This file is indexed.

/usr/lib/python3/dist-packages/png.py is in python3-png 0.0.18+ds-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
#!/usr/bin/env python

# png.py - PNG encoder/decoder in pure Python
#
# Copyright (C) 2006 Johann C. Rocholl <johann@browsershots.org>
# Portions Copyright (C) 2009 David Jones <drj@pobox.com>
# And probably portions Copyright (C) 2006 Nicko van Someren <nicko@nicko.org>
#
# Original concept by Johann C. Rocholl.
#
# LICENCE (MIT)
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

"""
Pure Python PNG Reader/Writer

This Python module implements support for PNG images (see PNG
specification at http://www.w3.org/TR/2003/REC-PNG-20031110/ ). It reads
and writes PNG files with all allowable bit depths
(1/2/4/8/16/24/32/48/64 bits per pixel) and colour combinations:
greyscale (1/2/4/8/16 bit); RGB, RGBA, LA (greyscale with alpha) with
8/16 bits per channel; colour mapped images (1/2/4/8 bit).
Adam7 interlacing is supported for reading and
writing.  A number of optional chunks can be specified (when writing)
and understood (when reading): ``tRNS``, ``bKGD``, ``gAMA``.

For help, type ``import png; help(png)`` in your python interpreter.

A good place to start is the :class:`Reader` and :class:`Writer`
classes.

Requires Python 2.3.  Limited support is available for Python 2.2, but
not everything works.  Best with Python 2.4 and higher.  Installation is
trivial, but see the ``README.txt`` file (with the source distribution)
for details.

This file can also be used as a command-line utility to convert
`Netpbm <http://netpbm.sourceforge.net/>`_ PNM files to PNG, and the
reverse conversion from PNG to PNM. The interface is similar to that
of the ``pnmtopng`` program from Netpbm.  Type ``python png.py --help``
at the shell prompt for usage and a list of options.

A note on spelling and terminology
----------------------------------

Generally British English spelling is used in the documentation.  So
that's "greyscale" and "colour".  This not only matches the author's
native language, it's also used by the PNG specification.

The major colour models supported by PNG (and hence by PyPNG) are:
greyscale, RGB, greyscale--alpha, RGB--alpha.  These are sometimes
referred to using the abbreviations: L, RGB, LA, RGBA.  In this case
each letter abbreviates a single channel: *L* is for Luminance or Luma
or Lightness which is the channel used in greyscale images; *R*, *G*,
*B* stand for Red, Green, Blue, the components of a colour image; *A*
stands for Alpha, the opacity channel (used for transparency effects,
but higher values are more opaque, so it makes sense to call it 
opacity).

A note on formats
-----------------

When getting pixel data out of this module (reading) and presenting
data to this module (writing) there are a number of ways the data could
be represented as a Python value.  Generally this module uses one of
three formats called "flat row flat pixel", "boxed row flat pixel", and
"boxed row boxed pixel".  Basically the concern is whether each pixel
and each row comes in its own little tuple (box), or not.

Consider an image that is 3 pixels wide by 2 pixels high, and each pixel
has RGB components:

Boxed row flat pixel::

  list([R,G,B, R,G,B, R,G,B],
       [R,G,B, R,G,B, R,G,B])

Each row appears as its own list, but the pixels are flattened so
that three values for one pixel simply follow the three values for
the previous pixel.  This is the most common format used, because it
provides a good compromise between space and convenience.  PyPNG regards
itself as at liberty to replace any sequence type with any sufficiently
compatible other sequence type; in practice each row is an array (from
the array module), and the outer list is sometimes an iterator rather
than an explicit list (so that streaming is possible).

Flat row flat pixel::

  [R,G,B, R,G,B, R,G,B,
   R,G,B, R,G,B, R,G,B]

The entire image is one single giant sequence of colour values.
Generally an array will be used (to save space), not a list.

Boxed row boxed pixel::

  list([ (R,G,B), (R,G,B), (R,G,B) ],
       [ (R,G,B), (R,G,B), (R,G,B) ])

Each row appears in its own list, but each pixel also appears in its own
tuple.  A serious memory burn in Python.

In all cases the top row comes first, and for each row the pixels are
ordered from left-to-right.  Within a pixel the values appear in the
order, R-G-B-A (or L-A for greyscale--alpha).

There is a fourth format, mentioned because it is used internally,
is close to what lies inside a PNG file itself, and has some support
from the public API.  This format is called packed.  When packed,
each row is a sequence of bytes (integers from 0 to 255), just as
it is before PNG scanline filtering is applied.  When the bit depth
is 8 this is essentially the same as boxed row flat pixel; when the
bit depth is less than 8, several pixels are packed into each byte;
when the bit depth is 16 (the only value more than 8 that is supported
by the PNG image format) each pixel value is decomposed into 2 bytes
(and `packed` is a misnomer).  This format is used by the
:meth:`Writer.write_packed` method.  It isn't usually a convenient
format, but may be just right if the source data for the PNG image
comes from something that uses a similar format (for example, 1-bit
BMPs, or another PNG file).

And now, my famous members
--------------------------
"""

# http://www.python.org/doc/2.2.3/whatsnew/node5.html


__version__ = "0.0.18"

from array import array
from functools import reduce
try: # See :pyver:old
    import itertools
except ImportError:
    pass
import math
# http://www.python.org/doc/2.4.4/lib/module-operator.html
import operator
import struct
import sys
import zlib
# http://www.python.org/doc/2.4.4/lib/module-warnings.html
import warnings
try:
    # `cpngfilters` is a Cython module: it must be compiled by
    # Cython for this import to work.
    # If this import does work, then it overrides pure-python
    # filtering functions defined later in this file (see `class
    # pngfilters`).
    import cpngfilters as pngfilters
except ImportError:
    pass


__all__ = ['Image', 'Reader', 'Writer', 'write_chunks', 'from_array']


# The PNG signature.
# http://www.w3.org/TR/PNG/#5PNG-file-signature
_signature = struct.pack('8B', 137, 80, 78, 71, 13, 10, 26, 10)

_adam7 = ((0, 0, 8, 8),
          (4, 0, 8, 8),
          (0, 4, 4, 8),
          (2, 0, 4, 4),
          (0, 2, 2, 4),
          (1, 0, 2, 2),
          (0, 1, 1, 2))

def group(s, n):
    # See http://www.python.org/doc/2.6/library/functions.html#zip
    return list(zip(*[iter(s)]*n))

def isarray(x):
    """Same as ``isinstance(x, array)`` except on Python 2.2, where it
    always returns ``False``.  This helps PyPNG work on Python 2.2.
    """

    try:
        return isinstance(x, array)
    except TypeError:
        # Because on Python 2.2 array.array is not a type.
        return False

try:
    array.tobytes
except AttributeError:
    try:  # see :pyver:old
        array.tostring
    except AttributeError:
        def tostring(row):
            l = len(row)
            return struct.pack('%dB' % l, *row)
    else:
        def tostring(row):
            """Convert row of bytes to string.  Expects `row` to be an
            ``array``.
            """
            return row.tostring()
else:
    def tostring(row):
        """ Python3 definition, array.tostring() is deprecated in Python3
        """
        return row.tobytes()

# Conditionally convert to bytes.  Works on Python 2 and Python 3.
try:
    bytes('', 'ascii')
    def strtobytes(x): return bytes(x, 'iso8859-1')
    def bytestostr(x): return str(x, 'iso8859-1')
except (NameError, TypeError):
    # We get NameError when bytes() does not exist (most Python
    # 2.x versions), and TypeError when bytes() exists but is on
    # Python 2.x (when it is an alias for str() and takes at most
    # one argument).
    strtobytes = str
    bytestostr = str

def interleave_planes(ipixels, apixels, ipsize, apsize):
    """
    Interleave (colour) planes, e.g. RGB + A = RGBA.

    Return an array of pixels consisting of the `ipsize` elements of
    data from each pixel in `ipixels` followed by the `apsize` elements
    of data from each pixel in `apixels`.  Conventionally `ipixels`
    and `apixels` are byte arrays so the sizes are bytes, but it
    actually works with any arrays of the same type.  The returned
    array is the same type as the input arrays which should be the
    same type as each other.
    """

    itotal = len(ipixels)
    atotal = len(apixels)
    newtotal = itotal + atotal
    newpsize = ipsize + apsize
    # Set up the output buffer
    # See http://www.python.org/doc/2.4.4/lib/module-array.html#l2h-1356
    out = array(ipixels.typecode)
    # It's annoying that there is no cheap way to set the array size :-(
    out.extend(ipixels)
    out.extend(apixels)
    # Interleave in the pixel data
    for i in range(ipsize):
        out[i:newtotal:newpsize] = ipixels[i:itotal:ipsize]
    for i in range(apsize):
        out[i+ipsize:newtotal:newpsize] = apixels[i:atotal:apsize]
    return out

def check_palette(palette):
    """Check a palette argument (to the :class:`Writer` class)
    for validity.  Returns the palette as a list if okay; raises an
    exception otherwise.
    """

    # None is the default and is allowed.
    if palette is None:
        return None

    p = list(palette)
    if not (0 < len(p) <= 256):
        raise ValueError("a palette must have between 1 and 256 entries")
    seen_triple = False
    for i,t in enumerate(p):
        if len(t) not in (3,4):
            raise ValueError(
              "palette entry %d: entries must be 3- or 4-tuples." % i)
        if len(t) == 3:
            seen_triple = True
        if seen_triple and len(t) == 4:
            raise ValueError(
              "palette entry %d: all 4-tuples must precede all 3-tuples" % i)
        for x in t:
            if int(x) != x or not(0 <= x <= 255):
                raise ValueError(
                  "palette entry %d: values must be integer: 0 <= x <= 255" % i)
    return p

def check_sizes(size, width, height):
    """Check that these arguments, in supplied, are consistent.
    Return a (width, height) pair.
    """

    if not size:
        return width, height

    if len(size) != 2:
        raise ValueError(
          "size argument should be a pair (width, height)")
    if width is not None and width != size[0]:
        raise ValueError(
          "size[0] (%r) and width (%r) should match when both are used."
            % (size[0], width))
    if height is not None and height != size[1]:
        raise ValueError(
          "size[1] (%r) and height (%r) should match when both are used."
            % (size[1], height))
    return size

def check_color(c, greyscale, which):
    """Checks that a colour argument for transparent or
    background options is the right form.  Returns the colour
    (which, if it's a bar integer, is "corrected" to a 1-tuple).
    """

    if c is None:
        return c
    if greyscale:
        try:
            len(c)
        except TypeError:
            c = (c,)
        if len(c) != 1:
            raise ValueError("%s for greyscale must be 1-tuple" %
                which)
        if not isinteger(c[0]):
            raise ValueError(
                "%s colour for greyscale must be integer" % which)
    else:
        if not (len(c) == 3 and
                isinteger(c[0]) and
                isinteger(c[1]) and
                isinteger(c[2])):
            raise ValueError(
                "%s colour must be a triple of integers" % which)
    return c

class Error(Exception):
    def __str__(self):
        return self.__class__.__name__ + ': ' + ' '.join(self.args)

class FormatError(Error):
    """Problem with input file format.  In other words, PNG file does
    not conform to the specification in some way and is invalid.
    """

class ChunkError(FormatError):
    pass


class Writer:
    """
    PNG encoder in pure Python.
    """

    def __init__(self, width=None, height=None,
                 size=None,
                 greyscale=False,
                 alpha=False,
                 bitdepth=8,
                 palette=None,
                 transparent=None,
                 background=None,
                 gamma=None,
                 compression=None,
                 interlace=False,
                 bytes_per_sample=None, # deprecated
                 planes=None,
                 colormap=None,
                 maxval=None,
                 chunk_limit=2**20,
                 x_pixels_per_unit = None,
                 y_pixels_per_unit = None,
                 unit_is_meter = False):
        """
        Create a PNG encoder object.

