/usr/lib/python3/dist-packages/periodictable/xsf.py is in python3-periodictable 1.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 | # This program is public domain
# Author: Paul Kienzle
r"""
This module has one class and nine fuctions.
:class:`Xray`
X-ray scattering properties for the elements.
The following attributes are added to each element:
:func:`Xray.sftable`
Three column table of energy vs. scattering factors f1, f2.
:func:`Xray.scattering_factors`
Returns f1, f2, the X-ray scattering factors for the given wavelengths
interpolated from sftable.
:func:`Xray.f0`
Returns f0 for the given vector Q, with Q[i] in $[0, 24\pi]$ |1/Ang|.
:func:`Xray.sld`
Returns scattering length density (*real*, *imaginary*) for the
given wavelengths or energies.
The following functions are available for X-ray scatting information processing:
:func:`xray_wavelength`
Finds X-ray wavelength in angstroms given energy in keV.
:func:`xray_energy`
Finds X-ray energy in keV given wavelength in angstroms.
:func:`init`
Initializes a periodic table with the Lawrence Berkeley Laboratory
Center for X-Ray Optics xray scattering factors.
:func:`init_spectral_lines`
Sets the K_alpha and K_beta1 wavelengths for select elements.
:func:`sld_table`
Prints the xray SLD table for the given wavelength.
:func:`xray_sld`
Computes xray scattering length densities for molecules.
:func:`index_of_refraction`
Express xray scattering length density as an index of refraction
:func:`mirror_reflectivity`
X-ray reflectivity from a mirror made of a single compound.
:func:`xray_sld_from_atoms`
The underlying scattering length density calculator. This works with
a dictionary of atoms and quantities directly.
:func:`emission_table`
Prints a table of emission lines.
K_alpha, K_beta1 (|Ang|):
X-ray emission lines for elements beyond neon, with
$K_\alpha = (2 K_{\alpha 1} + K_{\alpha 2})/3$.
X-ray scattering factors:
Low-Energy X-ray Interaction Coefficients: Photoabsorption, scattering
and reflection for E in 30 to 30,000 eV, and Z in 1 to 92.
.. Note::
For :ref:`custom tables <custom-table>`, use :func:`init` and
:func:`init_spectral_lines` to set the data.
Emission line tables
====================
Data for the $K_\alpha$ and $K_\beta$ lines comes from
[#Deslattes2003], with the full tables available at
`<http://www.nist.gov/pml/data/xraytrans/index.cfm>`_.
Experimental Values are used, truncated to 4 digits
of precision to correspond to the values for the subset
of elements previously defined in the periodictable package.
X-ray f1 and f2 tables
======================
The data for the tables is stored in the ``periodictable/xsf``.
directory. The following information is from ``periodictable/xsf/read.me``,
with minor formatting changes:
These ``[*.nff]`` files were used to generate the tables published in
reference [#Henke1993]_. The files contain three columns of data:
Energy(eV), *f_1*, *f_2*,
where *f_1* and *f_2* are the atomic (forward) scattering factors.
There are 500+ points on a uniform logarithmic mesh with points
added 0.1 eV above and below "sharp" absorption edges. The
tabulated values of *f_1* contain a relativistic, energy
independent, correction given by:
.. math::
Z^* = Z - (Z/82.5)^{2.37}
.. Note::
Below 29 eV *f_1* is set equal to -9999.
The atomic photoabsorption cross section, $\mu_a$, may be readily
obtained from the values of $f_2$ using the relation:
.. math::
\mu_a = 2 r_e \lambda f_2
where $r_e$ is the classical electron radius, and $\lambda$ is
the wavelength. The index of refraction for a material with *N* atoms per
unit volume is calculated by:
.. math::
n = 1 - N r_e \lambda^2 (f_1 + i f_2)/(2 \pi).
These (semi-empirical) atomic scattering factors are based upon
photoabsorption measurements of elements in their elemental state.
