This file is indexed.

/usr/lib/python3/dist-packages/periodictable/nsf.py is in python3-periodictable 1.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
# -*- coding: utf-8 -*-
# This program is public domain
# Author: Paul Kienzle
r"""

Neutron scattering factors for the elements and isotopes.

For details of neutron scattering factor values, see :class:`Neutron`.
The property is set to *None* if there is no neutron scattering information
for the element. Individual isotopes may have their own scattering
information.

Example
=======

Print a table of coherent scattering length densities for isotopes
of a particular element:

.. doctest::

    >>> import periodictable
    >>> for iso in periodictable.Ni:
    ...     if iso.neutron.has_sld():
    ...         print("%s %7.4f"%(iso,iso.neutron.sld()[0]))
    58-Ni 13.1526
    60-Ni  2.5575
    61-Ni  6.9417
    62-Ni -7.9464
    64-Ni -0.3379


Details
=======

There are a number of functions available in periodictable.nsf

    :func:`neutron_energy`
        Return neutron energy given wavelength.

    :func:`neutron_wavelength`
        Return wavelength given neutron energy.

    :func:`neutron_wavelength_from_velocity`
        Return wavelength given neutron velocity.

    :func:`neutron_scattering`
        Computes scattering length density, cross sections and
        penetration depth for a compound.

    :func:`neutron_sld`
        Computes scattering length density for a compound.

    :func:`neutron_composite_sld`
        Returns a scattering length density for a compound whose composition
        is variable.

    :func:`energy_dependent_table`
        Lists isotopes with energy dependence.

    :func:`sld_table`
        Lists scattering length densitys for all elements in natural abundance.

    :func:`absorption_comparison_table`
        Compares the imaginary bound coherent scattering length to the
        absorption cross section.

    :func:`coherent_comparison_table`
        Compares the bound coherent scattering length to the
        coherent scattering cross section.

    :func:`total_comparison_table`
        Compares the total scattering cross section to the sum of the
        coherent and incoherent scattering cross sections.

For private tables use :func:`init` to set the data.

The neutron scattering information table is reproduced from the Atomic
Institute for Austrian Universities\ [#Rauch2003]_  (retrieve March 2008):

http://www.ati.ac.at/~neutropt/scattering/table.html

The above site has references to the published values for every entry in
the table.  We have included these in the documentation directory
associated with the periodictable package.

.. Note:

   Enteries in the table have been measured independently, so the values
   measured for the scattering length of an element or isotope may be
   inconsistent with the values measured for the corresponding cross section.

.. [#Rauch2003] Rauch, H. and Waschkowski, W. (2003)
    Neutron Scattering Lengths in ILL
    Neutron Data Booklet (second edition), A.-J. Dianoux, G. Lander, Eds.
    Old City Publishing, Philidelphia, PA. pp 1.1-1 to 1.1-17.

.. [#Rauch2000] Rauch, H. and Waschkowski, W. (2000)
    Neutron scattering lengths. Schopper, H. (ed.).
    SpringerMaterials - The Landolt-Börnstein Database (http://www.springermaterials.com).
    doi: 10.1007/10499706_6

.. [#Koester1991] Koester, L., Rauch, H., Seymann. E. (1991)
    Atomic Data Nuclear Data Tables 49, 65

.. [#Lynn1990] Lynn, J.E. and Seeger, P.A. (1990)
    Resonance effects in neutron scattering lengths of rare-earth nuclides.
    Atomic Data and Nuclear Data Tables 44, 191-207.

.. [#Sears1999] Sears, V. F. (1999)
    4.4.4 Scattering lengths for neutrons.
    In Wilson & Prince eds. Intl. Tables for Crystallography C
    Kluwer Academic Publishers. pp 383.

.. [#Sears1992] Sears, V.F. (1992)
    Neutron scattering lengths and cross sections.
    Neutron News 3, No. 3, 26-37.

.. [#May1982] May, R.P.,  Ibel, K. and Haas, J. (1982)
    The forward scattering of cold neutrons by mixtures of light and heavy water.
    J. Appl. Cryst. 15, 15-19.

.. [#Smith2006] Smith, G.S. and Majkrzak, C.M. (2006)
    2.9 Neutron reflectometry.
    In E. Prince ed. Intl. Tables for Crystallography C
    Wiley InterScience. pp 126-146.
    doi: 10.1107/97809553602060000584

.. [#Glinka2011] Glinka, C.J. (2011)
    Incoherent Neutron Scattering from Multi-element Materials.
    J. Appl. Cryst. 44, 618-624.
    doi: 10.1107/S0021889811008223
"""
from __future__ import print_function

import numpy
from numpy import sqrt, pi, asarray, inf
from .core import Element, Isotope, default_table
from .constants import (avogadro_number, plancks_constant, electron_volt,
                        neutron_mass, atomic_mass_constant)
from .util import require_keywords

__all__ = ['init', 'Neutron',
           'neutron_energy', 'neutron_wavelength',
           'neutron_wavelength_from_velocity',
           'neutron_scattering', 'neutron_sld', 'neutron_composite_sld',
           'sld_plot',
           'absorption_comparison_table', 'coherent_comparison_table',
           'incoherent_comparison_table', 'total_comparison_table',
           'energy_dependent_table', 'sld_table',
           'neutron_sld_from_atoms',
           #'scattering_potential',
          ]

ABSORPTION_WAVELENGTH = 1.798


# Velocity (m/s) <=> wavelength (A)
#   lambda = h / p = h (eV) (J/eV) / ( m_n (kg) v (m/s) ) (10^10 A/m)
#
# Since plancks constant is in eV
#   lambda = (1e10 * h*electron_volt/(neutron_mass/N_A)) / velocity

# Energy (eV) <=> wavelength (A)
#   h^2/(2 m_n kg lambda A) (10^20 A/m) (1000 meV/eV) / (electron_volt J/eV)
# Since plancks constant is in eV
#   (h J)^2/electron_volt = ((h eV)(electron_volt J/eV))^2/electron_volt
#                         = (h eV)^2 * electron_volt
ENERGY_FACTOR = (plancks_constant**2*electron_volt
                 / (2 * neutron_mass * atomic_mass_constant)) * 1e23
VELOCITY_FACTOR = (plancks_constant*electron_volt
                   / (neutron_mass * atomic_mass_constant)) * 1e10
def neutron_wavelength(energy):
    r"""
    Convert neutron energy to wavelength.

    :Parameters:
        *energy* : float or vector | meV

    :Returns:
        *wavelength* : float or vector | |Ang|

    Energy is converted to wavelength using

    .. math::

        E = 1/2 m_n v^2 = h^2 / (2 m_n \lambda^2)
        \Rightarrow \lambda = \sqrt{h^2 / (2 m_n E)}

    where

        $h$ = planck's constant in |Js|

        $m_n$ = neutron mass in kg

    """
    return sqrt(ENERGY_FACTOR / asarray(energy))

def neutron_wavelength_from_velocity(velocity):
    r"""
    Convert neutron velocity to wavelength.

    :Parameters:
        *velocity* : float or vector | m/s

    :Returns:
        *wavelength* : float or vector | |Ang|

    Velocity is converted to wavelength using

    .. math::

        \lambda = h/p = h/(m_n v)

    where

        $h$ = planck's constant in |Js|

        $m_n$ = neutron mass in kg
    """
    return VELOCITY_FACTOR / velocity

def neutron_energy(wavelength):
    r"""
    Convert neutron wavelength to energy.

    :Parameters:
        *wavelength* : float or vector | |Ang|

    :Returns:
        *energy* : float or vector | meV

    Wavelength is converted to energy using

    .. math::

        E = 1/2 m_n v^2 = h^2 / (2 m_n \lambda^2)

    where:

        $h$ = planck's constant in |Js|

        $m_n$ = neutron mass in kg
    """
    return ENERGY_FACTOR / asarray(wavelength)**2

def _CHECK_scattering_potential(sld):
    r"""
    Convert neutron scattering length density to energy potential.

    :Parameters:
        *sld* : float or vector | |1e-6/Ang^2|

            Scattering length density.

    :Returns:
        *energy* : float or vector | $10^{-6}$ eV

            Scattering potential.

    Computes:[#Smith2006]_

    .. math::

        V = 2 \pi \hbar^2 N_b / m_n

    where:

        $\hbar = h / (2 \pi)$

        $h$ = planck's constant in |Js|

        $N_b = \sum{ n_i b_i } / V$

        $m_n$ = neutron mass in kg
    """
    return (ENERGY_FACTOR/pi) * asarray(sld)

class Neutron(object):
    r"""
    Neutron scattering factors are attached to each element in the periodic
    table for which values are available.  If no information is available,
    then the neutron field of the element will be *None*. Even when neutron
    information is available, it may not be complete, so individual fields
    may be *None*.

    The following fields are defined:

    * b_c (fm)
        Bounds coherent scattering length.

    * total (barn)
        Total scattering cross section $\sigma_s$.  This does not include the
        absorption cross section.  To compute the total collision cross
        section use $\sigma_t = \sigma_s + \sigma_a$

    * absorption (barn)
        Absorption cross section $\sigma_a$ at 1.798 |Ang|.  Scale to your beam
        by dividing by periodictable.nsf.ABSORPTION_WAVELENGTH and multiplying
        by your wavelength.


    Additional fields not used for calculation include:

    * b_c_i (fm)
        Imaginary bound coherent scattering length.  This is
        related to absorption cross section by $\sigma_a = 4 \pi b_i/k$ where
        $k = 2 \pi/\lambda$ and an additional factor of 1000 for converting
        between |Ang|\ |cdot|\ fm and barns.  b_c_i is not available
        for all isotopes for which absorption cross sections have been measured.

    * bp, bm (fm)
        Spin-dependent scattering for I+1/2 and I-1/2 (not always available).
        Incoherent scattering arises from the spin-dependent scattering b+
        and b-. The Neutron Data Booklet\ [#Rauch2003]_ gives formulas for
        calculating coherent and incoherent scattering from b+ and b- alone.

    * bp_i, bm_i (fm)
        Imaginary portion of bp and bm.

    * is_energy_dependent (boolean)
        Do not use this data if scattering is energy dependent.

    * coherent (barn)
        Coherent scattering cross section.  This is tabulated but not used.
        In theory coherent scattering is related to bound coherent scattering
        by $\sigma_s = 4 \pi b_c^2/100$. In practice, these values are
        different, with the following table showing the largest relative
        difference:

        ========  ========  ========  ========  ========
        Sc   3%   Ti   4%   V   34%   Mn   1%   Cd   4%
        Te   4%   Xe   9%   Sm 100%   Eu  46%   Gd 61%
        Tb   1%   Ho  11%   W    4%   Au   7%   Hg  2%
        ========  ========  ========  ========  ========

    * incoherent (barn)
        Incoherent scattering cross section $\sigma_i$.  This is tabulated but
        not used. Instead, the incoherent cross section is computed from the
        total cross section minus the coherent cross section even for single
        atoms so that results from compounds are consistent with results from
        single atoms.

    For elements, the scattering cross-sections are based on the natural
    abundance of the individual isotopes. Individual isotopes may have
    the following additional fields

    * abundance (%)
        Isotope abundance used to compute the properties of the element in
        natural abundance.

    * nuclear_spin (string)
        Spin on the nucleus: '0', '1/2', '3/2', etc.