        Arguments:

        width, height
          Image size in pixels, as two separate arguments.
        size
          Image size (w,h) in pixels, as single argument.
        greyscale
          Input data is greyscale, not RGB.
        alpha
          Input data has alpha channel (RGBA or LA).
        bitdepth
          Bit depth: from 1 to 16.
        palette
          Create a palette for a colour mapped image (colour type 3).
        transparent
          Specify a transparent colour (create a ``tRNS`` chunk).
        background
          Specify a default background colour (create a ``bKGD`` chunk).
        gamma
          Specify a gamma value (create a ``gAMA`` chunk).
        compression
          zlib compression level: 0 (none) to 9 (more compressed);
          default: -1 or None.
        interlace
          Create an interlaced image.
        chunk_limit
          Write multiple ``IDAT`` chunks to save memory.
        x_pixels_per_unit (pHYs chunk)
          Number of pixels a unit along the x axis
        y_pixels_per_unit (pHYs chunk)
          Number of pixels a unit along the y axis    
          With x_pixel_unit, give the pixel size ratio
        unit_is_meter (pHYs chunk)
          Indicates if unit is meter or not

        The image size (in pixels) can be specified either by using the
        `width` and `height` arguments, or with the single `size`
        argument.  If `size` is used it should be a pair (*width*,
        *height*).

        `greyscale` and `alpha` are booleans that specify whether
        an image is greyscale (or colour), and whether it has an
        alpha channel (or not).

        `bitdepth` specifies the bit depth of the source pixel values.
        Each source pixel value must be an integer between 0 and
        ``2**bitdepth-1``.  For example, 8-bit images have values
        between 0 and 255.  PNG only stores images with bit depths of
        1,2,4,8, or 16.  When `bitdepth` is not one of these values,
        the next highest valid bit depth is selected, and an ``sBIT``
        (significant bits) chunk is generated that specifies the
        original precision of the source image.  In this case the
        supplied pixel values will be rescaled to fit the range of
        the selected bit depth.

        The details of which bit depth / colour model combinations the
        PNG file format supports directly, are somewhat arcane
        (refer to the PNG specification for full details).  Briefly:
        "small" bit depths (1,2,4) are only allowed with greyscale and
        colour mapped images; colour mapped images cannot have bit depth
        16.

        For colour mapped images (in other words, when the `palette`
        argument is specified) the `bitdepth` argument must match one of
        the valid PNG bit depths: 1, 2, 4, or 8.  (It is valid to have a
        PNG image with a palette and an ``sBIT`` chunk, but the meaning
        is slightly different; it would be awkward to press the
        `bitdepth` argument into service for this.)

        The `palette` option, when specified, causes a colour mapped
        image to be created: the PNG colour type is set to 3; greyscale
        must not be set; alpha must not be set; transparent must not be
        set; the bit depth must be 1,2,4, or 8.  When a colour mapped
        image is created, the pixel values are palette indexes and
        the `bitdepth` argument specifies the size of these indexes
        (not the size of the colour values in the palette).

        The palette argument value should be a sequence of 3- or
        4-tuples.  3-tuples specify RGB palette entries; 4-tuples
        specify RGBA palette entries.  If both 4-tuples and 3-tuples
        appear in the sequence then all the 4-tuples must come
        before all the 3-tuples.  A ``PLTE`` chunk is created; if there
        are 4-tuples then a ``tRNS`` chunk is created as well.  The
        ``PLTE`` chunk will contain all the RGB triples in the same
        sequence; the ``tRNS`` chunk will contain the alpha channel for
        all the 4-tuples, in the same sequence.  Palette entries
        are always 8-bit.

        If specified, the `transparent` and `background` parameters must
        be a tuple with three integer values for red, green, blue, or
        a simple integer (or singleton tuple) for a greyscale image.

        If specified, the `gamma` parameter must be a positive number
        (generally, a float).  A ``gAMA`` chunk will be created.
        Note that this will not change the values of the pixels as
        they appear in the PNG file, they are assumed to have already
        been converted appropriately for the gamma specified.

        The `compression` argument specifies the compression level to
        be used by the ``zlib`` module.  Values from 1 to 9 specify
        compression, with 9 being "more compressed" (usually smaller
        and slower, but it doesn't always work out that way).  0 means
        no compression.  -1 and ``None`` both mean that the default
        level of compession will be picked by the ``zlib`` module
        (which is generally acceptable).

        If `interlace` is true then an interlaced image is created
        (using PNG's so far only interace method, *Adam7*).  This does
        not affect how the pixels should be presented to the encoder,
        rather it changes how they are arranged into the PNG file.
        On slow connexions interlaced images can be partially decoded
        by the browser to give a rough view of the image that is
        successively refined as more image data appears.

        .. note ::

          Enabling the `interlace` option requires the entire image
          to be processed in working memory.

        `chunk_limit` is used to limit the amount of memory used whilst
        compressing the image.  In order to avoid using large amounts of
        memory, multiple ``IDAT`` chunks may be created.
        """

        # At the moment the `planes` argument is ignored;
        # its purpose is to act as a dummy so that
        # ``Writer(x, y, **info)`` works, where `info` is a dictionary
        # returned by Reader.read and friends.
        # Ditto for `colormap`.

        width, height = check_sizes(size, width, height)
        del size

        if width <= 0 or height <= 0:
            raise ValueError("width and height must be greater than zero")
        if not isinteger(width) or not isinteger(height):
            raise ValueError("width and height must be integers")
        # http://www.w3.org/TR/PNG/#7Integers-and-byte-order
        if width > 2**32-1 or height > 2**32-1:
            raise ValueError("width and height cannot exceed 2**32-1")

        if alpha and transparent is not None:
            raise ValueError(
                "transparent colour not allowed with alpha channel")

        if bytes_per_sample is not None:
            warnings.warn('please use bitdepth instead of bytes_per_sample',
                          DeprecationWarning)
            if bytes_per_sample not in (0.125, 0.25, 0.5, 1, 2):
                raise ValueError(
                    "bytes per sample must be .125, .25, .5, 1, or 2")
            bitdepth = int(8*bytes_per_sample)
        del bytes_per_sample
        if not isinteger(bitdepth) or bitdepth < 1 or 16 < bitdepth:
            raise ValueError("bitdepth (%r) must be a positive integer <= 16" %
              bitdepth)

        self.rescale = None
        palette = check_palette(palette)
        if palette:
            if bitdepth not in (1,2,4,8):
                raise ValueError("with palette, bitdepth must be 1, 2, 4, or 8")
            if transparent is not None:
                raise ValueError("transparent and palette not compatible")
            if alpha:
                raise ValueError("alpha and palette not compatible")
            if greyscale:
                raise ValueError("greyscale and palette not compatible")
        else:
            # No palette, check for sBIT chunk generation.
            if alpha or not greyscale:
                if bitdepth not in (8,16):
                    targetbitdepth = (8,16)[bitdepth > 8]
                    self.rescale = (bitdepth, targetbitdepth)
                    bitdepth = targetbitdepth
                    del targetbitdepth
            else:
                assert greyscale
                assert not alpha
                if bitdepth not in (1,2,4,8,16):
                    if bitdepth > 8:
                        targetbitdepth = 16
                    elif bitdepth == 3:
                        targetbitdepth = 4
                    else:
                        assert bitdepth in (5,6,7)
                        targetbitdepth = 8
                    self.rescale = (bitdepth, targetbitdepth)
                    bitdepth = targetbitdepth
                    del targetbitdepth

        if bitdepth < 8 and (alpha or not greyscale and not palette):
            raise ValueError(
              "bitdepth < 8 only permitted with greyscale or palette")
        if bitdepth > 8 and palette:
            raise ValueError(
                "bit depth must be 8 or less for images with palette")

        transparent = check_color(transparent, greyscale, 'transparent')
        background = check_color(background, greyscale, 'background')

        # It's important that the true boolean values (greyscale, alpha,
        # colormap, interlace) are converted to bool because Iverson's
        # convention is relied upon later on.
        self.width = width
        self.height = height
        self.transparent = transparent
        self.background = background
        self.gamma = gamma
        self.greyscale = bool(greyscale)
        self.alpha = bool(alpha)
        self.colormap = bool(palette)
        self.bitdepth = int(bitdepth)
        self.compression = compression
        self.chunk_limit = chunk_limit
        self.interlace = bool(interlace)
        self.palette = palette
        self.x_pixels_per_unit = x_pixels_per_unit
        self.y_pixels_per_unit = y_pixels_per_unit
        self.unit_is_meter = bool(unit_is_meter)

        self.color_type = 4*self.alpha + 2*(not greyscale) + 1*self.colormap
        assert self.color_type in (0,2,3,4,6)

        self.color_planes = (3,1)[self.greyscale or self.colormap]
        self.planes = self.color_planes + self.alpha
        # :todo: fix for bitdepth < 8
        self.psize = (self.bitdepth/8) * self.planes

    def make_palette(self):
        """Create the byte sequences for a ``PLTE`` and if necessary a
        ``tRNS`` chunk.  Returned as a pair (*p*, *t*).  *t* will be
        ``None`` if no ``tRNS`` chunk is necessary.
        """

        p = array('B')
        t = array('B')

        for x in self.palette:
            p.extend(x[0:3])
            if len(x) > 3:
                t.append(x[3])
        p = tostring(p)
        t = tostring(t)
        if t:
            return p,t
        return p,None

    def write(self, outfile, rows):
        """Write a PNG image to the output file.  `rows` should be
        an iterable that yields each row in boxed row flat pixel
        format.  The rows should be the rows of the original image,
        so there should be ``self.height`` rows of ``self.width *
        self.planes`` values.  If `interlace` is specified (when
        creating the instance), then an interlaced PNG file will
        be written.  Supply the rows in the normal image order;
        the interlacing is carried out internally.

        .. note ::

          Interlacing will require the entire image to be in working
          memory.
        """

        if self.interlace:
            fmt = 'BH'[self.bitdepth > 8]
            a = array(fmt, itertools.chain(*rows))
            return self.write_array(outfile, a)

        nrows = self.write_passes(outfile, rows)
        if nrows != self.height:
            raise ValueError(
              "rows supplied (%d) does not match height (%d)" %
              (nrows, self.height))

    def write_passes(self, outfile, rows, packed=False):
        """
        Write a PNG image to the output file.

        Most users are expected to find the :meth:`write` or
        :meth:`write_array` method more convenient.
        
        The rows should be given to this method in the order that
        they appear in the output file.  For straightlaced images,
        this is the usual top to bottom ordering, but for interlaced
        images the rows should have already been interlaced before
        passing them to this function.

