This file is indexed.

/usr/lib/python3/dist-packages/pydap/model.py is in python3-pydap 3.2.2+ds1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
"""This is the Pydap data model, an implementation of the Data Access Protocol
data model written in Python.

The model is composed of a base object which represents data, the `BaseType`,
and by objects which can hold other objects, all derived from `StructureType`.
Here's a simple example of a `BaseType` variable::

    >>> import numpy as np
    >>> foo = BaseType('foo', np.arange(4, dtype='i'))
    >>> bar = BaseType('bar', np.arange(4, dtype='i'))
    >>> foobar = BaseType('foobar', np.arange(4, dtype='i'))
    >>> foo[-2:]
    <BaseType with data array([2, 3], dtype=int32)>
    >>> foo[-2:].data
    array([2, 3], dtype=int32)
    >>> foo.data[-2:]
    array([2, 3], dtype=int32)
    >>> foo.dtype
    dtype('int32')
    >>> foo.shape
    (4,)
    >>> for record in foo.iterdata():
    ...     print(record)
    0
    1
    2
    3

It is also possible to iterate directly over a `BaseType`::
    >>> for record in foo:
    ...     print(record)
    0
    1
    2
    3

This is however discouraged because this approach will soon be deprecated
for the `SequenceType` where only the ``.iterdata()`` will continue to be
supported.

The `BaseType` is simply a thin wrapper over Numpy arrays, implementing the
`dtype` and `shape` attributes, and the sequence and iterable protocols. Why
not use Numpy arrays directly then? First, `BaseType` can have additional
metadata added to them; this include names for its dimensions and also
arbitrary attributes::

    >>> foo.attributes
    {}
    >>> foo.attributes['units'] = 'm/s'
    >>> foo.units
    'm/s'

    >>> foo.dimensions
    ()
    >>> foo.dimensions = ('time',)

Second, `BaseType` can hold data objects other than Numpy arrays. There are
more complex data objects, like `pydap.handlers.dap.BaseProxy`, which acts as a
transparent proxy to a remote dataset, exposing it through the same interface.

Now that we have some data, we can organize it using containers::

    >>> dataset = DatasetType('baz')
    >>> dataset['s'] = StructureType('s')
    >>> dataset['s']['foo'] = foo
    >>> dataset['s']['bar'] = bar
    >>> dataset['s']['foobar'] = foobar

`StructureType` and `DatasetType` are very similar; the only difference is that
`DatasetType` should be used as the root container for a dataset. They behave
like ordered Python dictionaries::

    >>> list(dataset.s.keys())
    ['foo', 'bar', 'foobar']

Slicing these datasets with a list of keywords yields a `StructureType`
or `DatasetType` with only a subset of the children::

    >>> dataset.s['foo', 'foobar']
    <StructureType with children 'foo', 'foobar'>
    >>> list(dataset.s['foo', 'foobar'].keys())
    ['foo', 'foobar']

In the same way, the ``.items()`` and ``.values()`` methods are like in python
dictionaries and they iterate over sliced values.

Selecting only one child returns the child::

    >>> dataset.s['foo']
    <BaseType with data array([0, 1, 2, 3], dtype=int32)>

A `GridType` is a special container where the first child should be an
n-dimensional `BaseType`. This children should be followed by `n` additional
vector `BaseType` objects, each one describing one of the axis of the
variable::

    >>> rain = GridType('rain')
    >>> rain['rain'] = BaseType(
    ...     'rain', np.arange(6).reshape(2, 3), dimensions=('y', 'x'))
    >>> rain['x'] = BaseType('x', np.arange(3), units='degrees_east')
    >>> rain['y'] = BaseType('y', np.arange(2), units='degrees_north')
    >>> rain.array  #doctest: +ELLIPSIS
    <BaseType with data array([[0, 1, 2],
           [3, 4, 5]])>
    >>> type(rain.maps)
    <class 'collections.OrderedDict'>
    >>> for item in rain.maps.items():
    ...     print(item)
    ('x', <BaseType with data array([0, 1, 2])>)
    ('y', <BaseType with data array([0, 1])>)

There a last special container called `SequenceType`. This data structure is
analogous to a series of records (or rows), with one column for each of its
children::

