This file is indexed.

/usr/lib/python3/dist-packages/pygal/graph/box.py is in python3-pygal 2.4.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# -*- coding: utf-8 -*-
# This file is part of pygal
#
# A python svg graph plotting library
# Copyright © 2012-2016 Kozea
#
# This library is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option) any
# later version.
#
# This library is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with pygal. If not, see <http://www.gnu.org/licenses/>.

"""
Box plot: a convenient way to display series as box with whiskers and outliers
Different types are available throught the box_mode option
"""

from __future__ import division

from bisect import bisect_left, bisect_right

from pygal.graph.graph import Graph
from pygal.util import alter, decorate


class Box(Graph):

    """
    Box plot
    For each series, shows the median value, the 25th and 75th percentiles,
    and the values within
    1.5 times the interquartile range of the 25th and 75th percentiles.

    See http://en.wikipedia.org/wiki/Box_plot
    """

    _series_margin = .06

    def _value_format(self, value, serie):
        """
        Format value for dual value display.
        """
        if self.box_mode == "extremes":
            return (
                'Min: %s\nQ1 : %s\nQ2 : %s\nQ3 : %s\nMax: %s' % tuple(
                    map(self._y_format, serie.points[1:6])))
        elif self.box_mode in ["tukey", "stdev", "pstdev"]:
            return (
                'Min: %s\nLower Whisker: %s\nQ1: %s\nQ2: %s\nQ3: %s\n'
                'Upper Whisker: %s\nMax: %s' % tuple(map(
                    self._y_format, serie.points)))
        elif self.box_mode == '1.5IQR':
            # 1.5IQR mode
            return 'Q1: %s\nQ2: %s\nQ3: %s' % tuple(map(
                self._y_format, serie.points[2:5]))
        else:
            return self._y_format(serie.points)

    def _compute(self):
        """
        Compute parameters necessary for later steps
        within the rendering process
        """
        for serie in self.series:
            serie.points, serie.outliers = \
                self._box_points(serie.values, self.box_mode)

        self._x_pos = [
            (i + .5) / self._order for i in range(self._order)]

        if self._min:
            self._box.ymin = min(self._min, self.zero)
        if self._max:
            self._box.ymax = max(self._max, self.zero)

    def _plot(self):
        """Plot the series data"""
        for serie in self.series:
            self._boxf(serie)

    @property
    def _len(self):
        """Len is always 7 here"""
        return 7

    def _boxf(self, serie):
        """For a specific series, draw the box plot."""
        serie_node = self.svg.serie(serie)
        # Note: q0 and q4 do not literally mean the zero-th quartile
        # and the fourth quartile, but rather the distance from 1.5 times
        # the inter-quartile range to Q1 and Q3, respectively.
        boxes = self.svg.node(serie_node['plot'], class_="boxes")

        metadata = serie.metadata.get(0)

        box = decorate(
            self.svg,
            self.svg.node(boxes, class_='box'),
            metadata)

        val = self._format(serie, 0)

        x_center, y_center = self._draw_box(
            box, serie.points[1:6], serie.outliers, serie.index, metadata)
        self._tooltip_data(box, val, x_center, y_center, "centered",
                           self._get_x_label(serie.index))
        self._static_value(serie_node, val, x_center, y_center, metadata)

    def _draw_box(self, parent_node, quartiles, outliers, box_index, metadata):
        """
        Return the center of a bounding box defined by a box plot.
        Draws a box plot on self.svg.
        """
        width = (self.view.x(1) - self.view.x(0)) / self._order
        series_margin = width * self._series_margin
        left_edge = self.view.x(0) + width * box_index + series_margin
        width -= 2 * series_margin

        # draw lines for whiskers - bottom, median, and top
        for i, whisker in enumerate(
                (quartiles[0], quartiles[2], quartiles[4])):
            whisker_width = width if i == 1 else width / 2
            shift = (width - whisker_width) / 2
            xs = left_edge + shift
            xe = left_edge + width - shift
            alter(self.svg.line(
                parent_node,
                coords=[(xs, self.view.y(whisker)),
                        (xe, self.view.y(whisker))],
                class_='reactive tooltip-trigger',
                attrib={'stroke-width': 3}), metadata)

        # draw lines connecting whiskers to box (Q1 and Q3)
        alter(self.svg.line(
            parent_node,
            coords=[(left_edge + width / 2, self.view.y(quartiles[0])),
                    (left_edge + width / 2, self.view.y(quartiles[1]))],
            class_='reactive tooltip-trigger',
            attrib={'stroke-width': 2}), metadata)
        alter(self.svg.line(
            parent_node,
            coords=[(left_edge + width / 2, self.view.y(quartiles[4])),
                    (left_edge + width / 2, self.view.y(quartiles[3]))],
            class_='reactive tooltip-trigger',
            attrib={'stroke-width': 2}), metadata)

        # box, bounded by Q1 and Q3
        alter(self.svg.node(
            parent_node,
            tag='rect',
            x=left_edge,
            y=self.view.y(quartiles[1]),
            height=self.view.y(quartiles[3]) - self.view.y(quartiles[1]),
            width=width,
            class_='subtle-fill reactive tooltip-trigger'), metadata)