        `rows` should be an iterable that yields each row.  When
        `packed` is ``False`` the rows should be in boxed row flat pixel
        format; when `packed` is ``True`` each row should be a packed
        sequence of bytes.
        """

        # http://www.w3.org/TR/PNG/#5PNG-file-signature
        outfile.write(_signature)

        # http://www.w3.org/TR/PNG/#11IHDR
        write_chunk(outfile, 'IHDR',
                    struct.pack("!2I5B", self.width, self.height,
                                self.bitdepth, self.color_type,
                                0, 0, self.interlace))

        # See :chunk:order
        # http://www.w3.org/TR/PNG/#11gAMA
        if self.gamma is not None:
            write_chunk(outfile, 'gAMA',
                        struct.pack("!L", int(round(self.gamma*1e5))))

        # See :chunk:order
        # http://www.w3.org/TR/PNG/#11sBIT
        if self.rescale:
            write_chunk(outfile, 'sBIT',
                struct.pack('%dB' % self.planes,
                            *[self.rescale[0]]*self.planes))
        
        # :chunk:order: Without a palette (PLTE chunk), ordering is
        # relatively relaxed.  With one, gAMA chunk must precede PLTE
        # chunk which must precede tRNS and bKGD.
        # See http://www.w3.org/TR/PNG/#5ChunkOrdering
        if self.palette:
            p,t = self.make_palette()
            write_chunk(outfile, 'PLTE', p)
            if t:
                # tRNS chunk is optional. Only needed if palette entries
                # have alpha.
                write_chunk(outfile, 'tRNS', t)

        # http://www.w3.org/TR/PNG/#11tRNS
        if self.transparent is not None:
            if self.greyscale:
                write_chunk(outfile, 'tRNS',
                            struct.pack("!1H", *self.transparent))
            else:
                write_chunk(outfile, 'tRNS',
                            struct.pack("!3H", *self.transparent))

        # http://www.w3.org/TR/PNG/#11bKGD
        if self.background is not None:
            if self.greyscale:
                write_chunk(outfile, 'bKGD',
                            struct.pack("!1H", *self.background))
            else:
                write_chunk(outfile, 'bKGD',
                            struct.pack("!3H", *self.background))

        # http://www.w3.org/TR/PNG/#11pHYs
        if self.x_pixels_per_unit is not None and self.y_pixels_per_unit is not None:
            tup = (self.x_pixels_per_unit, self.y_pixels_per_unit, int(self.unit_is_meter))
            write_chunk(outfile, 'pHYs', struct.pack("!LLB",*tup))

        # http://www.w3.org/TR/PNG/#11IDAT
        if self.compression is not None:
            compressor = zlib.compressobj(self.compression)
        else:
            compressor = zlib.compressobj()

        # Choose an extend function based on the bitdepth.  The extend
        # function packs/decomposes the pixel values into bytes and
        # stuffs them onto the data array.
        data = array('B')
        if self.bitdepth == 8 or packed:
            extend = data.extend
        elif self.bitdepth == 16:
            # Decompose into bytes
            def extend(sl):
                fmt = '!%dH' % len(sl)
                data.extend(array('B', struct.pack(fmt, *sl)))
        else:
            # Pack into bytes
            assert self.bitdepth < 8
            # samples per byte
            spb = int(8/self.bitdepth)
            def extend(sl):
                a = array('B', sl)
                # Adding padding bytes so we can group into a whole
                # number of spb-tuples.
                l = float(len(a))
                extra = math.ceil(l / float(spb))*spb - l
                a.extend([0]*int(extra))
                # Pack into bytes
                l = group(a, spb)
                l = [reduce(lambda x,y:
                                           (x << self.bitdepth) + y, e) for e in l]
                data.extend(l)
        if self.rescale:
            oldextend = extend
            factor = \
              float(2**self.rescale[1]-1) / float(2**self.rescale[0]-1)
            def extend(sl):
                oldextend([int(round(factor*x)) for x in sl])

        # Build the first row, testing mostly to see if we need to
        # changed the extend function to cope with NumPy integer types
        # (they cause our ordinary definition of extend to fail, so we
        # wrap it).  See
        # http://code.google.com/p/pypng/issues/detail?id=44
        enumrows = enumerate(rows)
        del rows

        # First row's filter type.
        data.append(0)
        # :todo: Certain exceptions in the call to ``.next()`` or the
        # following try would indicate no row data supplied.
        # Should catch.
        i,row = next(enumrows)
        try:
            # If this fails...
            extend(row)
        except:
            # ... try a version that converts the values to int first.
            # Not only does this work for the (slightly broken) NumPy
            # types, there are probably lots of other, unknown, "nearly"
            # int types it works for.
            def wrapmapint(f):
                return lambda sl: f(list(map(int, sl)))
            extend = wrapmapint(extend)
            del wrapmapint
            extend(row)

        for i,row in enumrows:
            # Add "None" filter type.  Currently, it's essential that
            # this filter type be used for every scanline as we do not
            # mark the first row of a reduced pass image; that means we
            # could accidentally compute the wrong filtered scanline if
            # we used "up", "average", or "paeth" on such a line.
            data.append(0)
            extend(row)
            if len(data) > self.chunk_limit:
                compressed = compressor.compress(tostring(data))
                if len(compressed):
                    write_chunk(outfile, 'IDAT', compressed)
                # Because of our very witty definition of ``extend``,
                # above, we must re-use the same ``data`` object.  Hence
                # we use ``del`` to empty this one, rather than create a
                # fresh one (which would be my natural FP instinct).
                del data[:]
        if len(data):
            compressed = compressor.compress(tostring(data))
        else:
            compressed = strtobytes('')
        flushed = compressor.flush()
        if len(compressed) or len(flushed):
            write_chunk(outfile, 'IDAT', compressed + flushed)
        # http://www.w3.org/TR/PNG/#11IEND
        write_chunk(outfile, 'IEND')
        return i+1

    def write_array(self, outfile, pixels):
        """
        Write an array in flat row flat pixel format as a PNG file on
        the output file.  See also :meth:`write` method.
        """

        if self.interlace:
            self.write_passes(outfile, self.array_scanlines_interlace(pixels))
        else:
            self.write_passes(outfile, self.array_scanlines(pixels))

    def write_packed(self, outfile, rows):
        """
        Write PNG file to `outfile`.  The pixel data comes from `rows`
        which should be in boxed row packed format.  Each row should be
        a sequence of packed bytes.

        Technically, this method does work for interlaced images but it
        is best avoided.  For interlaced images, the rows should be
        presented in the order that they appear in the file.

        This method should not be used when the source image bit depth
        is not one naturally supported by PNG; the bit depth should be
        1, 2, 4, 8, or 16.
        """

        if self.rescale:
            raise Error("write_packed method not suitable for bit depth %d" %
              self.rescale[0])
        return self.write_passes(outfile, rows, packed=True)

    def convert_pnm(self, infile, outfile):
        """
        Convert a PNM file containing raw pixel data into a PNG file
        with the parameters set in the writer object.  Works for
        (binary) PGM, PPM, and PAM formats.
        """

        if self.interlace:
            pixels = array('B')
            pixels.fromfile(infile,
                            (self.bitdepth/8) * self.color_planes *
                            self.width * self.height)
            self.write_passes(outfile, self.array_scanlines_interlace(pixels))
        else:
            self.write_passes(outfile, self.file_scanlines(infile))

    def convert_ppm_and_pgm(self, ppmfile, pgmfile, outfile):
        """
        Convert a PPM and PGM file containing raw pixel data into a
        PNG outfile with the parameters set in the writer object.
        """
        pixels = array('B')
        pixels.fromfile(ppmfile,
                        (self.bitdepth/8) * self.color_planes *
                        self.width * self.height)
        apixels = array('B')
        apixels.fromfile(pgmfile,
                         (self.bitdepth/8) *
                         self.width * self.height)
        pixels = interleave_planes(pixels, apixels,
                                   (self.bitdepth/8) * self.color_planes,
                                   (self.bitdepth/8))
        if self.interlace:
            self.write_passes(outfile, self.array_scanlines_interlace(pixels))
        else:
            self.write_passes(outfile, self.array_scanlines(pixels))

    def file_scanlines(self, infile):
        """
        Generates boxed rows in flat pixel format, from the input file
        `infile`.  It assumes that the input file is in a "Netpbm-like"
        binary format, and is positioned at the beginning of the first
        pixel.  The number of pixels to read is taken from the image
        dimensions (`width`, `height`, `planes`) and the number of bytes
        per value is implied by the image `bitdepth`.
        """

        # Values per row
        vpr = self.width * self.planes
        row_bytes = vpr
        if self.bitdepth > 8:
            assert self.bitdepth == 16
            row_bytes *= 2
            fmt = '>%dH' % vpr
            def line():
                return array('H', struct.unpack(fmt, infile.read(row_bytes)))
        else:
            def line():
                scanline = array('B', infile.read(row_bytes))
                return scanline
        for y in range(self.height):
            yield line()

    def array_scanlines(self, pixels):
        """
        Generates boxed rows (flat pixels) from flat rows (flat pixels)
        in an array.
        """

        # Values per row
        vpr = self.width * self.planes
        stop = 0
        for y in range(self.height):
            start = stop
            stop = start + vpr
            yield pixels[start:stop]

    def array_scanlines_interlace(self, pixels):
        """
        Generator for interlaced scanlines from an array.  `pixels` is
        the full source image in flat row flat pixel format.  The
        generator yields each scanline of the reduced passes in turn, in
        boxed row flat pixel format.
        """

        # http://www.w3.org/TR/PNG/#8InterlaceMethods
        # Array type.
        fmt = 'BH'[self.bitdepth > 8]
        # Value per row
        vpr = self.width * self.planes
        for xstart, ystart, xstep, ystep in _adam7:
            if xstart >= self.width:
                continue
            # Pixels per row (of reduced image)
            ppr = int(math.ceil((self.width-xstart)/float(xstep)))
            # number of values in reduced image row.
            row_len = ppr*self.planes
            for y in range(ystart, self.height, ystep):
                if xstep == 1:
                    offset = y * vpr
                    yield pixels[offset:offset+vpr]
                else:
                    row = array(fmt)
                    # There's no easier way to set the length of an array
                    row.extend(pixels[0:row_len])
                    offset = y * vpr + xstart * self.planes
                    end_offset = (y+1) * vpr
                    skip = self.planes * xstep
                    for i in range(self.planes):
                        row[i::self.planes] = \
                            pixels[offset+i:end_offset:skip]
                    yield row

def write_chunk(outfile, tag, data=strtobytes('')):
    """
    Write a PNG chunk to the output file, including length and
    checksum.
    """

    # http://www.w3.org/TR/PNG/#5Chunk-layout
    outfile.write(struct.pack("!I", len(data)))
    tag = strtobytes(tag)
    outfile.write(tag)
    outfile.write(data)
    checksum = zlib.crc32(tag)
    checksum = zlib.crc32(data, checksum)
    checksum &= 2**32-1
    outfile.write(struct.pack("!I", checksum))

def write_chunks(out, chunks):
    """Create a PNG file by writing out the chunks."""