    Each field ``T`` above has a corresponding ``T_units`` attribute with
    the name of the units. For scattering calculations, the scattering
    length density is the value of interest. This is computed from the
    *number_density* of the individual elements, as derived from the element
    density and atomic mass.

    .. Note:: 1 barn = 100 |fm^2|
    """
    b_c = None
    b_c_i = None
    b_c_units = "fm"
    bp = None
    bp_i = None
    bp_units = "fm"
    bm = None
    bm_i = None
    bm_units = "fm"
    coherent = None
    coherent_units = "barn"
    incoherent = None
    incoherent_units = "barn"
    total = None
    total_units = "barn"
    absorption = None
    absorption_units = "barn"
    abundance = 0.
    abundance_units = "%"
    is_energy_dependent = False
    def __init__(self):
        self._number_density = None
    def __str__(self):
        return ("b_c=%.3g coh=%.3g inc=%.3g abs=%.3g"
                % (self.b_c, self.coherent, self.incoherent, self.absorption))
    def has_sld(self):
        """Returns *True* if sld is defined for this element/isotope."""
        return None not in [self.b_c, self._number_density]
    @require_keywords
    def sld(self, wavelength=ABSORPTION_WAVELENGTH):
        """
        Returns scattering length density for the element at natural
        abundance and density.

        :Parameters:
            *wavelength* : float | |Ang|

        :Returns:
            *sld* : (float, float, float) | |1e-6/Ang^2|
                (*real*, -*imaginary*, *incoherent*) scattering length density.

        .. Note:

           Values may not be correct when the element or isotope has
           *is_energy_dependent=True*

        See :func:`neutron_scattering` for details.
        """

        # Compute number and absorption density assuming isotope has
        # same structure as the bulk element
        if not self.has_sld():
            return None, None, None

        b_c = self.b_c
        sigma_s = self.total
        sigma_a = self.absorption/ABSORPTION_WAVELENGTH*wavelength

        number_density = self._number_density*1e-24

        # PAK 2017-04-21: compute incoherent cross section from total cross section
        sigma_c = 4*pi/100 * b_c**2
        sigma_i = max(sigma_s - sigma_c, 0.)

        # Compute SLD
        sld_re = number_density * b_c * 10
        sld_im = number_density * sigma_a / (2 * wavelength) * 0.01
        sld_inc = number_density * sqrt(sigma_i / (4*pi/100)) * 10

        return sld_re, sld_im, sld_inc

    @require_keywords
    def scattering(self, wavelength=ABSORPTION_WAVELENGTH):
        r"""
        Returns neutron scattering information for the element at natural
        abundance and density.

        :Parameters:
            *wavelength* : float | |Ang|

        :Returns:
            *sld* : (float, float, float) | |1e-6/Ang^2|
                (*real*, -*imaginary*, *incoherent*) scattering length density
            *xs* : (float, float, float) | |1/cm|
                (*coherent*, *absorption*, *incoherent*) cross sections.
            *penetration* : float | cm
                1/e penetration length.

        .. Note:

           Values may not be correct when the element or isotope has
           *is_energy_dependent=True*

        See :func:`neutron_scattering` for details.
        """

        # Compute number and absorption density assuming isotope has
        # same structure as the bulk element
        if not self.has_sld():
            return None, None, None

        b_c = self.b_c
        sigma_s = self.total
        sigma_a = self.absorption*wavelength/ABSORPTION_WAVELENGTH

        number_density = self._number_density*1e-24

        # PAK 2017-04-21: compute incoherent cross section from total cross section
        sigma_c = 4*pi/100 * b_c**2
        sigma_i = max(sigma_s - sigma_c, 0.)

        # Compute SLD
        sld_re = number_density * b_c * 10
        sld_im = number_density * sigma_a / (2 * wavelength) * 0.01
        sld_inc = number_density * sqrt(sigma_i / (4*pi/100)) * 10

        # Compute scattering cross section per unit volume
        total_xs = number_density * sigma_s
        coh_xs = number_density * sigma_c
        abs_xs = number_density * sigma_a
        inc_xs = number_density * sigma_i

        # Compute 1/e length
        penetration = 1/(abs_xs + total_xs)

        return (sld_re, sld_im, sld_inc), (coh_xs, abs_xs, inc_xs), penetration


def init(table, reload=False):
    """
    Loads the Rauch table from the neutron data book.
    """
    if 'neutron' in table.properties and not reload:
        return
    table.properties.append('neutron')
    assert ('density' in table.properties and 'mass' in table.properties), \
        "Neutron table requires mass and density properties"

    # Defaults for missing neutron information
    missing = Neutron()
    Isotope.neutron = missing
    Element.neutron = missing

    for line in nsftable.split('\n'):
        columns = line.split(',')

        nsf = Neutron()
        p = columns[1]
        spin = columns[2]
        nsf.b_c, nsf.bp, nsf.bm = [fix_number(a) for a in columns[3:6]]
        nsf.is_energy_dependent = (columns[6] == 'E')
        nsf.coherent, nsf.incoherent, nsf.total, nsf.absorption \
            = [fix_number(a) for a in columns[7:]]

        parts = columns[0].split('-')
        Z = int(parts[0])
        symbol = parts[1]
        isotope_number = int(parts[2]) if len(parts) == 3 else 0

        # Fetch element from the table and check that the symbol matches
        element = table[Z]
        assert element.symbol == symbol, \
            "Symbol %s does not match %s" % (symbol, element.symbol)

        # Plug the default number density for the element into the nsf so
        # it can calculate sld.
        nsf._number_density = element.number_density


        # For new elements, clear out 'neutron' attribute for isotopes
        # This protects against isotope using the element data when
        # they don't have any specific neutron data.
        #if isotope_number == 0 or not hasattr(element,'neutron'):
        #    for iso in element: iso.neutron = None

        if isotope_number == 0:
            # Bulk values using laboratory abundances of isotopes
            element.neutron = nsf
        else:
            # Values for the individual isotope
            isotope = element.add_isotope(isotope_number)
            isotope.neutron = nsf
            isotope.nuclear_spin = spin
            # p column contains either abundance(uncertainty) or "half-life Y"
            isotope.neutron.abundance = fix_number(p) if ' ' not in p else 0

            # If the element is not yet initialized, copy info into the atom.
            # This serves to set the element info for elements with only
            # one isotope.
            if element.neutron is missing:
                element.neutron = nsf

    for line in nsftableI.split('\n'):
        columns = line.split(',')

        # Fetch the nsf record
        parts = columns[0].split('-')
        Z = int(parts[0])
        symbol = parts[1]
        isotope_number = int(parts[2]) if len(parts) == 3 else 0
        element = table[Z]
        if isotope_number == 0:
            nsf = element.neutron
        else:
            nsf = element[isotope_number].neutron

        # Read imaginary values
        nsf.b_c_i, nsf.bp_i, nsf.bm_i = [fix_number(a) for a in columns[1:]]

    # Xe total cross section is missing from the table
    # put it in even though it has not been independently measured
    if table.Xe.neutron.total is None:
        table.Xe.neutron.total = table.Xe.neutron.coherent + table.Xe.neutron.incoherent


# Note: docs and function prototype are reproduced in __init__
@require_keywords
def neutron_scattering(compound, density=None,
                       wavelength=ABSORPTION_WAVELENGTH, energy=None,
                       natural_density=None):
    r"""
    Computes neutron scattering cross sections for molecules.

    :Parameters:
        *compound* : Formula initializer
            Chemical formula
        *density* : float | |g/cm^3|
            Mass density
        *natural_density* : float | |g/cm^3|
            Mass density of formula with naturally occuring abundances
        *wavelength* 1.798 : float | |Ang|
            Neutron wavelength.
        *energy* : float | meV
            Neutron energy.  If energy is specified then wavelength is ignored.

    :Returns:
        *sld* : (float, float, float) | |1e-6/Ang^2|
            (*real*, -*imaginary*, *incoherent*) scattering length density.
        *xs* : (float, float, float) | |1/cm|
            (*coherent*, *absorption*, *incoherent*) cross sections.
        *penetration* : float | cm
            1/e penetration depth of the beam

    :Raises:
        *AssertionError* : density is missing.


    .. Note:

        Values may not correct if any element or isotope has
        *is_energy_dependent=True*

    The coherent and incoherent cross sections are calculated from the
    bound scattering lengths for nuclei. The actual cross sections depend
    on the incoming neutron energy and sample temperature, especially for
    light elements. For low energy neutrons (cold neutrons), the tabulated
    cross sections are generally a lower limit. The measured incoherent
    scattering from hydrogen, for example, can be considerably larger
    (by more than 20%) than its bound value. For example, the incoherent
    scattering cross section of H2O is 5.621/cm as computed from these tables
    compared to ~7.0/cm as measured with 5 meV neutrons at 290K. [#May1982]_

    The scattering factor tables are not self consistent.  The following
    functions show discrepencies between the various measurements of the
    scattering potential:

        :func:`absorption_comparison_table`

        :func:`coherent_comparison_table`

        :func:`total_comparison_table`

    To compute the neutron cross sections we first need to average
    quantities for the unit cell of the molecule.

    Molar mass *m* (g/mol) is the sum of the masses of each component:

    .. math::

        m = \sum{n_i m_i}\ {\rm for\ each\ atom}\ i=1,2,\ldots

    Cell volume $V$ (|Ang^3|/molecule) is molar mass $m$ over density
    $rho$, with a correction based on Avogadro's number $N_A$ (atoms/mol)
    and the length conversion $10^8$ |Ang|/cm:

    .. math::

        V = m/\rho \cdot 1/N_A \cdot (10^8)^3

    Number density $N$ is the number of scatterers per unit volume:

    .. math::

        N = \left.\sum{n_i} \right/ V

    Coherent scattering cross section $\sigma_c$ of the molecule is computed
    from the average scattering length of its constituent atoms, weighted by
    their frequency.

    .. math::

        b_c = \left.\sum n_i b_c \right/ \sum n_i

    This is converted to a scattering cross section and scaled
    by 1 barn = 100 |fm^2|:

    .. math::

        \sigma_c = \left. 4 \pi b_c^2 \right/ 100

    Similarly, the absorption cross section $\sigma_a$, the incoherent cross
    section $\sigma_i$, and the total cross section $\sigma_s$ can be computed
    from the corresponding cross sections of the constituent elements,\ [#Sears1999]_
    already expressed in barns:

    .. math::

        \sigma_a &= \left. \sum n_j \sigma_{aj} \right/ \sum n_j \\
        \sigma_i &= \left. \sum n_j \sigma_{ij} \right/ \sum n_j \\
        \sigma_s &= \left. \sum n_j \sigma_{sj} \right/ \sum n_j

    The neutron cross sections are tabulated at wavelength 1.798 |Ang|.
    In the thermal neutron energy range most absorption cross sections
    scale linearly with wavelength,\ [#Lynn1990]_ and can be adjusted
    with a simple multiplication:

    .. math::

        \sigma_a = \sigma_a \lambda / \lambda_o = \sigma_a \lambda / 1.798

    If *isotope.neutron.is_energy_dependent()* is true for any part of
    the material, then this relation may not hold, and the returned values
    are only valid for 1.798 |Ang|.