The basic assumption is that condensed matter may be modeled as a
collection of non-interacting atoms. This assumption is in general
a good one for energies sufficiently far from absorption thresholds.
In the threshold regions, the specific chemical state is important
and direct experimental measurements must be made.
These tables are based on a compilation of the available experimental
measurements and theoretical calculations. For many elements there is
little or no published data and in such cases it was necessary to
rely on theoretical calculations and interpolations across Z.
In order to improve the accuracy in the future considerably more
experimental measurements are needed.
Note that the following elements have been updated since the
publication of Ref. [#Henke1993]_ in July 1993. Check
`<http://henke.lbl.gov/optical_constants/update.html>`_ for more
recent updates.
.. table::
======== ========== =================
Element Updated Energy Range (eV)
======== ========== =================
Mg Jan 2011 10-1300
Zr Apr 2010 20-1000
La Jun 2007 14-440
Gd Jun 2007 12-450
Sc Apr 2006 50-1300
Ti Aug 2004 20-150
Ru Aug 2004 40-1300
W Aug 2004 35-250
Mo Aug 2004 25-60
Be Aug 2004 40-250
Mo Nov 1997 10-930
Fe Oct 1995 600-800
Si Jun 1995 30-500
Au Jul 1994 2000-6500
Mg,Al,Si Jan 1994 30-200
Li Nov 1994 2000-30000
======== ========== =================
Data available at:
#. http://henke.lbl.gov/optical_constants/asf.html
.. [#Henke1993] B. L. Henke, E. M. Gullikson, and J. C. Davis. "X-ray interactions:
photoabsorption, scattering, transmission, and reflection at E=50-30000 eV,
Z=1-92", Atomic Data and Nuclear Data Tables 54 no.2, 181-342 (July 1993).
.. [#Deslattes2003] R. D. Deslattes, E. G. Kessler, Jr., P. Indelicato, L. de Billy,
E. Lindroth, and J. Anton. Rev. Mod. Phys. 75, 35-99 (2003).
"""
from __future__ import with_statement
__all__ = ['Xray', 'init', 'init_spectral_lines',
'xray_energy', 'xray_wavelength',
'xray_sld', 'xray_sld_from_atoms',
'emission_table', 'sld_table', 'plot_xsf',
'index_of_refraction', 'mirror_reflectivity',
]
import os.path
import glob
import numpy
from numpy import nan, pi, exp, sin, cos, sqrt, radians
from .core import Element, Ion, default_table, get_data_path
from .constants import (avogadro_number, plancks_constant, speed_of_light,
electron_radius)
from .util import require_keywords
def xray_wavelength(energy):
"""
Convert X-ray energy to wavelength.
:Parameters:
*energy* : float or vector | keV
:Returns:
*wavelength* : float | |Ang|
Energy can be converted to wavelength using
.. math::
\lambda = h c / E
where:
$h$ = planck's constant in eV\ |cdot|\ s
$c$ = speed of light in m/s
"""
return plancks_constant*speed_of_light/numpy.asarray(energy)*1e7
def xray_energy(wavelength):
"""
Convert X-ray wavelength to energy.
:Parameters:
*wavelength* : float or vector | |Ang|
:Returns:
*energy* : float or vector | keV
Wavelength can be converted to energy using
.. math::
E = h c / \lambda
where:
$h$ = planck's constant in eV\ |cdot|\ s
$c$ = speed of light in m/s
"""
return plancks_constant*speed_of_light/numpy.asarray(wavelength)*1e7
class Xray(object):
"""
X-ray scattering properties for the elements. Refer help(periodictable.xsf)
from command prompt for details.