    out.write(_signature)
    for chunk in chunks:
        write_chunk(out, *chunk)

def filter_scanline(type, line, fo, prev=None):
    """Apply a scanline filter to a scanline.  `type` specifies the
    filter type (0 to 4); `line` specifies the current (unfiltered)
    scanline as a sequence of bytes; `prev` specifies the previous
    (unfiltered) scanline as a sequence of bytes. `fo` specifies the
    filter offset; normally this is size of a pixel in bytes (the number
    of bytes per sample times the number of channels), but when this is
    < 1 (for bit depths < 8) then the filter offset is 1.
    """

    assert 0 <= type < 5

    # The output array.  Which, pathetically, we extend one-byte at a
    # time (fortunately this is linear).
    out = array('B', [type])

    def sub():
        ai = -fo
        for x in line:
            if ai >= 0:
                x = (x - line[ai]) & 0xff
            out.append(x)
            ai += 1
    def up():
        for i,x in enumerate(line):
            x = (x - prev[i]) & 0xff
            out.append(x)
    def average():
        ai = -fo
        for i,x in enumerate(line):
            if ai >= 0:
                x = (x - ((line[ai] + prev[i]) >> 1)) & 0xff
            else:
                x = (x - (prev[i] >> 1)) & 0xff
            out.append(x)
            ai += 1
    def paeth():
        # http://www.w3.org/TR/PNG/#9Filter-type-4-Paeth
        ai = -fo # also used for ci
        for i,x in enumerate(line):
            a = 0
            b = prev[i]
            c = 0

            if ai >= 0:
                a = line[ai]
                c = prev[ai]
            p = a + b - c
            pa = abs(p - a)
            pb = abs(p - b)
            pc = abs(p - c)
            if pa <= pb and pa <= pc:
                Pr = a
            elif pb <= pc:
                Pr = b
            else:
                Pr = c

            x = (x - Pr) & 0xff
            out.append(x)
            ai += 1

    if not prev:
        # We're on the first line.  Some of the filters can be reduced
        # to simpler cases which makes handling the line "off the top"
        # of the image simpler.  "up" becomes "none"; "paeth" becomes
        # "left" (non-trivial, but true). "average" needs to be handled
        # specially.
        if type == 2: # "up"
            type = 0
        elif type == 3:
            prev = [0]*len(line)
        elif type == 4: # "paeth"
            type = 1
    if type == 0:
        out.extend(line)
    elif type == 1:
        sub()
    elif type == 2:
        up()
    elif type == 3:
        average()
    else: # type == 4
        paeth()
    return out


def from_array(a, mode=None, info={}):
    """Create a PNG :class:`Image` object from a 2- or 3-dimensional
    array.  One application of this function is easy PIL-style saving:
    ``png.from_array(pixels, 'L').save('foo.png')``.

    .. note :

      The use of the term *3-dimensional* is for marketing purposes
      only.  It doesn't actually work.  Please bear with us.  Meanwhile
      enjoy the complimentary snacks (on request) and please use a
      2-dimensional array.
    
    Unless they are specified using the *info* parameter, the PNG's
    height and width are taken from the array size.  For a 3 dimensional
    array the first axis is the height; the second axis is the width;
    and the third axis is the channel number.  Thus an RGB image that is
    16 pixels high and 8 wide will use an array that is 16x8x3.  For 2
    dimensional arrays the first axis is the height, but the second axis
    is ``width*channels``, so an RGB image that is 16 pixels high and 8
    wide will use a 2-dimensional array that is 16x24 (each row will be
    8*3==24 sample values).

    *mode* is a string that specifies the image colour format in a
    PIL-style mode.  It can be:

    ``'L'``
      greyscale (1 channel)
    ``'LA'``
      greyscale with alpha (2 channel)
    ``'RGB'``
      colour image (3 channel)
    ``'RGBA'``
      colour image with alpha (4 channel)

    The mode string can also specify the bit depth (overriding how this
    function normally derives the bit depth, see below).  Appending
    ``';16'`` to the mode will cause the PNG to be 16 bits per channel;
    any decimal from 1 to 16 can be used to specify the bit depth.

    When a 2-dimensional array is used *mode* determines how many
    channels the image has, and so allows the width to be derived from
    the second array dimension.

    The array is expected to be a ``numpy`` array, but it can be any
    suitable Python sequence.  For example, a list of lists can be used:
    ``png.from_array([[0, 255, 0], [255, 0, 255]], 'L')``.  The exact
    rules are: ``len(a)`` gives the first dimension, height;
    ``len(a[0])`` gives the second dimension; ``len(a[0][0])`` gives the
    third dimension, unless an exception is raised in which case a
    2-dimensional array is assumed.  It's slightly more complicated than
    that because an iterator of rows can be used, and it all still
    works.  Using an iterator allows data to be streamed efficiently.

    The bit depth of the PNG is normally taken from the array element's
    datatype (but if *mode* specifies a bitdepth then that is used
    instead).  The array element's datatype is determined in a way which
    is supposed to work both for ``numpy`` arrays and for Python
    ``array.array`` objects.  A 1 byte datatype will give a bit depth of
    8, a 2 byte datatype will give a bit depth of 16.  If the datatype
    does not have an implicit size, for example it is a plain Python
    list of lists, as above, then a default of 8 is used.

    The *info* parameter is a dictionary that can be used to specify
    metadata (in the same style as the arguments to the
    :class:``png.Writer`` class).  For this function the keys that are
    useful are:
    
    height
      overrides the height derived from the array dimensions and allows
      *a* to be an iterable.
    width
      overrides the width derived from the array dimensions.
    bitdepth
      overrides the bit depth derived from the element datatype (but
      must match *mode* if that also specifies a bit depth).

    Generally anything specified in the
    *info* dictionary will override any implicit choices that this
    function would otherwise make, but must match any explicit ones.
    For example, if the *info* dictionary has a ``greyscale`` key then
    this must be true when mode is ``'L'`` or ``'LA'`` and false when
    mode is ``'RGB'`` or ``'RGBA'``.
    """

    # We abuse the *info* parameter by modifying it.  Take a copy here.
    # (Also typechecks *info* to some extent).
    info = dict(info)

    # Syntax check mode string.
    bitdepth = None
    try:
        # Assign the 'L' or 'RGBA' part to `gotmode`.
        if mode.startswith('L'):
            gotmode = 'L'
            mode = mode[1:]
        elif mode.startswith('RGB'):
            gotmode = 'RGB'
            mode = mode[3:]
        else:
            raise Error()
        if mode.startswith('A'):
            gotmode += 'A'
            mode = mode[1:]

        # Skip any optional ';'
        while mode.startswith(';'):
            mode = mode[1:]

        # Parse optional bitdepth
        if mode:
            try:
                bitdepth = int(mode)
            except (TypeError, ValueError):
                raise Error()
    except Error:
        raise Error("mode string should be 'RGB' or 'L;16' or similar.")
    mode = gotmode

    # Get bitdepth from *mode* if possible.
    if bitdepth:
        if info.get('bitdepth') and bitdepth != info['bitdepth']:
            raise Error("mode bitdepth (%d) should match info bitdepth (%d)." %
              (bitdepth, info['bitdepth']))
        info['bitdepth'] = bitdepth

    # Fill in and/or check entries in *info*.
    # Dimensions.
    if 'size' in info:
        # Check width, height, size all match where used.
        for dimension,axis in [('width', 0), ('height', 1)]:
            if dimension in info:
                if info[dimension] != info['size'][axis]:
                    raise Error(
                      "info[%r] should match info['size'][%r]." %
                      (dimension, axis))
        info['width'],info['height'] = info['size']
    if 'height' not in info:
        try:
            l = len(a)
        except TypeError:
            raise Error(
              "len(a) does not work, supply info['height'] instead.")
        info['height'] = l
    # Colour format.
    if 'greyscale' in info:
        if bool(info['greyscale']) != ('L' in mode):
            raise Error("info['greyscale'] should match mode.")
    info['greyscale'] = 'L' in mode
    if 'alpha' in info:
        if bool(info['alpha']) != ('A' in mode):
            raise Error("info['alpha'] should match mode.")
    info['alpha'] = 'A' in mode

    planes = len(mode)
    if 'planes' in info:
        if info['planes'] != planes:
            raise Error("info['planes'] should match mode.")

    # In order to work out whether we the array is 2D or 3D we need its
    # first row, which requires that we take a copy of its iterator.
    # We may also need the first row to derive width and bitdepth.
    a,t = itertools.tee(a)
    row = next(t)
    del t
    try:
        row[0][0]
        threed = True
        testelement = row[0]
    except (IndexError, TypeError):
        threed = False
        testelement = row
    if 'width' not in info:
        if threed:
            width = len(row)
        else:
            width = len(row) // planes
        info['width'] = width

    if threed:
        # Flatten the threed rows
        a = (itertools.chain.from_iterable(x) for x in a)

    if 'bitdepth' not in info:
        try:
            dtype = testelement.dtype
            # goto the "else:" clause.  Sorry.
        except AttributeError:
            try:
                # Try a Python array.array.
                bitdepth = 8 * testelement.itemsize
            except AttributeError:
                # We can't determine it from the array element's
                # datatype, use a default of 8.
                bitdepth = 8
        else:
            # If we got here without exception, we now assume that
            # the array is a numpy array.
            if dtype.kind == 'b':
                bitdepth = 1
            else:
                bitdepth = 8 * dtype.itemsize
        info['bitdepth'] = bitdepth

    for thing in 'width height bitdepth greyscale alpha'.split():
        assert thing in info
    return Image(a, info)

# So that refugee's from PIL feel more at home.  Not documented.
fromarray = from_array

class Image:
    """A PNG image.  You can create an :class:`Image` object from
    an array of pixels by calling :meth:`png.from_array`.  It can be
    saved to disk with the :meth:`save` method.
    """

    def __init__(self, rows, info):
        """
        .. note ::
        
          The constructor is not public.  Please do not call it.
        """
        
        self.rows = rows
        self.info = info

    def save(self, file):
        """Save the image to *file*.  If *file* looks like an open file
        descriptor then it is used, otherwise it is treated as a
        filename and a fresh file is opened.

        In general, you can only call this method once; after it has
        been called the first time and the PNG image has been saved, the
        source data will have been streamed, and cannot be streamed
        again.
        """

        w = Writer(**self.info)

        try:
            file.write
            def close(): pass
        except AttributeError:
            file = open(file, 'wb')
            def close(): file.close()

        try:
            w.write(file, self.rows)
        finally:
            close()

class _readable:
    """
    A simple file-like interface for strings and arrays.
    """

    def __init__(self, buf):
        self.buf = buf
        self.offset = 0

    def read(self, n):
        r = self.buf[self.offset:self.offset+n]
        if isarray(r):
            r = r.tostring()
        self.offset += n
        return r


class Reader:
    """
    PNG decoder in pure Python.
    """

    def __init__(self, _guess=None, **kw):
        """
        Create a PNG decoder object.

        The constructor expects exactly one keyword argument. If you
        supply a positional argument instead, it will guess the input
        type. You can choose among the following keyword arguments:

        filename
          Name of input file (a PNG file).
        file
          A file-like object (object with a read() method).
        bytes
          ``array`` or ``string`` with PNG data.

        """
        if ((_guess is not None and len(kw) != 0) or
            (_guess is None and len(kw) != 1)):
            raise TypeError("Reader() takes exactly 1 argument")

        # Will be the first 8 bytes, later on.  See validate_signature.
        self.signature = None
        self.transparent = None
        # A pair of (len,type) if a chunk has been read but its data and
        # checksum have not (in other words the file position is just
        # past the 4 bytes that specify the chunk type).  See preamble
        # method for how this is used.
        self.atchunk = None

        if _guess is not None:
            if isarray(_guess):
                kw["bytes"] = _guess
            elif isinstance(_guess, str):
                kw["filename"] = _guess
            elif hasattr(_guess, 'read'):
                kw["file"] = _guess

        if "filename" in kw:
            self.file = open(kw["filename"], "rb")
        elif "file" in kw:
            self.file = kw["file"]
        elif "bytes" in kw:
            self.file = _readable(kw["bytes"])
        else:
            raise TypeError("expecting filename, file or bytes array")


    def chunk(self, seek=None, lenient=False):
        """
        Read the next PNG chunk from the input file; returns a
        (*type*,*data*) tuple.  *type* is the chunk's type as a string
        (all PNG chunk types are 4 characters long).  *data* is the
        chunk's data content, as a string.