    From the scattering cross sections, the scattering length for a material
    $b = b' - i b''$ can be computed using the following relations:[#Sears1999]_

    .. math::

        \sigma_c &= 4 \pi |b_c|^2 \\
        \sigma_a &= \left. 4 \pi \left< b'' \right> \right/k \ {\rm for} \ k=2\pi / \lambda \\
        \sigma_i &= 4 \pi |b_i|^2 \\
        \sigma_s &= 4 \pi \left< |b|^2 \right>

    Transforming we get:

    .. math::

        b'' &= \left. \sigma_a \right/ (2 \lambda) \\
        b_i &= \sqrt{ \sigma_i / (4 \pi) }

    The incoherent scattering length $b_i$ can be treated primarily
    as an absorption length in large scale structure calculations, with the
    complex scattering length approximated by $b = b_c - i (b'' + b_i)$.

    The scattering potential is often expressed as a scattering length
    density (SLD).  This is just the number density of the scatterers times
    their scattering lengths, with a correction for units.

    .. math::

        \rho_{\rm re}  &= 10 N b_c \\
        \rho_{\rm im}  &= -N b'' / 100 \\
        \rho_{\rm inc} &= 10 N b_i

    with the factors of 10 chosen to give SLD in units of $\AA^{-2}$.  The
    resulting $\rho = \rho_{\rm re} + i \rho_{\rm im}$ can be used in the
    scattering equations.  Treatment of the incoherent scattering $\rho_{\rm inc}$
    will depend on the equation.  For example, it can be treated as an absorption
    in specular reflectivity calculations since the incoherently scattered neutrons
    are removed from the multilayer recurrence calculation.

    Similarly, scattering cross section includes number density:

    .. math::

        \Sigma_{\rm coh} &= N \sigma_c \\
        \Sigma_{\rm inc} &= N \sigma_i \\
        \Sigma_{\rm abs} &= N \sigma_a \\
        \Sigma_{\rm s} &= N \sigma_s


    The 1/e penetration depth *t_u* represents the the depth into the sample at
    which the unscattered intensity is reduced by a factor of $e$:

    .. math::

        t_u = \left. 1 \right/ (\Sigma_{\rm s} + \Sigma_{\rm abs})

    Note that the calculated penetration depth includes the effects of both
    absorption and incoherent scattering (which spreads the beam in the
    full $4\pi$ spherical surface, and so it looks like absorption with
    respect to the beam), as well as the coherent scattering from the sample.
    If you instead want to calculate the effective shielding of the sample,
    you should recalculate penetration depth without the coherent scattering.

    Transmission rate can be computed from $e^{-d/t_u}$ for penetration i
    depth $t_u$ and sample thickness $d$.

    In general, the total scattering cross section is not the sum of the
    coherent and incoherent cross sections,
    $\Sigma_{\rm s} \ne \Sigma_{\rm coh}+\Sigma_{\rm inc}$.\ [#Glinka2011]_
    Instead, we compute $\Sigma_{\rm inc} = \Sigma_{\rm s} - \Sigma_{\rm coh}$
    in accordance with Sect. 4.4.4 of the Internation Tables for Crystallography
    Volume C.

    Including unit conversion with $\mu=10^{-6}$ the full scattering equations
    are:

    .. math::

        \rho_{\rm re}\,(\mu/\AA^2) &= (N/\AA^3)
            \, (b_c\,{\rm fm})
            \, (10^{-5} \AA/{\rm\,fm})
            \, (10^6\,\mu) \\
        \rho_{\rm im}\,(\mu/\AA^2) &= (N/\AA^3)
            \, (\sigma_a\,{\rm barn})
            \, (10^{-8}\,\AA^2/{\rm barn}) / (2 \lambda\, \AA)
            \, (10^6\,\mu) \\
        \rho_{\rm inc}\,(\mu/\AA^2) &= (N/\AA^3)
            \, \sqrt{(\sigma_i\, {\rm barn})/(4 \pi)
                \, (100\, {\rm fm}^2/{\rm barn})}
            \, (10^{-5}\, \AA/{\rm fm})
            \, (10^6\, \mu) \\
        \Sigma_{\rm coh}\,(1/{\rm cm}) &= (N/\AA^3)
            \, (\sigma_c\, {\rm barn})
            \, (10^{-8}\, \AA^2/{\rm barn})
            \, (10^8\, \AA/{\rm cm}) \\
        \Sigma_{\rm inc}\,(1/{\rm cm}) &= (N/\AA^3)
            \,(\sigma_i\, {\rm barn})
            \, (10^{-8}\, \AA^2/{\rm barn})
            \, (10^8\, \AA/{\rm cm}) \\
        \Sigma_{\rm abs}\,(1/{\rm cm}) &= (N/\AA^3)
            \,(\sigma_a\,{\rm barn})
            \, (10^{-8}\, \AA^2/{\rm barn})
            \, (10^8\, \AA/{\rm cm}) \\
        \Sigma_{\rm s}\,(1/{\rm cm}) &= (N/\AA^3)
            \,(\sigma_s\,{\rm barn})
            \, (10^{-8}\, \AA^2/{\rm barn})
            \, (10^8\, \AA/{\rm cm}) \\
        t_u\,({\rm cm}) &= 1/(\Sigma_{\rm s}\, 1/{\rm cm}
            \,+\, \Sigma_{\rm abs}\, 1/{\rm cm})
    """
    from . import formulas
    compound = formulas.formula(compound, density=density,
                                natural_density=natural_density)
    assert compound.density is not None, "scattering calculation needs density"
    if energy is not None:
        wavelength = neutron_wavelength(energy)
    assert wavelength is not None, "scattering calculation needs energy or wavelength"

    # Sum over the quantities
    molar_mass = num_atoms = 0
    sigma_s = sigma_a = b_c = 0
    is_energy_dependent = False
    for element, quantity in compound.atoms.items():
        if not element.neutron.has_sld():
            return None, None, None
        #print element,quantity,element.neutron.b_c,element.neutron.absorption,element.neutron.total
        molar_mass += element.mass*quantity
        num_atoms += quantity
        sigma_a += quantity * element.neutron.absorption
        sigma_s += quantity * element.neutron.total
        b_c += quantity * element.neutron.b_c
        is_energy_dependent |= element.neutron.is_energy_dependent

    # If nothing to sum, return values for a vacuum.  This might be because
    # the material has no atoms or it might be because the density is zero.
    if molar_mass*compound.density == 0:
        return (0, 0, 0), (0, 0, 0), inf

    # Turn sums into scattering factors
    b_c /= num_atoms
    sigma_s /= num_atoms
    sigma_a *= wavelength/ABSORPTION_WAVELENGTH/num_atoms

    # Compute number density
    cell_volume = (molar_mass/compound.density)/avogadro_number*1e24 # (10^8 A/cm)^3
    number_density = num_atoms / cell_volume

    # PAK 2017-04-21: compute incoherent cross section from total cross section
    sigma_c = 4*pi/100 * b_c**2  # = 4 pi |b_c/10|^2
    sigma_i = max(sigma_s - sigma_c, 0.0)

    # Compute SLD
    sld_re = number_density * b_c * 10
    sld_im = number_density * sigma_a / (2 * wavelength) * 0.01
    sld_inc = number_density * sqrt(sigma_i / (4*pi/100)) * 10

    # Compute scattering cross section per unit volume
    total_xs = number_density * sigma_s
    coh_xs = number_density * sigma_c
    abs_xs = number_density * sigma_a
    inc_xs = number_density * sigma_i

    # Compute 1/e length
    penetration = 1/(abs_xs + total_xs)

    return (sld_re, sld_im, sld_inc), (coh_xs, abs_xs, inc_xs), penetration


def neutron_sld(*args, **kw):
    """
    Computes neutron scattering length densities for molecules.

    :Parameters:
        *compound* : Formula initializer
            Chemical formula
        *density* : float | |g/cm^3|
            Mass density
        *natural_density* : float | |g/cm^3|
            Mass density of formula with naturally occuring abundances
        *wavelength* : float | |Ang|
            Neutron wavelength.
        *energy* : float | meV
            Neutron energy.  If energy is specified then wavelength is ignored.

    :Returns:
        *sld* : (float, float, float) | |1e-6/Ang^2|
            (*real*, -*imaginary*, *incoherent*) scattering length density.

    :Raises:
        *AssertionError* : density is missing.

    Returns the scattering length density of the compound.
    See :func:`neutron_scattering` for details.
    """
    return neutron_scattering(*args, **kw)[0]

def neutron_sld_from_atoms(*args, **kw):
    r"""
    .. deprecated:: 0.91

        :func:`neutron_sld` now accepts dictionaries of \{atom\: count\} directly.

    """
    return neutron_scattering(*args, **kw)[0]


def _sum_piece(wavelength, compound):
    """
    Helper for neutron_composite_sld which precomputes quantities of interest
    for material fragments in a composite formula.
    """
    # Sum over the quantities
    molar_mass = num_atoms = 0
    sigma_a = sigma_s = b_c = 0
    is_energy_dependent = False
    for element, quantity in compound.atoms.items():
        #print element,quantity,element.neutron.b_c,element.neutron.absorption,element.neutron.total
        molar_mass += element.mass*quantity
        num_atoms += quantity
        sigma_a += quantity * element.neutron.absorption
        sigma_s += quantity * element.neutron.total
        b_c += quantity * element.neutron.b_c
        is_energy_dependent |= element.neutron.is_energy_dependent

    return num_atoms, molar_mass, b_c, sigma_s, sigma_a

def neutron_composite_sld(materials, wavelength=ABSORPTION_WAVELENGTH):
    """
    Create a composite SLD calculator.

    :Parameters:
        *materials* : [Formula]
            List of materials
        *wavelength* = 1.798: float OR [float] | |Ang|
            Probe wavelength(s).

    :Returns:
        *calculator* : f(w, density=1) -> (*real*, -*imaginary*, *incoherent*)

    The composite calculator takes a vector of weights and returns the
    scattering length density of the composite.  This is useful for operations
    on large molecules, such as calculating a set of contrasts or fitting
    a material composition.

    Table lookups and partial sums and constants are precomputed so that
    the calculation consists of a few simple array operations regardless
    of the size of the material fragments.
    """
    parts = [_sum_piece(wavelength, m) for m in materials]
    V = [numpy.array(v) for v in zip(*parts)]
    num_atoms_parts, molar_mass_parts, b_c_parts, sigma_s_parts, sigma_a_parts = V

    def _compute(weights, density=1):
        # Sum over the quantities
        molar_mass = numpy.sum(weights*molar_mass_parts)
        num_atoms = numpy.sum(weights*num_atoms_parts)
        sigma_a = numpy.sum(weights*sigma_a_parts)
        sigma_s = numpy.sum(weights*sigma_s_parts)
        b_c = numpy.sum(weights*b_c_parts)

        # If nothing to sum, return values for a vacuum.  This might be because
        # the material has no atoms or it might be because the density is zero.
        if molar_mass*density == 0:
            return 0, 0, 0

        # Turn sums into scattering factors
        b_c /= num_atoms
        sigma_a *= wavelength/ABSORPTION_WAVELENGTH/num_atoms # at tabulated wavelength
        sigma_s /= num_atoms

        # Compute number density
        cell_volume = (molar_mass/density)/avogadro_number*1e24
        number_density = num_atoms / cell_volume

        # PAK 2017-04-21: compute incoherent cross section from total cross section
        sigma_c = 4*pi/100 * b_c**2
        sigma_i = max(sigma_s - sigma_c, 0.0)

        # Compute SLD
        sld_re = number_density * b_c * 10
        sld_im = number_density * sigma_a / (2 * wavelength) * 0.01
        sld_inc = number_density * sqrt(sigma_i / (4*pi/100)) * 10

        return sld_re, sld_im, sld_inc

    return _compute


def sld_plot(table=None):
    """
    Plots SLD as a function of element number.