    >>> cast = SequenceType('cast')
    >>> cast['depth'] = BaseType('depth', positive='down', units='m')
    >>> cast['temperature'] = BaseType('temperature', units='K')
    >>> cast['salinity'] = BaseType('salinity', units='psu')
    >>> cast['id'] = BaseType('id')
    >>> cast.data = np.array([(10., 17., 35., '1'), (20., 15., 35., '2')],
    ...     dtype=np.dtype([('depth', np.float32), ('temperature', np.float32),
    ...     ('salinity', np.float32), ('id', np.dtype('|S1'))]))

Note that the data in this case is attributed to the `SequenceType`, and is
composed of a series of values for each of the children.  Pydap `SequenceType`
obects are very flexible. Data can be accessed by iterating over the object::

    >>> for record in cast.iterdata():
    ...     print(record)
    (10.0, 17.0, 35.0, '1')
    (20.0, 15.0, 35.0, '2')

It is possible to select only a few variables::

    >>> for record in cast['salinity', 'depth'].iterdata():
    ...     print(record)
    (35.0, 10.0)
    (35.0, 20.0)

    >>> cast['temperature'].dtype
    dtype('float32')
    >>> cast['temperature'].shape
    (2,)

When sliced, it yields the underlying array:
    >>> type(cast['temperature'][-1:])
    <class 'pydap.model.BaseType'>
    >>> for record in cast['temperature'][-1:].iterdata():
    ...     print(record)
    15.0

When constrained, it yields the SequenceType:
    >>> type(cast[ cast['temperature'] < 16 ])
    <class 'pydap.model.SequenceType'>
    >>> for record in cast[ cast['temperature'] < 16 ].iterdata():
    ...     print(record)
    (20.0, 15.0, 35.0, '2')

As mentioned earlier, it is still possible to iterate directly over data::

    >>> for record in cast[ cast['temperature'] < 16 ]:
    ...     print(record)
    (20.0, 15.0, 35.0, '2')

But this is discouraged as this will be deprecated soon. The ``.iterdata()`` is
therefore highly recommended.
"""

import operator
import copy
from six.moves import reduce, map
from six import string_types
import numpy as np
from collections import OrderedDict, Mapping
import warnings

from .lib import quote, decode_np_strings


__all__ = [
    'BaseType', 'StructureType', 'DatasetType', 'SequenceType', 'GridType']


class DapType(object):

    """The common Opendap type.

    This is a base class, defining common methods and attributes for all other
    classes in the data model.

    """

    def __init__(self, name='nameless', attributes=None, **kwargs):
        self.name = quote(name)
        self.attributes = attributes or {}
        self.attributes.update(kwargs)

        # Set the id to the name.
        self._id = self.name

    def __repr__(self):
        return 'DapType(%s)' % ', '.join(
            map(repr, [self.name, self.attributes]))

    # The id.
    def _set_id(self, id):
        self._id = id

        # Update children id.
        for child in self.children():
            child.id = '%s.%s' % (id, child.name)

    def _get_id(self):
        return self._id

    id = property(_get_id, _set_id)

    def __getattr__(self, attr):
        """Attribute shortcut.

        Data classes have their attributes stored in the `attributes`
        attribute, a dictionary. For convenience, access to attributes can be
        shortcut by accessing the attributes directly::

            >>> var = DapType('var')
            >>> var.attributes['foo'] = 'bar'
            >>> var.foo
            'bar'

        This will return the value stored under `attributes`.

        """
        try:
            return self.attributes[attr]
        except (KeyError, TypeError):
            raise AttributeError(
                "'%s' object has no attribute '%s'"
                % (type(self), attr))

    def children(self):
        """Return iterator over children."""
        return ()


class BaseType(DapType):

    """A thin wrapper over Numpy arrays."""

    def __init__(self, name='nameless', data=None, dimensions=None,
                 attributes=None, **kwargs):
        super(BaseType, self).__init__(name, attributes, **kwargs)
        self.data = data
        self.dimensions = dimensions or ()

        # these are set when not data is present (eg, when parsing a DDS)
        self._dtype = None
        self._shape = ()

    def __repr__(self):
        return '<%s with data %s>' % (type(self).__name__, repr(self.data))

    @property
    def dtype(self):
        """Property that returns the data dtype."""
        return self.data.dtype

    @property
    def shape(self):
        """Property that returns the data shape."""
        return self.data.shape

    def reshape(self, *args):
        """Method that reshapes the data:"""
        self.data = self.data.reshape(*args)
        return self

    @property
    def ndim(self):
        return len(self.shape)

    @property
    def size(self):
        return int(np.prod(self.shape))

    def __copy__(self):
        """A lightweight copy of the variable.