        If the optional `seek` argument is
        specified then it will keep reading chunks until it either runs
        out of file or finds the type specified by the argument.  Note
        that in general the order of chunks in PNGs is unspecified, so
        using `seek` can cause you to miss chunks.

        If the optional `lenient` argument evaluates to True,
        checksum failures will raise warnings rather than exceptions.
        """

        self.validate_signature()

        while True:
            # http://www.w3.org/TR/PNG/#5Chunk-layout
            if not self.atchunk:
                self.atchunk = self.chunklentype()
            length,type = self.atchunk
            self.atchunk = None
            data = self.file.read(length)
            if len(data) != length:
                raise ChunkError('Chunk %s too short for required %i octets.'
                  % (type, length))
            checksum = self.file.read(4)
            if len(checksum) != 4:
                raise ChunkError('Chunk %s too short for checksum.' % type)
            if seek and type != seek:
                continue
            verify = zlib.crc32(strtobytes(type))
            verify = zlib.crc32(data, verify)
            # Whether the output from zlib.crc32 is signed or not varies
            # according to hideous implementation details, see
            # http://bugs.python.org/issue1202 .
            # We coerce it to be positive here (in a way which works on
            # Python 2.3 and older).
            verify &= 2**32 - 1
            verify = struct.pack('!I', verify)
            if checksum != verify:
                (a, ) = struct.unpack('!I', checksum)
                (b, ) = struct.unpack('!I', verify)
                message = "Checksum error in %s chunk: 0x%08X != 0x%08X." % (type, a, b)
                if lenient:
                    warnings.warn(message, RuntimeWarning)
                else:
                    raise ChunkError(message)
            return type, data

    def chunks(self):
        """Return an iterator that will yield each chunk as a
        (*chunktype*, *content*) pair.
        """

        while True:
            t,v = self.chunk()
            yield t,v
            if t == 'IEND':
                break

    def undo_filter(self, filter_type, scanline, previous):
        """Undo the filter for a scanline.  `scanline` is a sequence of
        bytes that does not include the initial filter type byte.
        `previous` is decoded previous scanline (for straightlaced
        images this is the previous pixel row, but for interlaced
        images, it is the previous scanline in the reduced image, which
        in general is not the previous pixel row in the final image).
        When there is no previous scanline (the first row of a
        straightlaced image, or the first row in one of the passes in an
        interlaced image), then this argument should be ``None``.

        The scanline will have the effects of filtering removed, and the
        result will be returned as a fresh sequence of bytes.
        """

        # :todo: Would it be better to update scanline in place?
        # Yes, with the Cython extension making the undo_filter fast,
        # updating scanline inplace makes the code 3 times faster
        # (reading 50 images of 800x800 went from 40s to 16s)
        result = scanline

        if filter_type == 0:
            return result

        if filter_type not in (1,2,3,4):
            raise FormatError('Invalid PNG Filter Type.'
              '  See http://www.w3.org/TR/2003/REC-PNG-20031110/#9Filters .')

        # Filter unit.  The stride from one pixel to the corresponding
        # byte from the previous pixel.  Normally this is the pixel
        # size in bytes, but when this is smaller than 1, the previous
        # byte is used instead.
        fu = max(1, self.psize)

        # For the first line of a pass, synthesize a dummy previous
        # line.  An alternative approach would be to observe that on the
        # first line 'up' is the same as 'null', 'paeth' is the same
        # as 'sub', with only 'average' requiring any special case.
        if not previous:
            previous = array('B', [0]*len(scanline))

        def sub():
            """Undo sub filter."""

            ai = 0
            # Loop starts at index fu.  Observe that the initial part
            # of the result is already filled in correctly with
            # scanline.
            for i in range(fu, len(result)):
                x = scanline[i]
                a = result[ai]
                result[i] = (x + a) & 0xff
                ai += 1

        def up():
            """Undo up filter."""

            for i in range(len(result)):
                x = scanline[i]
                b = previous[i]
                result[i] = (x + b) & 0xff

        def average():
            """Undo average filter."""

            ai = -fu
            for i in range(len(result)):
                x = scanline[i]
                if ai < 0:
                    a = 0
                else:
                    a = result[ai]
                b = previous[i]
                result[i] = (x + ((a + b) >> 1)) & 0xff
                ai += 1

        def paeth():
            """Undo Paeth filter."""

            # Also used for ci.
            ai = -fu
            for i in range(len(result)):
                x = scanline[i]
                if ai < 0:
                    a = c = 0
                else:
                    a = result[ai]
                    c = previous[ai]
                b = previous[i]
                p = a + b - c
                pa = abs(p - a)
                pb = abs(p - b)
                pc = abs(p - c)
                if pa <= pb and pa <= pc:
                    pr = a
                elif pb <= pc:
                    pr = b
                else:
                    pr = c
                result[i] = (x + pr) & 0xff
                ai += 1

        # Call appropriate filter algorithm.  Note that 0 has already
        # been dealt with.
        (None,
         pngfilters.undo_filter_sub,
         pngfilters.undo_filter_up,
         pngfilters.undo_filter_average,
         pngfilters.undo_filter_paeth)[filter_type](fu, scanline, previous, result)
        return result

    def deinterlace(self, raw):
        """
        Read raw pixel data, undo filters, deinterlace, and flatten.
        Return in flat row flat pixel format.
        """

        # Values per row (of the target image)
        vpr = self.width * self.planes

        # Make a result array, and make it big enough.  Interleaving
        # writes to the output array randomly (well, not quite), so the
        # entire output array must be in memory.
        fmt = 'BH'[self.bitdepth > 8]
        a = array(fmt, [0]*vpr*self.height)
        source_offset = 0

        for xstart, ystart, xstep, ystep in _adam7:
            if xstart >= self.width:
                continue
            # The previous (reconstructed) scanline.  None at the
            # beginning of a pass to indicate that there is no previous
            # line.
            recon = None
            # Pixels per row (reduced pass image)
            ppr = int(math.ceil((self.width-xstart)/float(xstep)))
            # Row size in bytes for this pass.
            row_size = int(math.ceil(self.psize * ppr))
            for y in range(ystart, self.height, ystep):
                filter_type = raw[source_offset]
                source_offset += 1
                scanline = raw[source_offset:source_offset+row_size]
                source_offset += row_size
                recon = self.undo_filter(filter_type, scanline, recon)
                # Convert so that there is one element per pixel value
                flat = self.serialtoflat(recon, ppr)
                if xstep == 1:
                    assert xstart == 0
                    offset = y * vpr
                    a[offset:offset+vpr] = flat
                else:
                    offset = y * vpr + xstart * self.planes
                    end_offset = (y+1) * vpr
                    skip = self.planes * xstep
                    for i in range(self.planes):
                        a[offset+i:end_offset:skip] = \
                            flat[i::self.planes]
        return a

    def iterboxed(self, rows):
        """Iterator that yields each scanline in boxed row flat pixel
        format.  `rows` should be an iterator that yields the bytes of
        each row in turn.
        """

        def asvalues(raw):
            """Convert a row of raw bytes into a flat row.  Result will
            be a freshly allocated object, not shared with
            argument.
            """

            if self.bitdepth == 8:
                return array('B', raw)
            if self.bitdepth == 16:
                raw = tostring(raw)
                return array('H', struct.unpack('!%dH' % (len(raw)//2), raw))
            assert self.bitdepth < 8
            width = self.width
            # Samples per byte
            spb = 8//self.bitdepth
            out = array('B')
            mask = 2**self.bitdepth - 1
            shifts = list(map(self.bitdepth.__mul__, reversed(list(range(spb)))))
            for o in raw:
                out.extend([mask&(o>>i) for i in shifts])
            return out[:width]

        return map(asvalues, rows)

    def serialtoflat(self, bytes, width=None):
        """Convert serial format (byte stream) pixel data to flat row
        flat pixel.
        """

        if self.bitdepth == 8:
            return bytes
        if self.bitdepth == 16:
            bytes = tostring(bytes)
            return array('H',
              struct.unpack('!%dH' % (len(bytes)//2), bytes))
        assert self.bitdepth < 8
        if width is None:
            width = self.width
        # Samples per byte
        spb = 8//self.bitdepth
        out = array('B')
        mask = 2**self.bitdepth - 1
        shifts = list(map(self.bitdepth.__mul__, reversed(list(range(spb)))))
        l = width
        for o in bytes:
            out.extend([(mask&(o>>s)) for s in shifts][:l])
            l -= spb
            if l <= 0:
                l = width
        return out

    def iterstraight(self, raw):
        """Iterator that undoes the effect of filtering, and yields
        each row in serialised format (as a sequence of bytes).
        Assumes input is straightlaced.  `raw` should be an iterable
        that yields the raw bytes in chunks of arbitrary size.
        """

        # length of row, in bytes
        rb = self.row_bytes
        a = array('B')
        # The previous (reconstructed) scanline.  None indicates first
        # line of image.
        recon = None
        for some in raw:
            a.extend(some)
            while len(a) >= rb + 1:
                filter_type = a[0]
                scanline = a[1:rb+1]
                del a[:rb+1]
                recon = self.undo_filter(filter_type, scanline, recon)
                yield recon
        if len(a) != 0:
            # :file:format We get here with a file format error:
            # when the available bytes (after decompressing) do not
            # pack into exact rows.
            raise FormatError(
              'Wrong size for decompressed IDAT chunk.')
        assert len(a) == 0

    def validate_signature(self):
        """If signature (header) has not been read then read and
        validate it; otherwise do nothing.
        """

        if self.signature:
            return
        self.signature = self.file.read(8)
        if self.signature != _signature:
            raise FormatError("PNG file has invalid signature.")

    def preamble(self, lenient=False):
        """
        Extract the image metadata by reading the initial part of
        the PNG file up to the start of the ``IDAT`` chunk.  All the
        chunks that precede the ``IDAT`` chunk are read and either
        processed for metadata or discarded.

        If the optional `lenient` argument evaluates to True, checksum
        failures will raise warnings rather than exceptions.
        """

        self.validate_signature()

        while True:
            if not self.atchunk:
                self.atchunk = self.chunklentype()
                if self.atchunk is None:
                    raise FormatError(
                      'This PNG file has no IDAT chunks.')
            if self.atchunk[1] == 'IDAT':
                return
            self.process_chunk(lenient=lenient)

    def chunklentype(self):
        """Reads just enough of the input to determine the next
        chunk's length and type, returned as a (*length*, *type*) pair
        where *type* is a string.  If there are no more chunks, ``None``
        is returned.
        """

        x = self.file.read(8)
        if not x:
            return None
        if len(x) != 8:
            raise FormatError(
              'End of file whilst reading chunk length and type.')
        length,type = struct.unpack('!I4s', x)
        type = bytestostr(type)
        if length > 2**31-1:
            raise FormatError('Chunk %s is too large: %d.' % (type,length))
        return length,type

    def process_chunk(self, lenient=False):
        """Process the next chunk and its data.  This only processes the
        following chunk types, all others are ignored: ``IHDR``,
        ``PLTE``, ``bKGD``, ``tRNS``, ``gAMA``, ``sBIT``, ``pHYs``.