"""
_nff_path = get_data_path('xsf')
sftable_units = ["eV", "", ""]
scattering_factors_units = ["", ""]
sld_units = ["1e-6/Ang^2", "1e-6/Ang^2"]
_table = None
def __init__(self, element):
self.element = element
def _gettable(self):
if self._table is None:
# Load table when necessary; note there is no table for
# neutrons (n), and lowercase nitrogen=> n.nff, so it must
# be checked for explicitly.
filename = os.path.join(self._nff_path,
self.element.symbol.lower()+".nff")
if self.element.symbol != 'n' and os.path.exists(filename):
xsf = numpy.loadtxt(filename, skiprows=1).T
xsf[1, xsf[1] == -9999.] = numpy.NaN
xsf[0] *= 0.001 # Use keV in table rather than eV
self._table = xsf
return self._table
sftable = property(_gettable, doc="X-ray scattering factor table (E,f1,f2)")
@require_keywords
def scattering_factors(self, energy=None, wavelength=None):
"""
X-ray scattering factors f', f''.
:Parameters:
*energy* : float or vector | keV
X-ray energy.
:Returns:
*scattering_factors* : (float, float)
Values outside the range return NaN.
Values are found from linear interpolation within the Henke Xray
scattering factors database at the Lawrence Berkeley Laboratory
Center for X-ray Optics.
"""
xsf = self.sftable
if xsf is None:
return None, None
if wavelength is not None:
energy = xray_energy(wavelength)
if energy is None:
raise TypeError('X-ray scattering factors need wavelength or energy')
scalar = numpy.isscalar(energy)
if scalar:
energy = numpy.array([energy])
f1 = numpy.interp(energy, xsf[0], xsf[1], left=nan, right=nan)
f2 = numpy.interp(energy, xsf[0], xsf[2], left=nan, right=nan)
if scalar:
f1, f2 = f1[0], f2[0]
return f1, f2
def f0(self, Q):
r"""
Isotropic X-ray scattering factors *f0* for the input Q.
:Parameters:
*Q* : float or vector in $[0, 24\pi]$ | |1/Ang|
X-ray scattering properties for the elements.
:Returns:
*f0* : float
Values outside the valid range return NaN.
.. Note::
*f0* is often given as a function of $\sin(\theta)/\lambda$
whereas we are using $Q = 4 \pi \sin(\theta)/\lambda$, or
in terms of energy $Q = 4 \pi \sin(\theta) E/(h c)$.
Reference:
D. Wassmaier, A. Kerfel, Acta Crystallogr. A51 (1995) 416.
http://dx.doi.org/10.1107/S0108767394013292
"""
from . import cromermann
f = cromermann.fxrayatq(Q=Q,
symbol=self.element.symbol,
charge=self.element.charge)
return f
@require_keywords
def sld(self, wavelength=None, energy=None):
r"""
X ray scattering length density.
:Parameters:
*wavelength* : float or vector | |Ang|
Wavelength of the X-ray.
*energy* : float or vector | keV
Energy of the X-ray (if *wavelength* not specified).
.. note:
Only one of *wavelength* and *energy* is needed.
:Returns:
*sld* : (float, float) | |1/Ang^2|
(*real*, *imaginary*) X-ray scattering length density.
:Raises:
*TypeError* : neither *wavelength* nor *energy* was specified.
The scattering length density is $r_e N (f_1 + i f_2)$.
where $r_e$ is the electron radius and $N$ is the
number density. The number density is $N = \rho_m/m N_A$,
with mass density $\rho_m$ molar mass $m$ and
Avogadro's number $N_A$.
The constants are available directly:
$r_e$ = periodictable.xsf.electron_radius
$N_A$ = periodictable.constants.avogadro_number
Data comes from the Henke Xray scattering factors database at the
Lawrence Berkeley Laboratory Center for X-ray Optics.
"""
f1, f2 = self.scattering_factors(wavelength=wavelength, energy=energy)
if f1 is None or self.element.number_density is None:
return None, None
rho = f1*electron_radius*self.element.number_density*1e-8
irho = f2*electron_radius*self.element.number_density*1e-8
return rho, irho
# Note: docs and function prototype are reproduced in __init__
@require_keywords
def xray_sld(compound, density=None, natural_density=None,
wavelength=None, energy=None):
"""
Compute xray scattering length densities for molecules.