        This will return a new object, with a copy of the attributes,
        dimensions, same name, and a view of the data.

        """
        out = type(self)(self.name, self.data, self.dimensions[:],
                         self.attributes.copy())
        out.id = self.id
        return out

    # Comparisons are passed to the data.
    def __eq__(self, other):
        return self.data == other

    def __ne__(self, other):
        return self.data != other

    def __ge__(self, other):
        return self.data >= other

    def __le__(self, other):
        return self.data <= other

    def __gt__(self, other):
        return self.data > other

    def __lt__(self, other):
        return self.data < other

    # Implement the sequence and iter protocols.
    def __getitem__(self, index):
        out = copy.copy(self)
        out.data = self._get_data_index(index)
        return out

    def __len__(self):
        return len(self.data)

    def __iter__(self):
        if self._is_string_dtype:
            for item in self.data:
                yield np.vectorize(decode_np_strings)(item)
        else:
            for item in self.data:
                yield item

    @property
    def _is_string_dtype(self):
        return hasattr(self._data, 'dtype') and self._data.dtype.char == 'S'

    def iterdata(self):
        """ This method was added to mimic new SequenceType method."""
        return iter(self)

    def __array__(self):
        return self._get_data_index()

    def _get_data_index(self, index=Ellipsis):
        if self._is_string_dtype:
            return np.vectorize(decode_np_strings)(self._data[index])
        else:
            return self._data[index]

    def _get_data(self):
        return self._data

    def _set_data(self, data):
        self._data = data
        if np.isscalar(data):
            # Convert scalar data to
            # numpy scalar, otherwise
            # ``.dtype`` and ``.shape``
            # methods will fail.
            self._data = np.array(data)
    data = property(_get_data, _set_data)


class StructureType(DapType, Mapping):
    """A dict-like object holding other variables."""

    def __init__(self, name='nameless', attributes=None, **kwargs):
        super(StructureType, self).__init__(name, attributes, **kwargs)

        # allow some keys to be hidden:
        self._visible_keys = []
        self._dict = OrderedDict()

    def __repr__(self):
        return '<%s with children %s>' % (
            type(self).__name__, ', '.join(map(repr, self._visible_keys)))

    def __getattr__(self, attr):
        """Lazy shortcut return children."""
        try:
            return self[attr]
        except:
            return DapType.__getattr__(self, attr)

    def __contains__(self, key):
        return (key in self._visible_keys)

    # __iter__, __getitem__, __len__ are required for Mapping
    # From these, keys, items, values, get, __eq__,
    # and __ne__ are obtained.
    def __iter__(self):
        for key in self._dict.keys():
            if key in self._visible_keys:
                yield key

    def _all_keys(self):
        # used in ..handlers.lib
        return iter(self._dict.keys())

    def _getitem_string(self, key):
        """ Assume that key is a string type """
        try:
            return self._dict[quote(key)]
        except KeyError:
            splitted = key.split('.')
            if len(splitted) > 1:
                try:
                    return self[splitted[0]]['.'.join(splitted[1:])]
                except KeyError:
                    return self['.'.join(splitted[1:])]
            else:
                raise

    def _getitem_string_tuple(self, key):
        """ Assume that key is a tuple of strings """
        out = type(self)(self.name, data=self.data,
                         attributes=self.attributes.copy())
        for name in key:
            out[name] = copy.copy(self._getitem_string(name))
        return out

    def __getitem__(self, key):
        if isinstance(key, string_types):
            return self._getitem_string(key)
        elif (isinstance(key, tuple) and
              all(isinstance(name, string_types)
                  for name in key)):
            out = copy.copy(self)
            out._visible_keys = list(key)
            return out
        else:
            raise KeyError(key)

    def __len__(self):
        return len(self._visible_keys)

    def children(self):
        # children method always yields an
        # iterator on visible children:
        for key in self._visible_keys:
            yield self[key]

    def __setitem__(self, key, item):
        key = quote(key)
        if key != item.name:
            raise KeyError(
                'Key "%s" is different from variable name "%s"!' %
                (key, item.name))

        if key in self:
            del self[key]
        self._dict[key] = item
        # By default added keys are visible:
        self._visible_keys.append(key)

        # Set item id.
        item.id = '%s.%s' % (self.id, item.name)

    def __delitem__(self, key):
        del self._dict[key]
        try:
            self._visible_keys.remove(key)
        except ValueError:
            pass

    def _get_data(self):
        return [var.data for var in self.children()]

    def _set_data(self, data):
        for col, var in zip(data, self.children()):
            var.data = col
    data = property(_get_data, _set_data)

    def __copy__(self):
        """Return a lightweight copy of the Structure.