        If the optional `lenient` argument evaluates to True,
        checksum failures will raise warnings rather than exceptions.
        """

        type, data = self.chunk(lenient=lenient)
        method = '_process_' + type
        m = getattr(self, method, None)
        if m:
            m(data)

    def _process_IHDR(self, data):
        # http://www.w3.org/TR/PNG/#11IHDR
        if len(data) != 13:
            raise FormatError('IHDR chunk has incorrect length.')
        (self.width, self.height, self.bitdepth, self.color_type,
         self.compression, self.filter,
         self.interlace) = struct.unpack("!2I5B", data)

        check_bitdepth_colortype(self.bitdepth, self.color_type)

        if self.compression != 0:
            raise Error("unknown compression method %d" % self.compression)
        if self.filter != 0:
            raise FormatError("Unknown filter method %d,"
              " see http://www.w3.org/TR/2003/REC-PNG-20031110/#9Filters ."
              % self.filter)
        if self.interlace not in (0,1):
            raise FormatError("Unknown interlace method %d,"
              " see http://www.w3.org/TR/2003/REC-PNG-20031110/#8InterlaceMethods ."
              % self.interlace)

        # Derived values
        # http://www.w3.org/TR/PNG/#6Colour-values
        colormap =  bool(self.color_type & 1)
        greyscale = not (self.color_type & 2)
        alpha = bool(self.color_type & 4)
        color_planes = (3,1)[greyscale or colormap]
        planes = color_planes + alpha

        self.colormap = colormap
        self.greyscale = greyscale
        self.alpha = alpha
        self.color_planes = color_planes
        self.planes = planes
        self.psize = float(self.bitdepth)/float(8) * planes
        if int(self.psize) == self.psize:
            self.psize = int(self.psize)
        self.row_bytes = int(math.ceil(self.width * self.psize))
        # Stores PLTE chunk if present, and is used to check
        # chunk ordering constraints.
        self.plte = None
        # Stores tRNS chunk if present, and is used to check chunk
        # ordering constraints.
        self.trns = None
        # Stores sbit chunk if present.
        self.sbit = None

    def _process_PLTE(self, data):
        # http://www.w3.org/TR/PNG/#11PLTE
        if self.plte:
            warnings.warn("Multiple PLTE chunks present.")
        self.plte = data
        if len(data) % 3 != 0:
            raise FormatError(
              "PLTE chunk's length should be a multiple of 3.")
        if len(data) > (2**self.bitdepth)*3:
            raise FormatError("PLTE chunk is too long.")
        if len(data) == 0:
            raise FormatError("Empty PLTE is not allowed.")

    def _process_bKGD(self, data):
        try:
            if self.colormap:
                if not self.plte:
                    warnings.warn(
                      "PLTE chunk is required before bKGD chunk.")
                self.background = struct.unpack('B', data)
            else:
                self.background = struct.unpack("!%dH" % self.color_planes,
                  data)
        except struct.error:
            raise FormatError("bKGD chunk has incorrect length.")

    def _process_tRNS(self, data):
        # http://www.w3.org/TR/PNG/#11tRNS
        self.trns = data
        if self.colormap:
            if not self.plte:
                warnings.warn("PLTE chunk is required before tRNS chunk.")
            else:
                if len(data) > len(self.plte)/3:
                    # Was warning, but promoted to Error as it
                    # would otherwise cause pain later on.
                    raise FormatError("tRNS chunk is too long.")
        else:
            if self.alpha:
                raise FormatError(
                  "tRNS chunk is not valid with colour type %d." %
                  self.color_type)
            try:
                self.transparent = \
                    struct.unpack("!%dH" % self.color_planes, data)
            except struct.error:
                raise FormatError("tRNS chunk has incorrect length.")

    def _process_gAMA(self, data):
        try:
            self.gamma = struct.unpack("!L", data)[0] / 100000.0
        except struct.error:
            raise FormatError("gAMA chunk has incorrect length.")

    def _process_sBIT(self, data):
        self.sbit = data
        if (self.colormap and len(data) != 3 or
            not self.colormap and len(data) != self.planes):
            raise FormatError("sBIT chunk has incorrect length.")

    def _process_pHYs(self, data):
        # http://www.w3.org/TR/PNG/#11pHYs
        self.phys = data
        fmt = "!LLB"
        if len(data) != struct.calcsize(fmt):
            raise FormatError("pHYs chunk has incorrect length.")
        self.x_pixels_per_unit, self.y_pixels_per_unit, unit = struct.unpack(fmt,data)
        self.unit_is_meter = bool(unit)

    def read(self, lenient=False):
        """
        Read the PNG file and decode it.  Returns (`width`, `height`,
        `pixels`, `metadata`).

        May use excessive memory.

        `pixels` are returned in boxed row flat pixel format.

        If the optional `lenient` argument evaluates to True,
        checksum failures will raise warnings rather than exceptions.
        """

        def iteridat():
            """Iterator that yields all the ``IDAT`` chunks as strings."""
            while True:
                try:
                    type, data = self.chunk(lenient=lenient)
                except ValueError as e:
                    raise ChunkError(e.args[0])
                if type == 'IEND':
                    # http://www.w3.org/TR/PNG/#11IEND
                    break
                if type != 'IDAT':
                    continue
                # type == 'IDAT'
                # http://www.w3.org/TR/PNG/#11IDAT
                if self.colormap and not self.plte:
                    warnings.warn("PLTE chunk is required before IDAT chunk")
                yield data

        def iterdecomp(idat):
            """Iterator that yields decompressed strings.  `idat` should
            be an iterator that yields the ``IDAT`` chunk data.
            """

            # Currently, with no max_length parameter to decompress,
            # this routine will do one yield per IDAT chunk: Not very
            # incremental.
            d = zlib.decompressobj()
            # Each IDAT chunk is passed to the decompressor, then any
            # remaining state is decompressed out.
            for data in idat:
                # :todo: add a max_length argument here to limit output
                # size.
                yield array('B', d.decompress(data))
            yield array('B', d.flush())

        self.preamble(lenient=lenient)
        raw = iterdecomp(iteridat())

        if self.interlace:
            raw = array('B', itertools.chain(*raw))
            arraycode = 'BH'[self.bitdepth>8]
            # Like :meth:`group` but producing an array.array object for
            # each row.
            pixels = map(lambda *row: array(arraycode, row),
                       *[iter(self.deinterlace(raw))]*self.width*self.planes)
        else:
            pixels = self.iterboxed(self.iterstraight(raw))
        meta = dict()
        for attr in 'greyscale alpha planes bitdepth interlace'.split():
            meta[attr] = getattr(self, attr)
        meta['size'] = (self.width, self.height)
        for attr in 'gamma transparent background'.split():
            a = getattr(self, attr, None)
            if a is not None:
                meta[attr] = a
        if self.plte:
            meta['palette'] = self.palette()
        return self.width, self.height, pixels, meta


    def read_flat(self):
        """
        Read a PNG file and decode it into flat row flat pixel format.
        Returns (*width*, *height*, *pixels*, *metadata*).

        May use excessive memory.

        `pixels` are returned in flat row flat pixel format.

        See also the :meth:`read` method which returns pixels in the
        more stream-friendly boxed row flat pixel format.
        """

        x, y, pixel, meta = self.read()
        arraycode = 'BH'[meta['bitdepth']>8]
        pixel = array(arraycode, itertools.chain(*pixel))
        return x, y, pixel, meta

    def palette(self, alpha='natural'):
        """Returns a palette that is a sequence of 3-tuples or 4-tuples,
        synthesizing it from the ``PLTE`` and ``tRNS`` chunks.  These
        chunks should have already been processed (for example, by
        calling the :meth:`preamble` method).  All the tuples are the
        same size: 3-tuples if there is no ``tRNS`` chunk, 4-tuples when
        there is a ``tRNS`` chunk.  Assumes that the image is colour type
        3 and therefore a ``PLTE`` chunk is required.

        If the `alpha` argument is ``'force'`` then an alpha channel is
        always added, forcing the result to be a sequence of 4-tuples.
        """

        if not self.plte:
            raise FormatError(
                "Required PLTE chunk is missing in colour type 3 image.")
        plte = group(array('B', self.plte), 3)
        if self.trns or alpha == 'force':
            trns = array('B', self.trns or '')
            trns.extend([255]*(len(plte)-len(trns)))
            plte = list(map(operator.add, plte, group(trns, 1)))
        return plte

    def asDirect(self):
        """Returns the image data as a direct representation of an
        ``x * y * planes`` array.  This method is intended to remove the
        need for callers to deal with palettes and transparency
        themselves.  Images with a palette (colour type 3)
        are converted to RGB or RGBA; images with transparency (a
        ``tRNS`` chunk) are converted to LA or RGBA as appropriate.
        When returned in this format the pixel values represent the
        colour value directly without needing to refer to palettes or
        transparency information.

        Like the :meth:`read` method this method returns a 4-tuple:

        (*width*, *height*, *pixels*, *meta*)

        This method normally returns pixel values with the bit depth
        they have in the source image, but when the source PNG has an
        ``sBIT`` chunk it is inspected and can reduce the bit depth of
        the result pixels; pixel values will be reduced according to
        the bit depth specified in the ``sBIT`` chunk (PNG nerds should
        note a single result bit depth is used for all channels; the
        maximum of the ones specified in the ``sBIT`` chunk.  An RGB565
        image will be rescaled to 6-bit RGB666).

        The *meta* dictionary that is returned reflects the `direct`
        format and not the original source image.  For example, an RGB
        source image with a ``tRNS`` chunk to represent a transparent
        colour, will have ``planes=3`` and ``alpha=False`` for the
        source image, but the *meta* dictionary returned by this method
        will have ``planes=4`` and ``alpha=True`` because an alpha
        channel is synthesized and added.

        *pixels* is the pixel data in boxed row flat pixel format (just
        like the :meth:`read` method).