:Parameters:
*compound* : Formula initializer
Chemical formula.
*density* : float | |g/cm^3|
Mass density of the compound, or None for default.
*natural_density* : float | |g/cm^3|
Mass density of the compound at naturally occurring isotope abundance.
*wavelength* : float or vector | |Ang|
Wavelength of the X-ray.
*energy* : float or vector | keV
Energy of the X-ray, if *wavelength* is not specified.
:Returns:
*sld* : (float, float) | |1e-6/Ang^2|
(*real*, *imaginary*) scattering length density.
:Raises:
*AssertionError* : *density* or *wavelength*/*energy* is missing.
"""
from . import formulas
compound = formulas.formula(compound, density=density,
natural_density=natural_density)
assert compound.density is not None, "scattering calculation needs density"
if wavelength is not None: energy = xray_energy(wavelength)
assert energy is not None, "scattering calculation needs energy or wavelength"
mass, sum_f1, sum_f2 = 0, 0, 0
for element, quantity in compound.atoms.items():
mass += element.mass*quantity
f1, f2 = element.xray.scattering_factors(energy=energy)
#print element, f1, f2, wavelength
sum_f1 += f1*quantity
sum_f2 += f2*quantity
if mass == 0: # because the formula is empty
return 0, 0
N = (compound.density/mass*avogadro_number*1e-8)
rho = N*sum_f1*electron_radius
irho = N*sum_f2*electron_radius
return rho, irho
@require_keywords
def index_of_refraction(compound, density=None, natural_density=None,
energy=None, wavelength=None):
"""
Calculates the index of refraction for a given compound
:Parameters:
*compound* : Formula initializer
Chemical formula.
*density* : float | |g/cm^3|
Mass density of the compound, or None for default.
*natural_density* : float | |g/cm^3|
Mass density of the compound at naturally occurring isotope abundance.
*wavelength* : float or vector | |Ang|
Wavelength of the X-ray.
*energy* : float or vector | keV
Energy of the X-ray, if *wavelength* is not specified.
:Returns:
*n* : float or vector | unitless
index of refraction of the material at the given energy
:Notes:
Formula taken from http://xdb.lbl.gov (section 1.7) and checked
against http://henke.lbl.gov/optical_constants/getdb2.html
"""
if energy is not None: wavelength = xray_wavelength(energy)
assert wavelength is not None, "scattering calculation needs energy or wavelength"
f1, f2 = xray_sld(compound,
density=density, natural_density=natural_density,
wavelength=wavelength)
return 1 - wavelength**2/(2*pi)*(f1 + f2*1j)*1e-6
@require_keywords
def mirror_reflectivity(compound, density=None, natural_density=None,
energy=None, wavelength=None,
angle=None, roughness=0):
"""
Calculates reflectivity of a thick mirror as function of energy and angle
:Parameters:
*compound* : Formula initializer
Chemical formula.
*density* : float | |g/cm^3|
Mass density of the compound, or None for default.
*natural_density* : float | |g/cm^3|
Mass density of the compound at naturally occurring isotope abundance.
*roughness* : float | |Ang|
High-spatial-frequency surface roughness.
*wavelength* : float or vector | |Ang|
Wavelength of the X-ray.
*energy* : float or vector | keV
Energy of the X-ray, if *wavelength* is not specified.
*angle* : vector | |deg|
Incident beam angles.