    :Parameters:
        *table* : PeriodicTable
            The default periodictable unless a specific table has been requested.

    :Returns: None
    """
    from .plot import table_plot

    table = default_table(table)

    SLDs = dict((el, el.neutron.sld()[0])
                for el in table
                if el.neutron.has_sld())
    SLDs[table.D] = table.D.neutron.sld()[0]

    table_plot(SLDs, label='Scattering length density ($10^{-6}$ Nb)',
               title='Neutron SLD for elements in natural abundance')


# We are including the complete original table here in case somebody in
# future wants to extract uncertainties or other information.
#
# Z-Symbol-A
#   This is the atomic number, the symbol and the isotope.
#   If Z-Symbol only, the line represents an element with scattering determined
#   by the natural abundance of the isotopes in laboratory samples.  If there
#   is only one isotope, then there is no corresponding element definition.
# concentration/half-life
#   This is the natural abundance of the isotope expressed as a percentage, or
#   it is the half-life in years (number Y) or seconds (number S).
# spin I
#   For isotopes, the nuclear spin.
# b_c, bp, bm
#   Bound coherent scattering length in fm
#   b+/b- if present are spin dependent scattering for I+1/2 and I-1/2
#   respectively
# c
#   'E' if there is a strong energy dependency.
#   '+/-' if separate b+/b- values are available [doesn't seem true -PAK]
# coherent, incoherent, total
#   The coherent and incoherent scattering cross-sections in barns.
# absorption
#   The thermal absorption cross section in barns at 1.798 Angstroms/25.30 meV.
#
# Numbers in parenthesis represents uncertainty.
# Numbers followed by '*' are estimated.
# Numbers may be given as limit, e.g., <1.0e-6
#
# Formatting corrections by Paul Kienzle

