.44 C above boiling point"),
Ar=(1.40, "T=-185.85"),
K=0.862,
Ca=1.55,
Sc=(2.989, "T=25"),
Ti=4.54,
V=(6.11, "T=18.7"),
Cr=(7.19, "7.18-7.20"),
Mn=(7.33, "7.21-7.44"),
Fe=7.874,
Co=8.9,
Ni=(8.902, "T=25"),
Cu=8.96,
Zn=(7.133, "T=25"),
Ga=(5.904, "T=29.6"),
Ge=(5.323, "T=25"),
As=5.73,
Se=4.79,
Br=3.12,
Kr=(2.16, "T=-153.22"),
Rb=1.532,
Sr=2.54,
Y=(4.469, "T=25"),
Zr=6.506,
Nb=8.57,
Mo=10.22,
Tc=(11.50, "calculated"),
Ru=12.41,
Rh=12.41,
Pd=12.02,
Ag=10.50,
Cd=8.65,
In=7.31,
Sn=7.31,
Sb=6.691,
Te=6.24,
I=4.93,
Xe=(3.52, "T=-108.12"),
Cs=1.873,
Ba=3.5,
La=(6.145, "T=25"),
Ce=(6.770, "T=25"),
Pr=6.773,
Nd=(7.008, "T=25"),
Pm=(7.264, "T=25"),
Sm=(7.520, "T=25"),
Eu=(5.244, "T=25"),
Gd=(7.901, "T=25"),
Tb=8.230,
Dy=(8.551, "T=25"),
Ho=(8.795, "T=25"),
Er=(9.066, "T=25"),
Tm=(9.321, "T=25"),
Yb=6.966,
Lu=(9.841, "T=25"),
Hf=13.31,
Ta=16.654,
W=19.3,
Re=21.02,
Os=22.57,
Ir=(22.42, "T=17"),
Pt=21.45,
Au=(19.3, "approximate"),
Hg=13.546,
Tl=11.85,
Pb=11.35,
Bi=9.747,
Po=9.32,
At=None,
Rn=None,
Fr=None,
Ra=None,
Ac=None,
Th=11.72,
Pa=(15.37, "calculated"),
U=(18.95, "approximate"),
Np=20.25,
Pu=(19.84, "T=25"),
Am=13.67,
Cm=(13.51, "calculated"),
Bk=(14, "estimated"),
Cf=None,
Es=None,
Fm=None,
Md=None,
No=None,
Lr=None,
Rf=None,
Db=None,
Sg=None,
Bh=None,
Hs=None,
Mt=None,
Ds=None,
Rg=None,
Cn=None,
Nh=None,
Fl=None,
Mc=None,
Lv=None,
Ts=None,
Og=None,
)
|