:Returns:
*reflectivity* : matrix
matrix of reflectivity as function of (angle, energy)
:Notes:
Formula taken from http://xdb.lbl.gov (section 4.2) and checked
against http://henke.lbl.gov/optical_constants/mirror2.html
"""
if energy is not None: wavelength = xray_wavelength(energy)
assert wavelength is not None, "scattering calculation needs energy or wavelength"
angle = radians(angle)
if (numpy.isscalar(wavelength)): wavelength=numpy.array( [wavelength] )
if (numpy.isscalar(angle)) : angle =numpy.array( [angle] )
nv = index_of_refraction(compound=compound,
density=density, natural_density=natural_density,
wavelength=wavelength)
ki = 2*pi/wavelength[None, :] * sin(angle[:, None])
kf = 2*pi/wavelength[None, :] * sqrt(nv[None, :]**2 - cos(angle[:, None])**2)
r = (ki-kf)/(ki+kf)*exp(-2*ki*kf*roughness**2)
return abs(r)**2
def xray_sld_from_atoms(*args, **kw):
"""
.. deprecated:: 0.91
:func:`xray_sld` now accepts a dictionary of \{atom\: count\} directly.
"""
return xray_sld(*args, **kw)
spectral_lines_data = """\
Ac 0.1380 0.1205
Ag 0.5608 0.4970
Al 8.3402 7.9601
Am 0.1181 0.1030
Ar 4.1929 3.8860
As 1.1772 1.0573
At 0.1537 0.1343
Au 0.1818 0.1589
Ba 0.3866 0.3408
Bi 0.1624 0.1419
Bk 0.1122 0.0979
Br 1.0411 0.9328
Ca 3.3595 3.0897
Cd 0.5364 0.4751
Ce 0.3586 0.3158
Cf 0.1094 0.0954
Cl 4.7287 4.4034
Cm 0.1151 0.1004
Co 1.7902 1.6208
Cr 2.2910 2.0848
Cs 0.4018 0.3543
Cu 1.5418 1.3922
Dy 0.2711 0.2378
Er 0.2539 0.2226
Es 0.1067 0.0930
Eu 0.3000 0.2635
Fe 1.9373 1.7566
Fm 0.1040 0.0907
Fr 0.1456 0.1271
Ga 1.3414 1.2079
Gd 0.2899 0.2546
Ge 1.2553 1.1289
Hf 0.2238 0.1960
Hg 0.1767 0.1544
Ho 0.2623 0.2301
I 0.4348 0.3839
In 0.5136 0.4545
Ir 0.1926 0.1685
K 3.7423 3.4539
Kr 0.9816 0.8785
La 0.3722 0.3279
Lu 0.2308 0.2023
Mg 9.8902 9.5211
Mn 2.1031 1.9102
Mo 0.7107 0.6323
Na 11.9103 11.5752
Nb 0.7476 0.6657
Nd 0.3333 0.2933
Ne 14.6102 14.4522
Ni 1.6592 1.5001
Np 0.1243 0.1085
Os 0.1984 0.1736
P 6.1581 5.7961
Pa 0.1310 0.1143
Pb 0.1670 0.1459
Pd 0.5869 0.5205
Pm 0.3217 0.2829
Po 0.1580 0.1380
Pr 0.3456 0.3042
Pt 0.1871 0.1636
Pu 0.1212 0.1057
Ra 0.1417 0.1238
Rb 0.9269 0.8286
Re 0.2043 0.1788
Rh 0.6147 0.5456
Rn 0.1496 0.1306
Ru 0.6445 0.5724
S 5.3731 5.0316
Sb 0.4718 0.4170
Sc 3.0320 2.7796
Se 1.1061 0.9921
Si 7.1263 6.7531
Sm 0.3105 0.2730
Sn 0.4920 0.4352
Sr 0.8766 0.7829
Ta 0.2171 0.1900
Tb 0.2802 0.2460
Tc 0.6764 0.6013
Te 0.4527 0.4000
Th 0.1344 0.1174
Ti 2.7497 2.5139
Tl 0.1717 0.1501
Tm 0.2459 0.2155
U 0.1276 0.1114
V 2.5048 2.2844
W 0.2106 0.1843
Xe 0.4178 0.3687
Y 0.8302 0.7407
Yb 0.2382 0.2088
Zn 1.4364 1.2952
Zr 0.7873 0.7018\
"""
def init_spectral_lines(table):
"""
Sets the K_alpha and K_beta1 wavelengths for select elements
"""
Element.K_alpha_units = "angstrom"
Element.K_beta1_units = "angstrom"
for row in spectral_lines_data.split('\n'):
el, K_alpha, K_beta1 = row.split()
el = table.symbol(el)
el.K_alpha = float(K_alpha)
el.K_beta1 = float(K_beta1)
def init(table, reload=False):
if 'xray' in table.properties and not reload: return
table.properties.append('xray')