nsftable = """\
0-n-1,618 S,1/2,-37.0(6),0,-37.0(6),,43.01(2),,43.01(2),0
1-H,,,-3.7409(11),,,,1.7568(10),80.26(6),82.02(6),0.3326(7)
1-H-1,99.985,1/2,-3.7423(12),10.817(5),-47.420(14),+/-,1.7583(10),80.27(6),82.03(6),0.3326(7)
1-H-2,0.0149,1,6.674(6),9.53(3),0.975(60),,5.592(7),2.05(3),7.64(3),0.000519(7)
1-H-3,12.26 Y,1/2,4.792(27),4.18(15),6.56(37),,2.89(3),0.14(4),3.03(5),<6.0E-6
2-He,,,3.26(3),,,,1.34(2),0,1.34(2),0.00747(1)
2-He-3,0.013,1/2,5.74(7),4.7(5),8.8(1.4),E,4.42(10),1.6(4),6.0(4),5333.0(7.0)
2-He-4,99.987,0,3.26(3),,,,1.34(2),0,1.34(2),0
3-Li,,,-1.90(3),,,,0.454(10),0.92(3),1.37(3),70.5(3)
3-Li-6,7.5,1,2.0(1),0.67(14),4.67(17),+/-,0.51(5),0.46(5),0.97(7),940.0(4.0)
3-Li-7,92.5,3/2,-2.22(2),-4.15(6),1.00(8),+/-,0.619(11),0.78(3),1.40(3),0.0454(3)
4-Be-9,100,3/2,7.79(1),,,,7.63(2),0.0018(9),7.63(2),0.0076(8)
5-B,,,5.30(4),,,,3.54(5),1.70(12),5.24(11),767.0(8.0)
5-B-10,19.4,3,-0.2(4),-4.2(4),5.2(4),,0.144(6),3.0(4),3.1(4),3835.0(9.0)
5-B-11,80.2,3/2,6.65(4),5.6(3),8.3(3),,5.56(7),0.21(7),5.77(10),0.0055(33)
6-C,,,6.6484(13),,,,5.551(2),0.001(4),5.551(3),0.00350(7)
6-C-12,98.89,0,6.6535(14),,,,5.559(3),0,5.559(3),0.00353(7)
6-C-13,1.11,1/2,6.19(9),5.6(5),6.2(5),+/-,4.81(14),0.034(11),4.84(14),0.00137(4)
7-N,,,9.36(2),,,,11.01(5),0.50(12),11.51(11),1.90(3)
7-N-14,99.635,1,9.37(2),10.7(2),6.2(3),,11.03(5),0.50(12),11.53(11),1.91(3)
7-N-15,0.365,1/2,6.44(3),6.77(10),6.21(10),,5.21(5),0.00005(10),5.21(5),0.000024(8)
8-O,,,5.805(4),,,,4.232(6),0.000(8),4.232(6),0.00019(2)
8-O-16,99.75,0,5.805(5),,,,4.232(6),0,4.232(6),0.00010(2)
8-O-17,0.039,5/2,5.6(5),5.52(20),5.17(20),,4.20(22),0.004(3),4.20(22),0.236(10)
8-O-18,0.208,0,5.84(7),,,,4.29(10),0,4.29(10),0.00016(1)
9-F-19,100,1/2,5.654(12),5.632(10),5.767(10),+/-,4.017(14),0.0008(2),4.018(14),0.0096(5)
10-Ne,,,4.566(6),,,,2.620(7),0.008(9),2.628(6),0.039(4)
10-Ne-20,90.5,0,4.631(6),,,,2.695(7),0,2.695(7),0.036(4)
10-Ne-21,0.27,3/2,6.66(19),,,,5.6(3),0.05(2),5.7(3),0.67(11)
10-Ne-22,9.2,0,3.87(1),,,,1.88(1),0,1.88(1),0.046(6)
11-Na-23,100,3/2,3.63(2),6.42(4),-1.00(6),+/-,1.66(2),1.62(3),3.28(4),0.530(5)
12-Mg,,,5.375(4),,,,3.631(5),0.08(6),3.71(4),0.063(3)
12-Mg-24,78.99,0,5.49(18),,,,4.03(4),0,4.03(4),0.050(5)
12-Mg-25,10,5/2,3.62(14),4.73(30),1.76(20),+/-,1.65(13),0.28(4),1.93(14),0.19(3)
12-Mg-26,11,0,4.89(15),,,,3.00(18),0,3.00(18),0.0382(8)
13-Al-27,100,5/2,3.449(5),3.67(2),3.15(2),,1.495(4),0.0082(6),1.503(4),0.231(3)
14-Si,,,4.15071(22),,,,2.1633(10),0.004(8),2.167(8),0.171(3)
14-Si-28,92.2,0,4.106(6),,,,2.120(6),0,2.120(6),0.177(3)
14-Si-29,4.7,1/2,4.7(1),4.50(15),4.7(4),+/-,2.78(12),0.001(2),2.78(12),0.101(14)
14-Si-30,3.1,0,4.58(8),,,,2.64(9),0,2.64(9),0.107(2)
15-P-31,100,1/2,5.13(1),,,+/-,3.307(13),0.005(10),3.312(16),0.172(6)
16-S,,,2.847(1),,,,1.0186(7),0.007(5),1.026(5),0.53(1)
16-S-32,95,0,2.804(2),,,,0.9880(14),0,0.9880(14),0.54(4)
16-S-33,0.74,3/2,4.74(19),,,+/-,2.8(2),0.3(6),3.1(6),0.54(4)
16-S-34,4.2,0,3.48(3),,,,1.52(3),0,1.52(3),0.227(5)
16-S-36,0.02,0,3.0(1.0)*,,,,1.1(8),0,1.1(8),0.15(3)
17-Cl,,,9.5792(8),,,,11.528(2),5.3(5),16.8(5),33.5(3)
17-Cl-35,75.77,3/2,11.70(9),16.3(2),4.0(3),+/-,17.06(6),4.7(6),21.8(6),44.1(4)
17-Cl-37,24.23,3/2,3.08(6),3.10(7),3.05(7),+/-,1.19(5),0.001(3),1.19(5),0.433(6)
18-Ar,,,1.909(6),,,,0.458(3),0.225(5),0.683(4),0.675(9)
18-Ar-36,0.34,0,24.9(7),,,,77.9(4),0,77.9(4),5.2(5)
18-Ar-38,0.07,0,3.5(3.5),,,,1.5(3.1),0,1.5(3.1),0.8(5)
18-Ar-40,99.59,0,1.7,,,,0.421(3),0,0.421(3),0.660(9)
19-K,,,3.67(2),,,,1.69(2),0.27(11),1.96(11),2.1(1)
19-K-39,93.3,3/2,3.79(2),5.15,1.51,+/-,1.76(2),0.25(11),2.01(11),2.1(1)
19-K-40,0.012,4,3.1(1.0)*,,,,1.1(6),0.5(5)*,1.6(9),35.0(8.0)
19-K-41,6.7,3/2,2.69(8),,,,0.91(5),0.3(6),1.2(6),1.46(3)
20-Ca,,,4.70(2),,,,2.78(2),0.05(3),2.83(2),0.43(2)
20-Ca-40,96.94,0,4.78(5),,,,2.90(2),0,2.90(2),0.41(2)
20-Ca-42,0.64,0,3.36(10),,,,1.42(8),0,1.42(8),0.68(7)
20-Ca-43,0.13,7/2,-1.56(9),,,,0.31(4),0.5(5),0.8(5),6.2(6)
20-Ca-44,2.13,0,1.42(6),,,,0.25(2),0,0.25(2),0.88(5)
20-Ca-46,0.003,0,3.55(21),,,,1.6(2),0,1.6(2),0.74(7)
20-Ca-48,0.18,0,0.39(9),,,,0.019(9),0,0.019(9),1.09(14)
21-Sc-45,100,7/2,12.1(1),6.91(22),18.99(28),+/-,19.0(3),4.5(3),23.5(6),27.5(2)
22-Ti,,,-3.370(13),,,,1.485(2),2.87(3),4.35(3),6.09(13)
22-Ti-46,8,0,4.72(5),,,,3.05(7),0,3.05(7),0.59(18)
22-Ti-47,7.5,5/2,3.53(7),0.46(23),7.64(13),,1.66(11),1.5(2),3.2(2),1.7(2)
22-Ti-48,73.7,0,-5.86(2),,,,4.65(3),0,4.65(3),7.84(25)
22-Ti-49,5.5,7/2,0.98(5),2.6(3),-1.2(4),,0.14(1),3.3(3),3.4(3),2.2(3)
22-Ti-50,5.3,0,5.88(10),,,,4.80(12),0,4.80(12),0.179(3)
23-V,,,-0.443(14),,,,0.01838(12),5.08(6),5.10(6),5.08(4)
23-V-50,0.25,6,7.6(6)*,,,,7.3(1.1),0.5(5)*,7.8(1.0),60.0(40.0)
23-V-51,99.75,7/2,-0.402(2),4.93(25),-7.58(28),+/-,0.0203(2),5.07(6),5.09(6),4.9(1)
24-Cr,,,3.635(7),,,,1.660(6),1.83(2),3.49(2),3.05(6)
24-Cr-50,4.35,0,-4.50(5),,,,2.54(6),0,2.54(6),15.8(2)
24-Cr-52,83.8,0,4.914(15),,,,3.042(12),0,3.042(12),0.76(6)
24-Cr-53,9.59,3/2,-4.20(3),1.16(10),-13.0(2),,2.22(3),5.93(17),8.15(17),18.1(1.5)
24-Cr-54,2.36,0,4.55(10),,,,2.60(11),0,2.60(11),0.36(4)
25-Mn-55,100,5/2,-3.750(18),-4.93(46),-1.46(33),,1.75(2),0.40(2),2.15(3),13.3(2)
26-Fe,,,9.45(2),,,,11.22(5),0.40(11),11.62(10),2.56(3)
26-Fe-54,5.8,0,4.2(1),,,,2.2(1),0,2.2(1),2.25(18)
26-Fe-56,91.7,0,10.1(2),,,,12.42(7),0,12.42(7),2.59(14)
26-Fe-57,2.19,1/2,2.3(1),,,,0.66(6),0.3(3)*,1.0(3),2.48(30)
26-Fe-58,0.28,0,15(7),,,,28.0(26.0),0,28.0(26.0),1.28(5)
27-Co-59,100,7/2,2.49(2),-9.21(10),3.58(10),+/-,0.779(13),4.8(3),5.6(3),37.18(6)
28-Ni,,,10.3(1),,,,13.3(3),5.2(4),18.5(3),4.49(16)
28-Ni-58,67.88,0,14.4(1),,,,26.1(4),0,26.1(4),4.6(3)
28-Ni-60,26.23,0,2.8(1),,,,0.99(7),0,0.99(7),2.9(2)
28-Ni-61,1.19,3/2,7.60(6),,,,7.26(11),1.9(3),9.2(3),2.5(8)
28-Ni-62,3.66,0,-8.7(2),,,,9.5(4),0,9.5(4),14.5(3)
28-Ni-64,1.08,0,-0.37(7),,,,0.017(7),0,0.017(7),1.52(3)
29-Cu,,,7.718(4),,,,7.485(8),0.55(3),8.03(3),3.78(2)
29-Cu-63,69.1,3/2,6.477(13),,,+/-,5.2(2),0.006(1),5.2(2),4.50(2)
29-Cu-65,30.9,3/2,10.204(20),,,+/-,14.1(5),0.40(4),14.5(5),2.17(3)
30-Zn,,,5.680(5),,,,4.054(7),0.077(7),4.131(10),1.11(2)
30-Zn-64,48.9,0,5.23(4),,,,3.42(5),0,3.42(5),0.93(9)
30-Zn-66,27.8,0,5.98(5),,,,4.48(8),0,4.48(8),0.62(6)
30-Zn-67,4.1,5/2,7.58(8),5.8(5),10.1(7),+/-,7.18(15),0.28(3),7.46(15),6.8(8)
30-Zn-68,18.6,0,6.04(3),,,,4.57(5),0,4.57(5),1.1(1)
30-Zn-70,0.62,0,6.9(1.0)*,,,,4.5(1.5),0,4.5(1.5),0.092(5)
31-Ga,,,7.288(2),,,,6.675(4),0.16(3),6.83(3),2.75(3)
31-Ga-69,60,3/2,8.043(16),6.3(2),10.5(4),+/-,7.80(4),0.091(11),7.89(4),2.18(5)
31-Ga-71,40,3/2,6.170(11),5.5(6),7.8(1),+/-,5.15(5),0.084(8),5.23(5),3.61(10)
32-Ge,,,8.185(20),,,,8.42(4),0.18(7),8.60(6),2.20(4)
32-Ge-70,20.7,0,10.0(1),,,,12.6(3),0,12.6(3),3.0(2)
32-Ge-72,27.5,0,8.51(10),,,,9.1(2),0,9.1(2),0.8(2)
32-Ge-73,7.7,9/2,5.02(4),8.1(4),1.2(4),,3.17(5),1.5(3),4.7(3),15.1(4)
32-Ge-74,36.4,0,7.58(10),,,,7.2(2),0,7.2(2),0.4(2)
32-Ge-76,7.7,0,8.2(1.5),,,,8.0(3.0),0,8.0(3.0),0.16(2)
33-As-75,100,3/2,6.58(1),6.04(5),7.47(8),+/-,5.44(2),0.060(10),5.50(2),4.5(1)
34-Se,,,7.970(9),,,,7.98(2),0.32(6),8.30(6),11.7(2)
34-Se-74,0.9,0,0.8(3.0),,,,0.1(6),0,0.1(6),51.8(1.2)
34-Se-76,9,0,12.2(1),,,,18.7(3),0,18.7(3),85.0(7.0)
34-Se-77,7.5,0,8.25(8),,,,8.6(2),0.05(25),8.65(16),42.0(4.0)
34-Se-78,23.5,0,8.24(9),,,,8.5(2),0,8.5(2),0.43(2)
34-Se-80,50,0,7.48(3),,,,7.03(6),0,7.03(6),0.61(5)
34-Se-82,8.84,0,6.34(8),,,,5.05(13),0,5.05(13),0.044(3)
35-Br,,,6.79(2),,,,5.80(3),0.10(9),5.90(9),6.9(2)
35-Br-79,50.49,3/2,6.79(7),,,+/-,5.81(2),0.15(6),5.96(13),11.0(7)
35-Br-81,49.31,3/2,6.78(7),,,+/-,5.79(12),0.05(2),5.84(12),2.7(2)
36-Kr,,,7.81(2),,,,7.67(4),0.01(14),7.68(13),25.0(1.0)
36-Kr-78,0.35,0,,,,,,0,,6.4(9)
36-Kr-80,2.5,0,,,,,,0,,11.8(5)
36-Kr-82,11.6,0,,,,,,0,,29.0(20.0)
36-Kr-83,11.5,9/2,,,,,,,,185.0(30.0)
36-Kr-84,57,0,,,,,,0,6.6,0.113(15)
36-Kr-86,17.3,0,8.07(26),,,,8.2(4),0,8.2(4),0.003(2)
37-Rb,,,7.08(2),,,,6.32(4),0.5(4),6.8(4),0.38(1)
37-Rb-85,72.17,5/2,7.07(10),,,,6.2(2),0.5(5)*,6.7(5),0.48(1)
37-Rb-87,27.83,3/2,7.27(12),,,,6.6(2),0.5(5)*,7.1(5),0.12(3)
38-Sr,,,7.02(2),,,,6.19(4),0.06(11),6.25(10),1.28(6)
38-Sr-84,0.56,0,5.0(2.0),,,,6.0(2.0),0,6.0(2.0),0.87(7)
38-Sr-86,9.9,0,5.68(5),,,,4.04(7),0,4.04(7),1.04(7)
38-Sr-87,7,9/2,7.41(7),,,,6.88(13),0.5(5)*,7.4(5),16.0(3.0)
38-Sr-88,82.6,0,7.16(6),,,,6.42(11),0,6.42(11),0.058(4)
39-Y-89,100,1/2,7.75(2),8.4(2),5.8(5),+/-,7.55(4),0.15(8),7.70(9),1.28(2)
40-Zr,,,7.16(3),,,,6.44(5),0.02(15),6.46(14),0.185(3)
40-Zr-90,51.48,0,6.5(1),,,,5.1(2),0,5.1(2),0.011(59
40-Zr-91,11.23,5/2,8.8(1),7.9(2),10.1(2),+/-,9.5(2),0.15(4),9.7(2),1.17(10)
40-Zr-92,17.11,0,7.5(2),,,,6.9(4),0,6.9(4),0.22(6)
40-Zr-94,17.4,0,8.3(2),,,,8.4(4),0,8.4(4),0.0499(24)
40-Zr-96,2.8,0,5.5(1),,,,3.8(1),0,3.8(1),0.0229(10)
41-Nb-93,100,9/2,7.054(3),7.06(4),7.35(4),+/-,6.253(5),0.0024(3),6.255(5),1.15(6)
42-Mo,,,6.715(20),,,,5.67(3),0.04(5),5.71(4),2.48(4)
42-Mo-92,15.48,0,6.93(8),,,,6.00(14),0,6.00(14),0.019(2)
42-Mo-94,9.1,0,6.82(7),,,,5.81(12),0,5.81(12),0.015(2)
42-Mo-95,15.72,5/2,6.93(7),,,,6.00(10),0.5(5)*,6.5(5),13.1(3)
42-Mo-96,16.53,0,6.22(6),,,,4.83(9),0,4.83(9),0.5(2)
42-Mo-97,9.5,5/2,7.26(8),,,,6.59(15),0.5(5)*,7.1(5),2.5(2)
42-Mo-98,23.78,0,6.60(7),,,,5.44(12),0,5.44(12),0.127(6)
42-Mo-100,9.6,0,6.75(7),,,,5.69(12),0,5.69(12),0.4(2)
43-Tc-99,210000 Y,9/2,6.8(3),,,,5.8(5),0.5(5)*,6.3(7),20.0(1.0)
44-Ru,,,7.02(2),,,,6.21(5),0.4(1),6.6(1),2.56(13)
44-Ru-96,5.8,0,,,,,,0,,0.28(2)
44-Ru-98,1.9,0,,,,,,0,,<8.0
44-Ru-99,12.7,5/2,,,,,,,,6.9(1.0)
44-Ru-100,12.6,0,,,,,,0,,4.8(6)
44-Ru-101,17.07,5/2,,,,,,,,3.3(9)
44-Ru-102,31.61,0,,,,,,0,,1.17(7)
44-Ru-104,18.58,0,,,,,,0,,0.31(2)
45-Rh-103,100,1/2,5.90(4),8.15(6),6.74(6),,4.34(6),0.3(3)*,4.6(3),144.8(7)
46-Pd,,,5.91(6),,,,4.39(9),0.093(9),4.48(9),6.9(4)
46-Pd-102,1,0,7.7(7)*,,,,7.5(1.4),0,7.5(1.4),3.4(3)
46-Pd-104,11,0,7.7(7)*,,,,7.5(1.4),0,7.5(1.4),0.6(3)
46-Pd-105,22.33,5/2,5.5(3),,,+/-,3.8(4),0.8(1.0),4.6(1.1),20.0(3.0)
46-Pd-106,27.33,0,6.4(4),,,,5.1(6),0,5.1(6),0.304(29)
46-Pd-108,26.71,0,4.1(3),,,,2.1(3),0,2.1(3),8.5(5)
46-Pd-110,11.8,0,7.7(7)*,,,,7.5(1.4),0,7.5(1.4),0.226(31)
47-Ag,,,5.922(7),,,,4.407(10),0.58(3),4.99(3),63.3(4)
47-Ag-107,51.8,1/2,7.555(11),8.14(9),5.8(3),+/-,7.17(2),0.13(3),7.30(4),37.6(1.2)
47-Ag-109,48.2,1/2,4.165(11),3.24(8),6.9(2),+/-,2.18(1),0.32(5),2.50(5),91.0(1.0)
48-Cd,,,4.83(5),,,E,3.04(6),3.46(13),6.50(12),2520.0(50.0)
48-Cd-106,1.2,0,5.0(2.0)*,,,,3.1(2.5),0,3.1(2.5),1.0(2.0)
48-Cd-108,0.9,0,5.31(24),,,,3.7(1),0,3.7(1),1.1(3)
48-Cd-110,12.39,0,5.78(8),,,,4.4(1),0,4.4(1),11.0(1.0)
48-Cd-111,12.75,1/2,6.47(8),,,,5.3(2),0.3(3)*,5.6(4),24.0(5.0)
48-Cd-112,24.07,0,6.34(6),,,,5.1(2),0,5.1(2),2.2(5)
48-Cd-113,12.36,1/2,-8.0(1),,,E,12.1(4),0.3(3)*,12.4(5),20600.0(400.0)
48-Cd-114,28.86,0,7.48(5),,,,7.1(2),0,7.1(2),0.34(2)
48-Cd-116,7.58,0,6.26(9),,,,5.0(2),0,5.0(2),0.075(13)
49-In,,,4.065(20),,,,2.08(2),0.54(11),2.62(11),193.8(1.5)