        All the other aspects of the image data are not changed.
        """

        self.preamble()

        # Simple case, no conversion necessary.
        if not self.colormap and not self.trns and not self.sbit:
            return self.read()

        x,y,pixels,meta = self.read()

        if self.colormap:
            meta['colormap'] = False
            meta['alpha'] = bool(self.trns)
            meta['bitdepth'] = 8
            meta['planes'] = 3 + bool(self.trns)
            plte = self.palette()
            def iterpal(pixels):
                for row in pixels:
                    row = list(map(plte.__getitem__, row))
                    yield array('B', itertools.chain(*row))
            pixels = iterpal(pixels)
        elif self.trns:
            # It would be nice if there was some reasonable way
            # of doing this without generating a whole load of
            # intermediate tuples.  But tuples does seem like the
            # easiest way, with no other way clearly much simpler or
            # much faster.  (Actually, the L to LA conversion could
            # perhaps go faster (all those 1-tuples!), but I still
            # wonder whether the code proliferation is worth it)
            it = self.transparent
            maxval = 2**meta['bitdepth']-1
            planes = meta['planes']
            meta['alpha'] = True
            meta['planes'] += 1
            typecode = 'BH'[meta['bitdepth']>8]
            def itertrns(pixels):
                for row in pixels:
                    # For each row we group it into pixels, then form a
                    # characterisation vector that says whether each
                    # pixel is opaque or not.  Then we convert
                    # True/False to 0/maxval (by multiplication),
                    # and add it as the extra channel.
                    row = group(row, planes)
                    opa = list(map(it.__ne__, row))
                    opa = list(map(maxval.__mul__, opa))
                    opa = list(zip(opa)) # convert to 1-tuples
                    yield array(typecode,
                      itertools.chain(*list(map(operator.add, row, opa))))
            pixels = itertrns(pixels)
        targetbitdepth = None
        if self.sbit:
            sbit = struct.unpack('%dB' % len(self.sbit), self.sbit)
            targetbitdepth = max(sbit)
            if targetbitdepth > meta['bitdepth']:
                raise Error('sBIT chunk %r exceeds bitdepth %d' %
                    (sbit,self.bitdepth))
            if min(sbit) <= 0:
                raise Error('sBIT chunk %r has a 0-entry' % sbit)
            if targetbitdepth == meta['bitdepth']:
                targetbitdepth = None
        if targetbitdepth:
            shift = meta['bitdepth'] - targetbitdepth
            meta['bitdepth'] = targetbitdepth
            def itershift(pixels):
                for row in pixels:
                    yield list(map(shift.__rrshift__, row))
            pixels = itershift(pixels)
        return x,y,pixels,meta

    def asFloat(self, maxval=1.0):
        """Return image pixels as per :meth:`asDirect` method, but scale
        all pixel values to be floating point values between 0.0 and
        *maxval*.
        """

        x,y,pixels,info = self.asDirect()
        sourcemaxval = 2**info['bitdepth']-1
        del info['bitdepth']
        info['maxval'] = float(maxval)
        factor = float(maxval)/float(sourcemaxval)
        def iterfloat():
            for row in pixels:
                yield list(map(factor.__mul__, row))
        return x,y,iterfloat(),info

    def _as_rescale(self, get, targetbitdepth):
        """Helper used by :meth:`asRGB8` and :meth:`asRGBA8`."""

        width,height,pixels,meta = get()
        maxval = 2**meta['bitdepth'] - 1
        targetmaxval = 2**targetbitdepth - 1
        factor = float(targetmaxval) / float(maxval)
        meta['bitdepth'] = targetbitdepth
        def iterscale():
            for row in pixels:
                yield [int(round(x*factor)) for x in row]
        if maxval == targetmaxval:
            return width, height, pixels, meta
        else:
            return width, height, iterscale(), meta

    def asRGB8(self):
        """Return the image data as an RGB pixels with 8-bits per
        sample.  This is like the :meth:`asRGB` method except that
        this method additionally rescales the values so that they
        are all between 0 and 255 (8-bit).  In the case where the
        source image has a bit depth < 8 the transformation preserves
        all the information; where the source image has bit depth
        > 8, then rescaling to 8-bit values loses precision.  No
        dithering is performed.  Like :meth:`asRGB`, an alpha channel
        in the source image will raise an exception.

        This function returns a 4-tuple:
        (*width*, *height*, *pixels*, *metadata*).
        *width*, *height*, *metadata* are as per the
        :meth:`read` method.
        
        *pixels* is the pixel data in boxed row flat pixel format.
        """

        return self._as_rescale(self.asRGB, 8)

    def asRGBA8(self):
        """Return the image data as RGBA pixels with 8-bits per
        sample.  This method is similar to :meth:`asRGB8` and
        :meth:`asRGBA`:  The result pixels have an alpha channel, *and*
        values are rescaled to the range 0 to 255.  The alpha channel is
        synthesized if necessary (with a small speed penalty).
        """

        return self._as_rescale(self.asRGBA, 8)

    def asRGB(self):
        """Return image as RGB pixels.  RGB colour images are passed
        through unchanged; greyscales are expanded into RGB
        triplets (there is a small speed overhead for doing this).

        An alpha channel in the source image will raise an
        exception.

        The return values are as for the :meth:`read` method
        except that the *metadata* reflect the returned pixels, not the
        source image.  In particular, for this method
        ``metadata['greyscale']`` will be ``False``.
        """

        width,height,pixels,meta = self.asDirect()
        if meta['alpha']:
            raise Error("will not convert image with alpha channel to RGB")
        if not meta['greyscale']:
            return width,height,pixels,meta
        meta['greyscale'] = False
        typecode = 'BH'[meta['bitdepth'] > 8]
        def iterrgb():
            for row in pixels:
                a = array(typecode, [0]) * 3 * width
                for i in range(3):
                    a[i::3] = row
                yield a
        return width,height,iterrgb(),meta

    def asRGBA(self):
        """Return image as RGBA pixels.  Greyscales are expanded into
        RGB triplets; an alpha channel is synthesized if necessary.
        The return values are as for the :meth:`read` method
        except that the *metadata* reflect the returned pixels, not the
        source image.  In particular, for this method
        ``metadata['greyscale']`` will be ``False``, and
        ``metadata['alpha']`` will be ``True``.
        """

        width,height,pixels,meta = self.asDirect()
        if meta['alpha'] and not meta['greyscale']:
            return width,height,pixels,meta
        typecode = 'BH'[meta['bitdepth'] > 8]
        maxval = 2**meta['bitdepth'] - 1
        maxbuffer = struct.pack('=' + typecode, maxval) * 4 * width
        def newarray():
            return array(typecode, maxbuffer)

        if meta['alpha'] and meta['greyscale']:
            # LA to RGBA
            def convert():
                for row in pixels:
                    # Create a fresh target row, then copy L channel
                    # into first three target channels, and A channel
                    # into fourth channel.
                    a = newarray()
                    pngfilters.convert_la_to_rgba(row, a)
                    yield a
        elif meta['greyscale']:
            # L to RGBA
            def convert():
                for row in pixels:
                    a = newarray()
                    pngfilters.convert_l_to_rgba(row, a)
                    yield a
        else:
            assert not meta['alpha'] and not meta['greyscale']
            # RGB to RGBA
            def convert():
                for row in pixels:
                    a = newarray()
                    pngfilters.convert_rgb_to_rgba(row, a)
                    yield a
        meta['alpha'] = True
        meta['greyscale'] = False
        return width,height,convert(),meta

def check_bitdepth_colortype(bitdepth, colortype):
    """Check that `bitdepth` and `colortype` are both valid,
    and specified in a valid combination. Returns if valid,
    raise an Exception if not valid.
    """

    if bitdepth not in (1,2,4,8,16):
        raise FormatError("invalid bit depth %d" % bitdepth)
    if colortype not in (0,2,3,4,6):
        raise FormatError("invalid colour type %d" % colortype)
    # Check indexed (palettized) images have 8 or fewer bits
    # per pixel; check only indexed or greyscale images have
    # fewer than 8 bits per pixel.
    if colortype & 1 and bitdepth > 8:
        raise FormatError(
          "Indexed images (colour type %d) cannot"
          " have bitdepth > 8 (bit depth %d)."
          " See http://www.w3.org/TR/2003/REC-PNG-20031110/#table111 ."
          % (bitdepth, colortype))
    if bitdepth < 8 and colortype not in (0,3):
        raise FormatError("Illegal combination of bit depth (%d)"
          " and colour type (%d)."
          " See http://www.w3.org/TR/2003/REC-PNG-20031110/#table111 ."
          % (bitdepth, colortype))

def isinteger(x):
    try:
        return int(x) == x
    except (TypeError, ValueError):
        return False


# === Legacy Version Support ===

# :pyver:old:  PyPNG works on Python versions 2.3 and 2.2, but not
# without some awkward problems.  Really PyPNG works on Python 2.4 (and
# above); it works on Pythons 2.3 and 2.2 by virtue of fixing up
# problems here.  It's a bit ugly (which is why it's hidden down here).
#
# Generally the strategy is one of pretending that we're running on
# Python 2.4 (or above), and patching up the library support on earlier
# versions so that it looks enough like Python 2.4.  When it comes to
# Python 2.2 there is one thing we cannot patch: extended slices
# http://www.python.org/doc/2.3/whatsnew/section-slices.html.
# Instead we simply declare that features that are implemented using
# extended slices will not work on Python 2.2.
#
# In order to work on Python 2.3 we fix up a recurring annoyance involving
# the array type.  In Python 2.3 an array cannot be initialised with an
# array, and it cannot be extended with a list (or other sequence).
# Both of those are repeated issues in the code.  Whilst I would not
# normally tolerate this sort of behaviour, here we "shim" a replacement
# for array into place (and hope no-one notices).  You never read this.
#
# In an amusing case of warty hacks on top of warty hacks... the array
# shimming we try and do only works on Python 2.3 and above (you can't
# subclass array.array in Python 2.2).  So to get it working on Python
# 2.2 we go for something much simpler and (probably) way slower.
try:
    array('B').extend([])
    array('B', array('B'))
# :todo:(drj) Check that TypeError is correct for Python 2.3
except TypeError:
    # Expect to get here on Python 2.3
    try:
        class _array_shim(array):
            true_array = array
            def __new__(cls, typecode, init=None):
                super_new = super(_array_shim, cls).__new__
                it = super_new(cls, typecode)
                if init is None:
                    return it
                it.extend(init)
                return it
            def extend(self, extension):
                super_extend = super(_array_shim, self).extend
                if isinstance(extension, self.true_array):
                    return super_extend(extension)
                if not isinstance(extension, (list, str)):
                    # Convert to list.  Allows iterators to work.
                    extension = list(extension)
                return super_extend(self.true_array(self.typecode, extension))
        array = _array_shim
    except TypeError:
        # Expect to get here on Python 2.2
        def array(typecode, init=()):
            if type(init) == str:
                return list(map(ord, init))
            return list(init)

# Further hacks to get it limping along on Python 2.2
try:
    enumerate
except NameError:
    def enumerate(seq):
        i=0
        for x in seq:
            yield i,x
            i += 1

try:
    reversed
except NameError:
    def reversed(l):
        l = list(l)
        l.reverse()
        for x in l:
            yield x

try:
    itertools
except NameError:
    class _dummy_itertools:
        pass
    itertools = _dummy_itertools()
    def _itertools_imap(f, seq):
        for x in seq:
            yield f(x)
    itertools.imap = _itertools_imap
    def _itertools_chain(*iterables):
        for it in iterables:
            for element in it:
                yield element
    itertools.chain = _itertools_chain


# === Support for users without Cython ===

try:
    pngfilters
except NameError:
    class pngfilters(object):
        def undo_filter_sub(filter_unit, scanline, previous, result):
            """Undo sub filter."""

            ai = 0
            # Loops starts at index fu.  Observe that the initial part
            # of the result is already filled in correctly with
            # scanline.
            for i in range(filter_unit, len(result)):
                x = scanline[i]
                a = result[ai]
                result[i] = (x + a) & 0xff
                ai += 1
        undo_filter_sub = staticmethod(undo_filter_sub)

        def undo_filter_up(filter_unit, scanline, previous, result):
            """Undo up filter."""

            for i in range(len(result)):
                x = scanline[i]
                b = previous[i]
                result[i] = (x + b) & 0xff
        undo_filter_up = staticmethod(undo_filter_up)

        def undo_filter_average(filter_unit, scanline, previous, result):
            """Undo up filter."""

            ai = -filter_unit
            for i in range(len(result)):
                x = scanline[i]
                if ai < 0:
                    a = 0
                else:
                    a = result[ai]
                b = previous[i]
                result[i] = (x + ((a + b) >> 1)) & 0xff
                ai += 1
        undo_filter_average = staticmethod(undo_filter_average)

        def undo_filter_paeth(filter_unit, scanline, previous, result):
            """Undo Paeth filter."""