        # draw outliers
        for o in outliers:
            alter(self.svg.node(
                parent_node,
                tag='circle',
                cx=left_edge + width / 2,
                cy=self.view.y(o),
                r=3,
                class_='subtle-fill reactive tooltip-trigger'), metadata)

        return (left_edge + width / 2, self.view.y(
            sum(quartiles) / len(quartiles)))

    @staticmethod
    def _box_points(values, mode='extremes'):
        """
        Default mode: (mode='extremes' or unset)
            Return a 7-tuple of 2x minimum, Q1, Median, Q3,
        and 2x maximum for a list of numeric values.
        1.5IQR mode: (mode='1.5IQR')
            Return a 7-tuple of min, Q1 - 1.5 * IQR, Q1, Median, Q3,
        Q3 + 1.5 * IQR and max for a list of numeric values.
        Tukey mode: (mode='tukey')
            Return a 7-tuple of min, q[0..4], max and a list of outliers
        Outliers are considered values x: x < q1 - IQR or x > q3 + IQR
        SD mode: (mode='stdev')
            Return a 7-tuple of min, q[0..4], max and a list of outliers
        Outliers are considered values x: x < q2 - SD or x > q2 + SD
        SDp mode: (mode='pstdev')
            Return a 7-tuple of min, q[0..4], max and a list of outliers
        Outliers are considered values x: x < q2 - SDp or x > q2 + SDp

        The iterator values may include None values.

        Uses quartile definition from  Mendenhall, W. and
        Sincich, T. L. Statistics for Engineering and the
        Sciences, 4th ed. Prentice-Hall, 1995.
        """
        def median(seq):
            n = len(seq)
            if n % 2 == 0:  # seq has an even length
                return (seq[n // 2] + seq[n // 2 - 1]) / 2
            else:  # seq has an odd length
                return seq[n // 2]

        def mean(seq):
            return sum(seq) / len(seq)

        def stdev(seq):
            m = mean(seq)
            l = len(seq)
            v = sum((n - m)**2 for n in seq) / (l - 1)  # variance
            return v**0.5  # sqrt

        def pstdev(seq):
            m = mean(seq)
            l = len(seq)
            v = sum((n - m)**2 for n in seq) / l  # variance
            return v**0.5  # sqrt

        outliers = []
        # sort the copy in case the originals must stay in original order
        s = sorted([x for x in values if x is not None])
        n = len(s)
        if not n:
            return (0, 0, 0, 0, 0, 0, 0), []
        elif n == 1:
            return (s[0], s[0], s[0], s[0], s[0], s[0], s[0]), []
        else:
            q2 = median(s)
            # See 'Method 3' in http://en.wikipedia.org/wiki/Quartile
            if n % 2 == 0:  # even
                q1 = median(s[:n // 2])
                q3 = median(s[n // 2:])
            else:  # odd
                if n == 1:  # special case
                    q1 = s[0]
                    q3 = s[0]
                elif n % 4 == 1:  # n is of form 4n + 1 where n >= 1
                    m = (n - 1) // 4
                    q1 = 0.25 * s[m - 1] + 0.75 * s[m]
                    q3 = 0.75 * s[3 * m] + 0.25 * s[3 * m + 1]
                else:  # n is of form 4n + 3 where n >= 1
                    m = (n - 3) // 4
                    q1 = 0.75 * s[m] + 0.25 * s[m + 1]
                    q3 = 0.25 * s[3 * m + 1] + 0.75 * s[3 * m + 2]

            iqr = q3 - q1
            min_s = s[0]
            max_s = s[-1]
            if mode == 'extremes':
                q0 = min_s
                q4 = max_s
            elif mode == 'tukey':
                # the lowest datum still within 1.5 IQR of the lower quartile,
                # and the highest datum still within 1.5 IQR of the upper
                # quartile [Tukey box plot, Wikipedia ]
                b0 = bisect_left(s, q1 - 1.5 * iqr)
                b4 = bisect_right(s, q3 + 1.5 * iqr)
                q0 = s[b0]
                q4 = s[b4 - 1]
                outliers = s[:b0] + s[b4:]
            elif mode == 'stdev':
                # one standard deviation above and below the mean of the data
                sd = stdev(s)
                b0 = bisect_left(s, q2 - sd)
                b4 = bisect_right(s, q2 + sd)
                q0 = s[b0]
                q4 = s[b4 - 1]
                outliers = s[:b0] + s[b4:]
            elif mode == 'pstdev':
                # one population standard deviation above and below
                # the mean of the data
                sdp = pstdev(s)
                b0 = bisect_left(s, q2 - sdp)
                b4 = bisect_right(s, q2 + sdp)
                q0 = s[b0]
                q4 = s[b4 - 1]
                outliers = s[:b0] + s[b4:]
            elif mode == '1.5IQR':
                # 1.5IQR mode
                q0 = q1 - 1.5 * iqr
                q4 = q3 + 1.5 * iqr
            return (min_s, q0, q1, q2, q3, q4, max_s), outliers