49-In-113,4.28,9/2,5.39(6),,,,3.65(8),0.000037(5),3.65(8),12.0(1.1)
49-In-115,95.72,9/2,4.00(3),2.1(1),6.4(4),,2.02(2),0.55(11),2.57(11),202.0(2.0)
50-Sn,,,6.225(2),,,,4.871(3),0.022(5),4.892(6),0.626(9)
50-Sn-112,1,0,6.0(1.0)*,,,,4.5(1.5),0,4.5(1.5),1.00(11)
50-Sn-114,0.66,0,6.0(3),,,,4.8(5),0,4.8(5),0.114(30)
50-Sn-115,0.35,1/2,6.0(1.0)*,,,,4.5(1.5),0.3(3)*,4.8(1.5),30.0(7.0)
50-Sn-116,14.3,0,6.10(1),,,,4.42(7),0,4.42(7),0.14(3)
50-Sn-117,7.61,1/2,6.59(8),0.22(10),-0.23(10),,5.28(8),0.3(3)*,5.6(3),2.3(5)
50-Sn-118,24.03,0,6.23(4),,,,4.63(8),0,4.63(8),0.22(5)
50-Sn-119,8.58,1/2,6.28(3),0.14(10),0.0(1),,4.71(8),0.3(3)*,5.0(3),2.2(5)
50-Sn-120,32.86,0,6.67(4),,,,5.29(8),0,5.29(8),0.14(3)
50-Sn-122,4.72,0,5.93(3),,,,4.14(7),0,4.14(7),0.18(2)
50-Sn-124,5.94,0,6.15(3),,,,4.48(8),0,4.48(8),0.133(5)
51-Sb,,,5.57(3),,,,3.90(4),0.00(7),3.90(6),4.91(5)
51-Sb-121,57.25,5/2,5.71(6),5.7(2),5.8(2),,4.10(9),0.0003(19),4.10(19),5.75(12)
51-Sb-123,42.75,7/2,5.38(7),5.2(2),5.4(2),,3.64(9),0.001(4),3.64(9),3.8(2)
52-Te,,,5.68(2),,,,4.23(4),0.09(6),4.32(5),4.7(1)
52-Te-120,0.09,0,5.3(5),,,,3.5(7),0,3.5(7),2.3(3)
52-Te-122,2.4,0,3.8(2),,,,1.8(2),0,1.8(2),3.4(5)
52-Te-123,0.87,1/2,-0.05(25),-1.2(2),3.5(2),,0.002(3),0.52(5),0.52(5),418.0(30.0)
52-Te-124,4.61,0,7.95(10),,,,8.0(2),0,8.0(2,6.8(1.3)
52-Te-125,6.99,1/2,5.01(8),4.9(2),5.5(2),,3.17(10),0.008(8),3.18(10),1.55(16)
52-Te-126,18.71,0,5.55(7),,,,3.88(10),0,3.88(10),1.04(15)
52-Te-128,31.79,0,5.88(8),,,,4.36(10),0,4.36(10),0.215(8)
52-Te-130,34.48,0,6.01(7),,,,4.55(11),0,4.55(11),0.29(6)
53-I-127,100,5/2,5.28(2),6.6(2),3.4(2),,3.50(3),0.31(6),3.81(7),6.15(6)
54-Xe,,,4.69(4),,,,3.04(4),0,,23.9(1.2)
54-Xe-124,0.1,0,,,,,,0,,165.0(20.0)
54-Xe-126,0.09,0,,,,,,0,,3.5(8)
54-Xe-128,1.9,0,,,,,,0,,<8.0
54-Xe-129,26.14,1/2,,,,,,,,21.0(5.0)
54-Xe-130,3.3,0,,,,,,0,,<26.0
54-Xe-131,21.18,3/2,,,,,,,,85.0(10.0)
54-Xe-132,26.89,0,,,,,,0,,0.45(6)
54-Xe-134,10.4,0,,,,,,0,,0.265(20)
54-Xe-136,8.9,0,,,,,,0,,0.26(2)
55-Cs-133,100,7/2,5.42(2),,,+/-,3.69(15),0.21(5),3.90(6),29.0(1.5)
56-Ba,,,5.07(3),,,,3.23(4),0.15(11),3.38(10),1.1(1)
56-Ba-130,0.1,0,-3.6(6),,,,1.6(5),0,1.6(5),30.0(5.0)
56-Ba-132,0.09,0,7.8(3),,,,7.6(6),0,7.6(6),7.0(8)
56-Ba-134,2.4,0,5.7(1),,,,4.08(14),0,4.08(14),2.0(1.6)
56-Ba-135,6.59,3/2,4.66(10),,,,2.74(12),0.5(5)*,3.2(5),5.8(9)
56-Ba-136,7.81,0,4.90(8),,,,3.03(10),0,3.03(10),0.68(17)
56-Ba-137,11.32,3/2,6.82(10),,,,5.86(17),0.5(5)*,6.4(5),3.6(2)
56-Ba-138,71.66,0,4.83(8),,,,2.94(10),0,2.94(19),0.27(14)
57-La,,,8.24(4),,,,8.53(8),1.13(19),9.66(17),8.97(2)
57-La-138,0.09,5,8.0(2.0)*,,,,8.0(4.0),0.5(5)*,8.5(4.0),57.0(6.0)
57-La-139,99.91,7/2,8.24(4),11.4(3),4.5(4),+/-,8.53(8),1.13(15),9.66(17),8.93(4)
58-Ce,,,4.84(2),,,,2.94(2),0.00(10),2.94(10),0.63(4)
58-Ce-136,0.19,0,5.76(9),,,,4.23(13),0,4.23(13),7.3(1.5)
58-Ce-138,0.26,0,6.65(9),,,,5.64(15),0,5.64(15),1.1(3)
58-Ce-140,88.48,0,4.81(9),,,,2.94(11),0,2.94(11),0.57(4)
58-Ce-142,11.07,0,4.72(9),,,,2.84(11),0,2.84(11),0.95(5)
59-Pr-141,100,5/2,4.58(5),,,+/-,2.64(6),0.015(3),2.66(6),11.5(3)
60-Nd,,,7.69(5),,,,7.43(19),9.2(8),16.6(8),50.5(1.2)
60-Nd-142,27.11,0,7.7(3),,,,7.5(6),0,7.5(6),18.7(7)
60-Nd-143,12.17,7/2,14.0(2.0)*,,,,25.0(7.0),55.0(7.0),80.0(2.0),337.0(10.0)
60-Nd-144,23.85,0,2.8(3),,,,1.0(2),0,1.0(2),3.6(3)
60-Nd-145,8.5,7/2,14.0(2.0)*,,,,25.0(7.0),5.0(5.0)*,30.0(9.0),42.0(2.0)
60-Nd-146,17.22,0,8.7(2),,,,9.5(4),0,9.5(4),1.4(1)
60-Nd-148,5.7,0,5.7(3),,,,4.1(4),0,4.1(4),2.5(2)
60-Nd-150,5.6,0,5.28(20),,,,3.5(3),0,3.5(3),1.2(2)
61-Pm-147,2.62 Y,7/2,12.6(4),,,,20.0(1.3),1.3(2.0),21.3(1.5),168.4(3.5)
62-Sm,,,0.00(5),,,E,0.422(9),39.0(3.0),39.4(3.0),5922.0(56.0)
62-Sm-144,3.1,0,-3.0(4.0)*,,,,1.0(3.0),0,1.0(3.0),0.7(3)
62-Sm-147,15,7/2,14.0(3.0),,,,25.0(11.0),14.0(19.0.),39.0(16.0),57.0(3.0)
62-Sm-148,11.2,0,-3.0(4.0)*,,,,1.0(3.0),0,1.0(3.0),2.4(6)
62-Sm-149,13.8,7/2,18.7(28),,,E,63.5(6),137.0(5.0),200.0(5.0),42080.0(400.0)
62-Sm-150,7.4,0,14.0(3.0),,,,25.0(11.0),0,25.0(11.0),104.0(4.0)
62-Sm-152,26.7,0,-5.0(6),,,,3.1(8),0,3.1(8),206.0(6.0)
62-Sm-154,22.8,0,8.0(1.0),,,,11.0(2.0),0,11.0(2.0),8.4(5)
63-Eu,,,5.3(3),,,E,6.57(4),2.5(4),9.2(4),4530.0(40.0)
63-Eu-151,47.8,5/2,,,,E,5.5(2),3.1(4),8.6(4),9100.0(100.0)
63-Eu-153,52.8,5/2,8.22(12),,,,8.5(2),1.3(7),9.8(7),312.0(7.0)
64-Gd,,,9.5(2),,,E,29.3(8),151.0(2.0),180.0(2.0),49700.0(125.0)
64-Gd-152,0.2,0,10.0(3.0)*,,,,13.0(8.0),0,13.0(8.0),735.0(20.0)
64-Gd-154,2.2,0,10.0(3.0)*,,,,13.0(8.0),0,13.0(8.0),85.0(12.0)
64-Gd-155,14.9,3/2,13.8(3),,,E,40.8(4),25.0(6.0),66.0(6.0),61100.0(400.0)
64-Gd-156,20.6,0,6.3(4),,,,5.0(6),0,5.0(6),1.5(1.2)
64-Gd-157,15.7,3/2,4.0(2.0),,,E,650.0(4.0),394.0(7.0),1044.0(8.0),259000.0(700.0)
64-Gd-158,24.7,0,9.0(2.0),,,,10.0(5.0),0,10.0(5.0),2.2(2)
64-Gd-160,21.7,0,9.15(5),,,,10.52(11),0,10.52(11),0.77(2)
65-Tb-159,100,3/2,7.34(2),6.8(2),8.1(2),+/-,6.84(6),0.004(3),6.84(6),23.4(4)
66-Dy,,,16.9(3),,,,35.9(8),54.4(1.2),90.3(9),994.0(13.0)
66-Dy-156,0.06,0,6.1(5),,,,4.7(8),0,4.7(8),33.0(3.0)
66-Dy-158,0.1,0,6.0(4.0)*,,,,5.0(6.0),0,5.(6.),43.0(6.0)
66-Dy-160,2.3,0,6.7(4),,,,5.6(7),0,5.6(7),56.0(5.0)
66-Dy-161,18.9,5/2,10.3(4),,,,13.3(1.0),3.0(1.0),16.0(1.0),600.0(25.0)
66-Dy-162,25.5,0,-1.4(5),,,,0.25(18),0,0.25(18),194.0(10.0)
66-Dy-163,24.9,5/2,5.0(4),6.1(5),3.5(5),,3.1(5),0.21(19),3.3(5),124.0(7.0)
66-Dy-164,28.2,0,49.4(5),,,,307.0(3.0),0,307.0(3.0),2840.0(40.0)
67-Ho-165,100,7/2,8.44(3),6.9(2),10.3(2),+/-,8.06(8),0.36(3),8.42(16),64.7(1.2)
68-Er,,,7.79(2),,,,7.63(4),1.1(3),8.7(3),159.0(4.0)
68-Er-162,0.14,0,9.01(11),,,,9.7(4),0,9.7(4),19.0(2.0)
68-Er-164,1.6,0,7.95(14),,,,8.4(4),0,8.4(4),13.0(2.0)
68-Er-166,33.4,0,10.51(19),,,,14.1(5),0,14.1(5),19.6(1.5)
68-Er-167,22.9,7/2,3.06(5),5.3(3),0.0(3),,1.1(2),0.13(6),1.2(2),659.0(16.0)
68-Er-168,27,0,7.43(8),,,,6.9(7),0,6.9(7),2.74(8)
68-Er-170,15,0,9.61(6),,,,11.6(1.2),0,11.6(1.2),5.8(3)
69-Tm-169,100,1/2,7.07(3),,,+/-,6.28(5),0.10(7),6.38(9),100.0(2.0)
70-Yb,,,12.41(3),,,,19.42(9),4.0(2),23.4(2),34.8(8)
70-Yb-168,0.14,0,-4.07(2),,,E,2.13(2),0,2.13(2),2230.0(40.0)
70-Yb-170,3,0,6.8(1),,,,5.8(2),0,5.8(2),11.4(1.0)
70-Yb-171,14.3,1/2,9.7(1),6.5(2),19.4(4),,11.7(2),3.9(2),15.6(3),48.6(2.5)
70-Yb-172,21.9,0,9.5(1),,,,11.2(2),0,11.2(2),0.8(4)
70-Yb-173,16.3,5/2,9.56(10),2.5(2),13.3(3),,11.5(2),3.5,15,17.1(1.3)
70-Yb-174,31.8,0,19.2(1),,,,46.8(5),0,46.8(5),69.4(5.0)
70-Yb-176,12.7,0,8.7(1),,,,9.6(2),0,9.6(2),2.85(5)
71-Lu,,,7.21(3),,,,6.53(5),0.7(4),7.2(4),74.0(2.0)
71-Lu-175,97.4,7/2,7.28(9),,,,6.59(5),0.6(4),7.2(4),21.0(3.0)
71-Lu-176,2.6,7,6.1(2),,,,4.7(2),1.2(3),5.9,2065.(35.)
72-Hf,,,7.77(14),,,,7.6(3),2.6(5),10.2(4),104.1(5)
72-Hf-174,0.184,0,10.9(1.1),,,,15.0(3.0),0,15.0(3.0),561.0(35.0)
72-Hf-176,5.2,0,6.61(18),,,,5.5(3),0,5.5(3),23.5(3.1)
72-Hf-177,18.5,0,0.8(1.0)*,,,,0.1(2),0.1(3),0.2(2),373.0(10.0)
72-Hf-178,27.2,0,5.9(2),,,,4.4(3),0,4.4(3),84.0(4.0)
72-Hf-179,13.8,9/2,7.46(16),,,,7.0(3),0.14(2),7.1(3),41.0(3.0)
72-Hf-180,35.1,0,13.2(3),,,,21.9(1.0),0,21.9(1.0),13.04(7)
73-Ta,,,6.91(7),,,,6.00(12),0.01(17),6.01(12),20.6(5)
73-Ta-180,0.012,9,7.0(2.0)*,,,,6.2(3.5),0.5(5)*,7.0(4.0),563.0(60.0)
73-Ta-181,99.98,7/2,6.91(7),,,+/-,6.00(12),0.011(2),6.01(12),20.5(5)
74-W,,,4.755(18),,,,2.97(2),1.63(6),4.60(6),18.3(2)
74-W-180,0.13,0,5.0(3.0)*,,,,3.0(4.0),0,3.0(4.0),30.0(20.0)
74-W-182,26.3,1/2,7.04(4),,,,6.10(7),0,6.10(7),20.7(5)
74-W-183,14.3,1/2,6.59(4),6.3(4),7.0(4),,5.36(7),0.3(3)*,5.7(3),10.1(3)
74-W-184,30.7,0,7.55(6),,,,7.03(11),0,7.03(11),1.7(1)
74-W-186,28.6,0,-0.73(4),,,,0.065(7),0,0.065(7),37.9(6)
75-Re,,,9.2(2),,,,10.6(5),0.9(6),11.5(3),89.7(1.0)
75-Re-185,37.5,5/2,9.0(3),,,,10.2(7),0.5(9),10.7(6),112.0(2.0)
75-Re-187,62.5,5/2,9.3(3),,,,10.9(7),1.0(6),11.9(4),76.4(1.0)
76-Os,,,10.7(2),,,,14.4(5),0.3(8),14.7(6),16.0(4.0)
76-Os-184,0.02,0,10.0(2.0)*,,,,13.0(5.0),0,13.0(5.0),3000.0(150.0)
76-Os-186,1.6,0,12.0(1.7),,,,17.0(5.0),0,17.0(5.0),80.0(13.0)
76-Os-187,1.6,1/2,10.0(2.0)*,,,,13.0(5.0),0.3(3)*,13.0(5.0),320.0(10.0)
76-Os-188,13.3,0,7.8(3),,,,7.3(6),0,7.3(6),4.7(5)
76-Os-189,16.1,3/2,11.0(3),,,,14.4(8),0.5(5)*,14.9(9),25.0(4.0)
76-Os-190,26.4,0,11.4(3),,,,15.2(8),0,15.2(8),13.1(3)
76-Os-192,41,0,11.9(4),,,,16.6(1.2),0,16.6(1.2),2.0(1)
77-Ir,,,10.6(3),,,,14.1(8),0.0(3.0),14.0(3.0),425.0(2.0)
77-Ir-191,37.4,3/2,,,,,,,,954.0(10.0)
77-Ir-193,62.6,3/2,,,,,,,,111.0(5.0)
78-Pt,,,9.60(1),,,,11.58(2),0.13(11),11.71(11),10.3(3)
78-Pt-190,0.01,0,9.0(1.0),,,,10.0(2.0),0,10.0(2.0),152.0(4.0)
78-Pt-192,1.78,0,9.9(5),,,,12.3(1.2),0,12.3(1.2),10.0(2.5)
78-Pt-194,32.9,0,10.55(8),,,,14.0(2),0,14.0(2),1.44(19)
78-Pt-195,33.8,1/2,8.91(9),9.5(3),7.2(3),+/-,9.8(2),0.13(4),9.9(2),27.5(1.2)
78-Pt-196,25.3,0,9.89(8),,,,12.3(2),0,12.3(2),0.72(4)
78-Pt-198,7.2,0,7.8(1),,,,7.6(2),0,7.6(2),3.66(19)
79-Au-197,100,3/2,7.90(7),6.26(10),9.90(14),+/-,7.32(12),0.43(5),7.75(13),98.65(9)
80-Hg,,,12.595(45),,,,20.24(5),6.6(1),26.8(1),372.3(4.0)
80-Hg-196,0.15,0,30.3(1.0),,,E,115.0(8.0),0,115.0(8.0),3080.0(180.0)
80-Hg-198,10.1,0,,,,,,0,,2.0(3)
80-Hg-199,16.9,0,16.9(4),,,E,36.0(2.0),30.0(3.0),66.0(2.0),2150.0(48.0)
80-Hg-200,23.1,0,,,,,,0,,<60.0
80-Hg-201,13.2,3/2,,,,,,,,7.8(2.0)
80-Hg-202,29.7,0,11.002(43),,,,15.2108(2),0,15.2108(2),4.89(5)
80-Hg-204,6.8,0,,,,,,0,,0.43(10)
81-Tl,,,8.776(5),,,,9.678(11),0.21(15),9.89(15),3.43(6)
81-Tl-203,29.5,1/2,8.51(8),9.08(10),6.62(10),,6.14(28),0.14(4),6.28(28),11.4(2)
81-Tl-205,70.5,1/2,8.87(7),5.15(10),9.43(10),+/-,11.39(17),0.007(1),11.40(17),0.104(17)
82-Pb,,,9.401(2),,,,11.115(7),0.0030(7),11.118(7),0.171(2)
82-Pb-204,1.4,0,10.893(78),,,,12.3(2),0,12.3(2),0.65(7)
82-Pb-206,24.1,0,9.221(78),,,,10.68(12),0,10.68(12),0.0300(8)
82-Pb-207,22.1,1/2,9.286(16),,,+/-,10.82(9),0.002(2),10.82(9),0.699(10)
82-Pb-208,52.4,0,9.494(30),,,,11.34(5),0,11.34(5),0.00048(3)
83-Bi-209,100,9/2,8.532(2),8.26(1),8.74(1),,9.148(4),0.0084(19),9.156(4),0.0338(7)
88-Ra-226,1620 Y,0,10.0(1.0),,,,13.0(3.0),0,13.0(3.0),12.8(1.5)
90-Th-232,100,0,10.31(3),,,,13.36(8),0,13.36(8),7.37(6)
91-Pa-231,32500 Y,3/2,9.1(3),,,,10.4(7),0.1(3.3),10.5(3.2),200.6(2.3)
92-U,,,8.417(5),,,,8.903(11),0.005(16),8.908(11),7.57(2)
92-U-233,159000 Y,5/2,10.1(2),,,,12.8(5),0.1(6),12.9(3),574.7(1.0)
92-U-234,0.005,0,12.4(3),,,,19.3(9),0,19.3(9),100.1(1.3)
92-U-235,0.72,7/2,10.50(3),,,,13.78(11),0.2(2),14.0(2),680.9(1.1)
92-U-238,99.27,0,8.407(7),,,,8.871(11),0,8.871(11),2.68(2)
93-Np-237,2140000 Y,5/2,10.55(10),,,,14.0(3),0.5(5)*,14.5(6),175.9(2.9)
94-Pu-239,24400 Y,1/2,7.7(1),,,,7.5(2),0.2(6),7.7(6),1017.3(2.1)
94-Pu-240,6540 Y,0,3.5(1),,,,1.54(9),0,1.54(9),289.6(1.4)
94-Pu-242,376000 Y,0,8.1(1),,,,8.2(2),0,8.2(2),18.5(5)
95-Am-243,7370 Y,5/2,8.3(2),,,,8.7(4),0.3(2.6),9.0(2.6),75.3(1.8)
96-Cm-244,17.9 Y,0,9.5(3),,,,11.3(7),0,11.3(7),16.2(1.2)
96-Cm-246,4700 Y,0,9.3(2),,,,10.9(5),0,10.9(5),1.36(17)
96-Cm-248,340000 Y,0,7.7(2),,,,7.5(4),0,7.5(4),3.00(26)\
"""