# Create an xray object for the particular element/ion. Note that
# we must not use normal attribute tests such as "hasattr(el, 'attr')"
# or "try: el.attr; except:" since the delegation methods on Ion will
# just return the attribute from the base element. Instead we check
# for an instance specific xray object for the particular ion prior
# to delegating.
# TODO: is there a better way to set up delegation on a field by
# field basis?
def _cache_xray(el):
if '_xray' not in el.__dict__ and isinstance(el, (Element, Ion)):
el._xray = Xray(el)
return el._xray
Element.xray = property(_cache_xray)
Ion.xray = property(_cache_xray)
## Note: the simple approach below fails for e.g., Ni[58].ion[3].xray
#for el in table:
# for charge in el.ions:
# el.ion[charge].xray = Xray(el.ion[charge])
# el.xray = Xray(el)
def plot_xsf(el):
"""
Plots the xray scattering factors for the given element.
:Parameters:
*el* : Element
:Returns: None
"""
import pylab
xsf = el.xray.sftable
pylab.title('X-ray scattering factors for '+el.name)
pylab.plot(xsf[0], xsf[1])
pylab.plot(xsf[0], xsf[2])
pylab.xlabel('Energy (keV)')
pylab.ylabel('Scattering factor')
pylab.legend(['f1', 'f2'])
pylab.show()
def sld_table(wavelength=None, table=None):
"""
Prints the xray SLD table for the given wavelength.
:Parameters:
*wavelength* = Cu K-alpha : float | |Ang|
X-ray wavelength.
*table* : PeriodicTable
The default periodictable unless a specific table has been requested.
:Returns: None
Example
>>> sld_table() # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
X-ray scattering length density for 1.5418 Ang
El rho irho
H 1.19 0.00
He 1.03 0.00
Li 3.92 0.00
Be 13.93 0.01
B 18.40 0.01
C 17.86 0.03
N 6.88 0.02
O 9.74 0.04
F 12.16 0.07
Ne 10.26 0.09
Na 7.98 0.09
Mg 14.78 0.22
...
"""
table = default_table(table)
if wavelength == None: wavelength = table.Cu.K_alpha
# NBCU spreadsheet format
print("X-ray scattering length density for %g Ang"%wavelength)
print("%3s %6s %6s"%('El', 'rho', 'irho'))
for el in table:
rho, irho = el.xray.sld(wavelength=table.Cu.K_alpha)
if rho is not None:
print("%3s %6.2f %6.2f"%(el.symbol, rho, irho))
def emission_table(table=None):
"""
Prints a table of emission lines.
:Parameters:
*table* : PeriodicTable
The default periodictable unless a specific table has been requested.
:Returns: None
Example
>>> emission_table() # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
El Kalpha Kbeta1
Ne 14.6102 14.4522
Na 11.9103 11.5752
Mg 9.8902 9.5211
Al 8.3402 7.9601
Si 7.1263 6.7531
...
"""
table = default_table(table)
print("%3s %7s %7s"%('El', 'Kalpha', 'Kbeta1'))
for el in table:
if hasattr(el, 'K_alpha'):
print("%3s %7.4f %7.4f"%(el.symbol, el.K_alpha, el.K_beta1))
|