        The method will return a new Structure with cloned children, but any
        data object are not copied.

        """
        out = type(self)(self.name, self.attributes.copy())
        out.id = self.id

        # Clone all children too.
        for child in self._dict.values():
            out[child.name] = copy.copy(child)
        return out


class DatasetType(StructureType):

    """A root Dataset.

    The Dataset is a Structure, but it names does not compose the id hierarchy:

        >>> dataset = DatasetType("A")
        >>> dataset["B"] = BaseType("B")
        >>> dataset["B"].id
        'B'

    """

    def __setitem__(self, key, item):
        StructureType.__setitem__(self, key, item)

        # The dataset name does not goes into the children ids.
        item.id = item.name

    def _set_id(self, id):
        """The dataset name is not included in the children ids."""
        self._id = id

        for child in self.children():
            child.id = child.name


class SequenceType(StructureType):

    """A container that stores data in a Numpy array.

    Here's a standard dataset for testing sequential data:

        >>> import numpy as np
        >>> data = np.array([
        ... (10, 15.2, 'Diamond_St'),
        ... (11, 13.1, 'Blacktail_Loop'),
        ... (12, 13.3, 'Platinum_St'),
        ... (13, 12.1, 'Kodiak_Trail')],
        ... dtype=np.dtype([
        ... ('index', np.int32), ('temperature', np.float32),
        ... ('site', np.dtype('|S14'))]))
        ...
        >>> seq = SequenceType('example')
        >>> seq['index'] = BaseType('index')
        >>> seq['temperature'] = BaseType('temperature')
        >>> seq['site'] = BaseType('site')
        >>> seq.data = data

    Iteraring over the sequence returns data:

        >>> for line in seq.iterdata():
        ...     print(line)
        (10, 15.2, 'Diamond_St')
        (11, 13.1, 'Blacktail_Loop')
        (12, 13.3, 'Platinum_St')
        (13, 12.1, 'Kodiak_Trail')

    The order of the variables can be changed:

        >>> for line in seq['temperature', 'site', 'index'].iterdata():
        ...     print(line)
        (15.2, 'Diamond_St', 10)
        (13.1, 'Blacktail_Loop', 11)
        (13.3, 'Platinum_St', 12)
        (12.1, 'Kodiak_Trail', 13)

    We can iterate over children:

        >>> for line in seq['temperature'].iterdata():
        ...     print(line)
        15.2
        13.1
        13.3
        12.1

    We can filter the data:

        >>> for line in seq[ seq.index > 10 ].iterdata():
        ...     print(line)
        (11, 13.1, 'Blacktail_Loop')
        (12, 13.3, 'Platinum_St')
        (13, 12.1, 'Kodiak_Trail')

        >>> for line in seq[ seq.index > 10 ]['site'].iterdata():
        ...     print(line)
        Blacktail_Loop
        Platinum_St
        Kodiak_Trail

        >>> for line in (seq['site', 'temperature'][seq.index > 10]
        ...              .iterdata()):
        ...     print(line)
        ('Blacktail_Loop', 13.1)
        ('Platinum_St', 13.3)
        ('Kodiak_Trail', 12.1)

    Or slice it:

        >>> for line in seq[::2].iterdata():
        ...     print(line)
        (10, 15.2, 'Diamond_St')
        (12, 13.3, 'Platinum_St')

        >>> for line in seq[ seq.index > 10 ][::2]['site'].iterdata():
        ...     print(line)
        Blacktail_Loop
        Kodiak_Trail

        >>> for line in seq[ seq.index > 10 ]['site'][::2]:
        ...     print(line)
        Blacktail_Loop
        Kodiak_Trail