# Imaginary values for select isotopes
# isotope, b_c_i, bp_i, bm_i
nsftableI = """\
2-He-3,-1.48,,-5.925
3-Li-6,-0.26,-0.08(1),-0.62(2)
5-B,-0.21,,
47-Ag-107,-0.01,,
47-Ag-109,-0.025,,
48-Cd,-1.2,,
48-Cd-113,-12,,
49-In,-0.054,,
49-In-115,-0.056,,
52-Te-123,-0.1,,
62-Sm,-1.5,,
62-Sm-149,-11,,
64-Gd,-13.6,,
64-Gd-155,-10.3,,
71-Lu-176,-0.57(2),,
80-Hg-196,-0.8,,\
"""
# Excluding the following because the measurements for the real parts
# were not used in nsftable table.
# 63-Eu-151,-2.46,,
# 64-Gd-157,-47,-75,



def fix_number(str):
    """
    Converts strings of the form e.g., 35.24(2)* into numbers without
    uncertainty. Also accepts a limited range, e.g., <1e-6, which is
    converted as 1e-6.  Missing values are set to 0.
    """
    if str == '':
        return None
    idx = str.find('(')
    if idx >= 0:
        str = str[0:idx]
    if str[0] == '<':
        str = str[1:]
    return float(str)

def sld_table(wavelength=1, table=None, isotopes=True):
    """
    Scattering length density table for wavelength 4.75 |Ang|.