            # Also used for ci.
            ai = -filter_unit
            for i in range(len(result)):
                x = scanline[i]
                if ai < 0:
                    a = c = 0
                else:
                    a = result[ai]
                    c = previous[ai]
                b = previous[i]
                p = a + b - c
                pa = abs(p - a)
                pb = abs(p - b)
                pc = abs(p - c)
                if pa <= pb and pa <= pc:
                    pr = a
                elif pb <= pc:
                    pr = b
                else:
                    pr = c
                result[i] = (x + pr) & 0xff
                ai += 1
        undo_filter_paeth = staticmethod(undo_filter_paeth)

        def convert_la_to_rgba(row, result):
            for i in range(3):
                result[i::4] = row[0::2]
            result[3::4] = row[1::2]
        convert_la_to_rgba = staticmethod(convert_la_to_rgba)

        def convert_l_to_rgba(row, result):
            """Convert a grayscale image to RGBA. This method assumes
            the alpha channel in result is already correctly
            initialized.
            """
            for i in range(3):
                result[i::4] = row
        convert_l_to_rgba = staticmethod(convert_l_to_rgba)

        def convert_rgb_to_rgba(row, result):
            """Convert an RGB image to RGBA. This method assumes the
            alpha channel in result is already correctly initialized.
            """
            for i in range(3):
                result[i::4] = row[i::3]
        convert_rgb_to_rgba = staticmethod(convert_rgb_to_rgba)


# === Command Line Support ===

def read_pam_header(infile):
    """
    Read (the rest of a) PAM header.  `infile` should be positioned
    immediately after the initial 'P7' line (at the beginning of the
    second line).  Returns are as for `read_pnm_header`.
    """
    
    # Unlike PBM, PGM, and PPM, we can read the header a line at a time.
    header = dict()
    while True:
        l = infile.readline().strip()
        if l == strtobytes('ENDHDR'):
            break
        if not l:
            raise EOFError('PAM ended prematurely')
        if l[0] == strtobytes('#'):
            continue
        l = l.split(None, 1)
        if l[0] not in header:
            header[l[0]] = l[1]
        else:
            header[l[0]] += strtobytes(' ') + l[1]

    required = ['WIDTH', 'HEIGHT', 'DEPTH', 'MAXVAL']
    required = [strtobytes(x) for x in required]
    WIDTH,HEIGHT,DEPTH,MAXVAL = required
    present = [x for x in required if x in header]
    if len(present) != len(required):
        raise Error('PAM file must specify WIDTH, HEIGHT, DEPTH, and MAXVAL')
    width = int(header[WIDTH])
    height = int(header[HEIGHT])
    depth = int(header[DEPTH])
    maxval = int(header[MAXVAL])
    if (width <= 0 or
        height <= 0 or
        depth <= 0 or
        maxval <= 0):
        raise Error(
          'WIDTH, HEIGHT, DEPTH, MAXVAL must all be positive integers')
    return 'P7', width, height, depth, maxval

def read_pnm_header(infile, supported=('P5','P6')):
    """
    Read a PNM header, returning (format,width,height,depth,maxval).
    `width` and `height` are in pixels.  `depth` is the number of
    channels in the image; for PBM and PGM it is synthesized as 1, for
    PPM as 3; for PAM images it is read from the header.  `maxval` is
    synthesized (as 1) for PBM images.
    """

    # Generally, see http://netpbm.sourceforge.net/doc/ppm.html
    # and http://netpbm.sourceforge.net/doc/pam.html

    supported = [strtobytes(x) for x in supported]

    # Technically 'P7' must be followed by a newline, so by using
    # rstrip() we are being liberal in what we accept.  I think this
    # is acceptable.
    type = infile.read(3).rstrip()
    if type not in supported:
        raise NotImplementedError('file format %s not supported' % type)
    if type == strtobytes('P7'):
        # PAM header parsing is completely different.
        return read_pam_header(infile)
    # Expected number of tokens in header (3 for P4, 4 for P6)
    expected = 4
    pbm = ('P1', 'P4')
    if type in pbm:
        expected = 3
    header = [type]

    # We have to read the rest of the header byte by byte because the
    # final whitespace character (immediately following the MAXVAL in
    # the case of P6) may not be a newline.  Of course all PNM files in
    # the wild use a newline at this point, so it's tempting to use
    # readline; but it would be wrong.
    def getc():
        c = infile.read(1)
        if not c:
            raise Error('premature EOF reading PNM header')
        return c

    c = getc()
    while True:
        # Skip whitespace that precedes a token.
        while c.isspace():
            c = getc()
        # Skip comments.
        while c == '#':
            while c not in '\n\r':
                c = getc()
        if not c.isdigit():
            raise Error('unexpected character %s found in header' % c)
        # According to the specification it is legal to have comments
        # that appear in the middle of a token.
        # This is bonkers; I've never seen it; and it's a bit awkward to
        # code good lexers in Python (no goto).  So we break on such
        # cases.
        token = strtobytes('')
        while c.isdigit():
            token += c
            c = getc()
        # Slight hack.  All "tokens" are decimal integers, so convert
        # them here.
        header.append(int(token))
        if len(header) == expected:
            break
    # Skip comments (again)
    while c == '#':
        while c not in '\n\r':
            c = getc()
    if not c.isspace():
        raise Error('expected header to end with whitespace, not %s' % c)

    if type in pbm:
        # synthesize a MAXVAL
        header.append(1)
    depth = (1,3)[type == strtobytes('P6')]
    return header[0], header[1], header[2], depth, header[3]

def write_pnm(file, width, height, pixels, meta):
    """Write a Netpbm PNM/PAM file.
    """

    bitdepth = meta['bitdepth']
    maxval = 2**bitdepth - 1
    # Rudely, the number of image planes can be used to determine
    # whether we are L (PGM), LA (PAM), RGB (PPM), or RGBA (PAM).
    planes = meta['planes']
    # Can be an assert as long as we assume that pixels and meta came
    # from a PNG file.
    assert planes in (1,2,3,4)
    if planes in (1,3):
        if 1 == planes:
            # PGM
            # Could generate PBM if maxval is 1, but we don't (for one
            # thing, we'd have to convert the data, not just blat it
            # out).
            fmt = 'P5'
        else:
            # PPM
            fmt = 'P6'
        header = '%s %d %d %d\n' % (fmt, width, height, maxval)
    if planes in (2,4):
        # PAM
        # See http://netpbm.sourceforge.net/doc/pam.html
        if 2 == planes:
            tupltype = 'GRAYSCALE_ALPHA'
        else:
            tupltype = 'RGB_ALPHA'
        header = ('P7\nWIDTH %d\nHEIGHT %d\nDEPTH %d\nMAXVAL %d\n'
                  'TUPLTYPE %s\nENDHDR\n' %
                  (width, height, planes, maxval, tupltype))
    file.write(header.encode('ascii'))
    # Values per row
    vpr = planes * width
    # struct format
    fmt = '>%d' % vpr
    if maxval > 0xff:
        fmt = fmt + 'H'
    else:
        fmt = fmt + 'B'
    for row in pixels:
        file.write(struct.pack(fmt, *row))
    file.flush()

def color_triple(color):
    """
    Convert a command line colour value to a RGB triple of integers.
    FIXME: Somewhere we need support for greyscale backgrounds etc.
    """
    if color.startswith('#') and len(color) == 4:
        return (int(color[1], 16),
                int(color[2], 16),
                int(color[3], 16))
    if color.startswith('#') and len(color) == 7:
        return (int(color[1:3], 16),
                int(color[3:5], 16),
                int(color[5:7], 16))
    elif color.startswith('#') and len(color) == 13:
        return (int(color[1:5], 16),
                int(color[5:9], 16),
                int(color[9:13], 16))

def _add_common_options(parser):
    """Call *parser.add_option* for each of the options that are
    common between this PNG--PNM conversion tool and the gen
    tool.
    """
    parser.add_option("-i", "--interlace",
                      default=False, action="store_true",
                      help="create an interlaced PNG file (Adam7)")
    parser.add_option("-t", "--transparent",
                      action="store", type="string", metavar="#RRGGBB",
                      help="mark the specified colour as transparent")
    parser.add_option("-b", "--background",
                      action="store", type="string", metavar="#RRGGBB",
                      help="save the specified background colour")
    parser.add_option("-g", "--gamma",
                      action="store", type="float", metavar="value",
                      help="save the specified gamma value")
    parser.add_option("-c", "--compression",
                      action="store", type="int", metavar="level",
                      help="zlib compression level (0-9)")
    return parser

def _main(argv):
    """
    Run the PNG encoder with options from the command line.
    """

    # Parse command line arguments
    from optparse import OptionParser
    version = '%prog ' + __version__
    parser = OptionParser(version=version)
    parser.set_usage("%prog [options] [imagefile]")
    parser.add_option('-r', '--read-png', default=False,
                      action='store_true',
                      help='Read PNG, write PNM')
    parser.add_option("-a", "--alpha",
                      action="store", type="string", metavar="pgmfile",
                      help="alpha channel transparency (RGBA)")
    _add_common_options(parser)

    (options, args) = parser.parse_args(args=argv[1:])

    # Convert options
    if options.transparent is not None:
        options.transparent = color_triple(options.transparent)
    if options.background is not None:
        options.background = color_triple(options.background)

    # Prepare input and output files
    if len(args) == 0:
        infilename = '-'
        infile = sys.stdin
    elif len(args) == 1:
        infilename = args[0]
        infile = open(infilename, 'rb')
    else:
        parser.error("more than one input file")
    outfile = sys.stdout
    if sys.platform == "win32":
        import msvcrt, os
        msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY)

    if options.read_png:
        # Encode PNG to PPM
        png = Reader(file=infile)
        width,height,pixels,meta = png.asDirect()
        write_pnm(outfile, width, height, pixels, meta) 
    else:
        # Encode PNM to PNG
        format, width, height, depth, maxval = \
          read_pnm_header(infile, ('P5','P6','P7'))
        # When it comes to the variety of input formats, we do something
        # rather rude.  Observe that L, LA, RGB, RGBA are the 4 colour
        # types supported by PNG and that they correspond to 1, 2, 3, 4
        # channels respectively.  So we use the number of channels in
        # the source image to determine which one we have.  We do not
        # care about TUPLTYPE.
        greyscale = depth <= 2
        pamalpha = depth in (2,4)
        supported = [2**x-1 for x in range(1,17)]
        try:
            mi = supported.index(maxval)
        except ValueError:
            raise NotImplementedError(
              'your maxval (%s) not in supported list %s' %
              (maxval, str(supported)))
        bitdepth = mi+1
        writer = Writer(width, height,
                        greyscale=greyscale,
                        bitdepth=bitdepth,
                        interlace=options.interlace,
                        transparent=options.transparent,
                        background=options.background,
                        alpha=bool(pamalpha or options.alpha),
                        gamma=options.gamma,
                        compression=options.compression)
        if options.alpha:
            pgmfile = open(options.alpha, 'rb')
            format, awidth, aheight, adepth, amaxval = \
              read_pnm_header(pgmfile, 'P5')
            if amaxval != '255':
                raise NotImplementedError(
                  'maxval %s not supported for alpha channel' % amaxval)
            if (awidth, aheight) != (width, height):
                raise ValueError("alpha channel image size mismatch"
                                 " (%s has %sx%s but %s has %sx%s)"
                                 % (infilename, width, height,
                                    options.alpha, awidth, aheight))
            writer.convert_ppm_and_pgm(infile, pgmfile, outfile)
        else:
            writer.convert_pnm(infile, outfile)


if __name__ == '__main__':
    try:
        _main(sys.argv)
    except Error as e:
        print(e, file=sys.stderr)