    """

    def __init__(self, name='nameless', data=None, attributes=None, **kwargs):
        super(SequenceType, self).__init__(name, attributes, **kwargs)
        self._data = data

    def _set_data(self, data):
        self._data = data
        for child in self.children():
            tokens = child.id[len(self.id)+1:].split('.')
            child.data = reduce(operator.getitem, [data] + tokens)

    def _get_data(self):
        return self._data

    data = property(_get_data, _set_data)

    def iterdata(self):
        for line in self.data:
            yield tuple(map(decode_np_strings, line))

    def __iter__(self):
        # This method should be removed in Pydap 3.4
        warnings.warn('Starting with Pydap 3.4 '
                      '``for val in sequence: ...`` '
                      'will give children names. '
                      'To iterate over data the construct '
                      '``for val in sequence.iterdata(): ...``'
                      'is available now and will be supported in the'
                      'future to iterate over data.',
                      PendingDeprecationWarning)
        return self.iterdata()

    def __len__(self):
        # This method should be removed in Pydap 3.4
        warnings.warn('Starting with Pydap 3.4, '
                      '``len(sequence)`` will give '
                      'the number of children and not the '
                      'length of the data.',
                      PendingDeprecationWarning)
        return len(self.data)

    def items(self):
        # This method should be removed in Pydap 3.4
        for key in self._visible_keys:
            yield (key, self[key])

    def values(self):
        # This method should be removed in Pydap 3.4
        for key in self._visible_keys:
            yield self[key]

    def keys(self):
        # This method should be removed in Pydap 3.4
        return iter(self._visible_keys)

    def __contains__(self, key):
        # This method should be removed in Pydap 3.4
        return (key in self._visible_keys)

    def __getitem__(self, key):
        # If key is a string, return child with the corresponding data.
        if isinstance(key, string_types):
            return self._getitem_string(key)

        # If it's a tuple, return a new `SequenceType` with selected children.
        elif isinstance(key, tuple):
            out = self._getitem_string_tuple(key)
            # copy.copy() is necessary here because a view will be returned in
            # the future:
            out.data = copy.copy(self.data[list(key)])
            return out

        # Else return a new `SequenceType` with the data sliced.
        else:
            out = copy.copy(self)
            out.data = self.data[key]
            return out

    def __copy__(self):
        """Return a lightweight copy of the Sequence.

        The method will return a new Sequence with cloned children, but any
        data object are not copied.

        """
        out = type(self)(self.name, self.data, self.attributes.copy())
        out.id = self.id

        # Clone children too.
        for child in self.children():
            out[child.name] = copy.copy(child)
        return out


class GridType(StructureType):

    """A Grid container.

    The Grid is a Structure with an array and the corresponding axes.

    """

    def __init__(self, name='nameless', attributes=None, **kwargs):
        super(GridType, self).__init__(name, attributes, **kwargs)
        self._output_grid = True

    def __repr__(self):
        return '<%s with array %s and maps %s>' % (
            type(self).__name__,
            repr(list(self.keys())[0]),
            ', '.join(map(repr, list(self.keys())[1:])))

    def __getitem__(self, key):
        # Return a child.
        if isinstance(key, string_types):
            return self._getitem_string(key)

        # Return a new `GridType` with part of the data.
        elif (isinstance(key, tuple) and
              all(isinstance(name, string_types)
                  for name in key)):
            out = self._getitem_string_tuple(key)
            for var in out.children():
                var.data = self[var.name].data
            return out
        else:
            if not self.output_grid:
                return self.array[key]

            if not isinstance(key, tuple):
                key = (key,)

            out = copy.copy(self)
            for var, slice_ in zip(out.children(), [key] + list(key)):
                var.data = self[var.name].data[slice_]
            return out

    @property
    def dtype(self):
        """Return the first children dtype."""
        return self.array.dtype

    @property
    def shape(self):
        """Return the first children shape."""
        return self.array.shape

    @property
    def ndim(self):
        return len(self.shape)

    @property
    def size(self):
        return int(np.prod(self.shape))

    @property
    def output_grid(self):
        return self._output_grid

    def set_output_grid(self, key):
        self._output_grid = bool(key)

    @property
    def array(self):
        """Return the first children."""
        return self[list(self.keys())[0]]

    def __array__(self):
        return self.array.data

    @property
    def maps(self):
        """Return the axes in an ordered dict."""
        return OrderedDict([(k, self[k]) for k in self.keys()][1:])

    @property
    def dimensions(self):
        """Return the name of the axes."""
        return tuple(list(self.keys())[1:])