    :Parameters:

        *table* : PeriodicTable
            If *table* is not specified, use the common periodic table.

        *isotopes* = True : boolean
            Whether to consider isotopes or not.

    :Returns: None

    Example

        >>> sld_table(wavelength=4.75)  # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
         Neutron scattering length density table
        atom       mass density     sld    imag   incoh
        H         1.008   0.071  -1.582   0.000  10.691
        1-H       1.008   0.071  -1.583   0.000  10.691
        D         2.014   0.141   2.823   0.000   1.705
        T         3.016   0.212   2.027   0.000   0.453
        He        4.003   0.122   0.598   0.000   0.035
        3-He      3.016   0.092   1.054   0.272   0.706 *
        4-He      4.003   0.122   0.598   0.000   0.035
           ...
        248-Cm  248.072  13.569   2.536   0.000   0.207
        * Energy dependent cross sections
    """
    table = default_table(table)
    # Table for comparison with scattering length density calculators
    # b_c for Sc, Te, Xe, Sm, Eu, Gd, W, Au, Hg are different from Neutron News
    # The Rauch data have cited references to back up the numbers
    # (see doc directory), though it is not clear what criteria are
    # used to select amongst the available measurements.
    print(" Neutron scattering length density table")
    print("%-7s %7s %7s %7s %7s %7s"
          %('atom', 'mass', 'density', 'sld', 'imag', 'incoh'))
    for el in table:
        if el.neutron.has_sld():
            coh, jcoh, inc = el.neutron.sld(wavelength=wavelength)
            print("%-7s %7.3f %7.3f %7.3f %7.3f %7.3f%s"
                  %(el, el.mass, el.density, coh, jcoh, inc,
                    ' *' if el.neutron.is_energy_dependent else ''))
            if isotopes:
                isos = [iso for iso in el if iso.neutron != None and iso.neutron.has_sld()]
            else:
                isos = []
            for iso in isos:
                coh, jcoh, inc = iso.neutron.sld(wavelength=wavelength)
                print("%-7s %7.3f %7.3f %7.3f %7.3f %7.3f%s"
                      %(iso, iso.mass, iso.density, coh, jcoh, inc,
                        ' *' if iso.neutron.is_energy_dependent else ''))
    print("* Energy dependent cross sections")

def energy_dependent_table(table=None):
    """
    Prints a table of energy dependent isotopes.

    :Parameters:
        *table* : PeriodicTable
            If *table* is not specified, use the common periodic table.

    :Returns: None

    Example

        >>> energy_dependent_table()
        Elements and isotopes with energy dependent absorption:
            He-3
            Cd Cd-113
            Sm Sm-149
            Eu Eu-151
            Gd Gd-155 Gd-157
            Yb-168
            Hg-196 Hg-199
    """
    table = default_table(table)
    # List of energy dependent elements and isotopes
    print("Elements and isotopes with energy dependent absorption:")
    for el in table:
        if not hasattr(el, 'neutron'):
            continue
        dep = []
        if el.neutron.is_energy_dependent:
            dep += [str(el)]
        dep += [str(el)+'-'+str(iso.isotope)
                for iso in el
                if iso.neutron != None and iso.neutron.is_energy_dependent]
        if len(dep) > 0:
            print("    " + " ".join(dep))

def _diff(iso, a, b, tol=0.01):
    if None in (a, b):
        if a is not None or b is not None:
            if a is None and b > tol:
                print("%10s %8s %8.2f"%(iso, "----", b))
            elif b is None and a > tol:
                print("%10s %8.2f %8s"%(iso, a, "----"))
    elif abs(a - b) > tol:
        print("%10s %8.2f %8.2f %5.1f%%"
              % (iso, a, b, (100*(a-b)/b if b != 0 else inf)))

def compare(fn1, fn2, table=None, tol=0.01):
    table = default_table(table)
    for el in table:
        try:
            res1 = fn1(el)
        except Exception:
            res1 = None
        try:
            res2 = fn2(el)
        except Exception:
            res2 = None
        _diff(el, res1, res2, tol=tol)
        for iso in el:
            try:
                res1 = fn1(iso)
            except Exception:
                res1 = None
            try:
                res2 = fn2(iso)
            except Exception:
                res2 = None
            _diff(iso, res1, res2, tol=tol)

def absorption_comparison_table(table=None, tol=None):
    r"""
    Prints a table comparing absorption to the imaginary bound coherent
    scattering length b_c_i.  This is used to checking the integrity
    of the data and formula.

    The relationship between absorption and b_c_i is:

    .. math::

        \sigma_a = -2 \lambda b_i \cdot 1000

    The wavelength $\lambda = 1.798 \AA$ is the neutron wavelength at which
    the absorption is tallied. The factor of 1000 transforms from
    |Ang|\ |cdot|\ fm to barn.

    :Parameters:
        *table* : PeriodicTable
            The default periodictable unless a specific table has been requested.
        *tol* = 0.01 : float | barn
            Show differences greater than this amount.

    :Returns: None

    Example

        >>> absorption_comparison_table (tol=0.5) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
        Comparison of absorption and (-2000 lambda b_c_i)
              3-He  5333.00  5322.08   0.2%
                Li    70.50     ----
              6-Li   940.00   934.96   0.5%
                 B   767.00   755.16   1.6%
              10-B  3835.00     ----
                 N     1.90     ----
           ...

    """

    print("Comparison of absorption and (-2000 lambda b_c_i)")
    compare(lambda el: el.neutron.absorption,
            lambda el: -2000*el.neutron.b_c_i*ABSORPTION_WAVELENGTH,
            table=table, tol=tol)
    return

def coherent_comparison_table(table=None, tol=None):
    r"""
    Prints a table of $4 \pi b_c^2/100$ and coherent for each isotope.
    This is useful for checking the integrity of the data and formula.

    The table only prints where b_c exists.

    :Parameters:
        *table* : PeriodicTable
            The default periodictable unless a specific table has been requested.
        *tol* = 0.01 : float | barn
            Amount of difference to show

    :Returns: None

    Example

        >>> coherent_comparison_table (tol=0.5) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
        Comparison of (4 pi b_c^2/100) and coherent
                 n   172.03    43.01 300.0%
               1-n   172.03    43.01 300.0%
                Sc    18.40    19.00  -3.2%
             45-Sc    18.40    19.00  -3.2%
             65-Cu    13.08    14.10  -7.2%
             70-Zn     5.98     4.50  33.0%
             84-Sr     3.14     6.00 -47.6%
           ...

    """
    print("Comparison of (4 pi b_c^2/100) and coherent")
    compare(lambda el: 4*pi/100*el.neutron.b_c**2,
            lambda el: el.neutron.coherent,
            table=table, tol=tol)

def total_comparison_table(table=None, tol=None):
    """
    Prints a table of neutron.total and sum coh,inc for each
    isotope where these exist.  This is used to checking the integrity
    of the data and formula.

    :Parameters:
        *table* : PeriodicTable
            The default periodictable unless a specific table has been requested.
        *tol* = 0.01 : float | barn
            Amount of difference to show

    :Returns: None

    Example

        >>> total_comparison_table (tol=0.1)
        Comparison of total cross section to (coherent + incoherent)
                 n    43.01     ----
               1-n    43.01     ----
             84-Kr     6.60     ----
            149-Sm   200.00   200.50  -0.2%
                Eu     9.20     9.07   1.4%
                Gd   180.00   180.30  -0.2%
            155-Gd    66.00    65.80   0.3%
            161-Dy    16.00    16.30  -1.8%
            180-Ta     7.00     6.70   4.5%
            187-Os    13.00    13.30  -2.3%

    """

    print("Comparison of total cross section to (coherent + incoherent)")
    compare(lambda el: el.neutron.total,
            lambda el: el.neutron.coherent+el.neutron.incoherent,
            table=table, tol=tol)


def incoherent_comparison_table(table=None, tol=None):
    """
    Prints a table of incoherent computed from total and b_c with incoherent.

    :Parameters:
        *table* : PeriodicTable
            The default periodictable unless a specific table has been requested.
        *tol* = 0.01 : float | barn
            Amount of difference to show

    :Returns: None

    Example

        >>> incoherent_comparison_table (tol=0.5) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
        Comparison of incoherent and (total - 4 pi b_c^2/100)
                Sc     4.50     5.10 -11.8%
             45-Sc     4.50     5.10 -11.8%
             65-Cu     0.40     1.42 -71.7%
             70-Zn     0.00    -1.48 -100.0%
             84-Sr     0.00     2.86 -100.0%
            113-Cd     0.30     4.36 -93.1%
           ...

    """

    print("Comparison of incoherent and (total - 4 pi b_c^2/100)")
    compare(lambda el: el.neutron.incoherent,
            lambda el: el.neutron.total - 4*pi/100*el.neutron.b_c**2,
            table=table, tol=tol)

def print_scattering(compound, wavelength=ABSORPTION_WAVELENGTH):
    """
    Print the scattering for a single compound.
    """
    from . import formulas
    compound = formulas.formula(compound)
    density = compound.density if compound.density is not None else 1.0
    sld, xs, penetration = neutron_scattering(compound, wavelength=wavelength,
                                              density=density)
    print("%s at %g Ang  (density=%g g/cm^3)"
          % (str(compound), wavelength, density))
    print("  sld: %g + %g j  (%g incoherent)  1e-6/Ang^2"%sld)
    print("  sigma_c: %g  sigma_i: %g  sigma_a: %g  1/cm"%sld)
    print("  mu: %g 1/cm  1/e penetration: %g cm"%(1/penetration, penetration))

def main():
    """
    Simple command line interface, showing the predicted neutron scattering.

    Usage::

        python -m periodictable.nsf [-Lwavelength] compound@density compound@density ...

    For example::

        $ python -m periodictable.nsf XeF6@3.56
        scattering for XeF6 at 1.798 Ang  (density=3.56 g/cm^3)
          sld: 3.37503 + 0.000582313 j  (0.402605 incoherent)  1e-6/Ang^2
          sigma_c: 3.37503  sigma_i: 0.000582313  sigma_a: 0.402605  1/cm
          1/e penetration: 2.23871 cm
    """

    import sys
    compounds = sys.argv[1:]
    if compounds[0].startswith('-L'):
        wavelength = float(compounds[0][2:])
        compounds = compounds[1:]
    else:
        wavelength = ABSORPTION_WAVELENGTH
    for c in compounds:
        print_scattering(c, wavelength)

if __name__ == "__main__":
    main()