This file is indexed.

/usr/lib/python3/dist-packages/qrcode/util.py is in python3-qrcode 5.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import re
import math

import six
from six.moves import xrange

from qrcode import base, exceptions

# QR encoding modes.
MODE_NUMBER = 1 << 0
MODE_ALPHA_NUM = 1 << 1
MODE_8BIT_BYTE = 1 << 2
MODE_KANJI = 1 << 3

# Encoding mode sizes.
MODE_SIZE_SMALL = {
    MODE_NUMBER: 10,
    MODE_ALPHA_NUM: 9,
    MODE_8BIT_BYTE: 8,
    MODE_KANJI: 8,
}
MODE_SIZE_MEDIUM = {
    MODE_NUMBER: 12,
    MODE_ALPHA_NUM: 11,
    MODE_8BIT_BYTE: 16,
    MODE_KANJI: 10,
}
MODE_SIZE_LARGE = {
    MODE_NUMBER: 14,
    MODE_ALPHA_NUM: 13,
    MODE_8BIT_BYTE: 16,
    MODE_KANJI: 12,
}

ALPHA_NUM = six.b('0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:')
RE_ALPHA_NUM = re.compile(six.b('^[') + re.escape(ALPHA_NUM) + six.b(']*\Z'))

# The number of bits for numeric delimited data lengths.
NUMBER_LENGTH = {3: 10, 2: 7, 1: 4}

PATTERN_POSITION_TABLE = [
    [],
    [6, 18],
    [6, 22],
    [6, 26],
    [6, 30],
    [6, 34],
    [6, 22, 38],
    [6, 24, 42],
    [6, 26, 46],
    [6, 28, 50],
    [6, 30, 54],
    [6, 32, 58],
    [6, 34, 62],
    [6, 26, 46, 66],
    [6, 26, 48, 70],
    [6, 26, 50, 74],
    [6, 30, 54, 78],
    [6, 30, 56, 82],
    [6, 30, 58, 86],
    [6, 34, 62, 90],
    [6, 28, 50, 72, 94],
    [6, 26, 50, 74, 98],
    [6, 30, 54, 78, 102],
    [6, 28, 54, 80, 106],
    [6, 32, 58, 84, 110],
    [6, 30, 58, 86, 114],
    [6, 34, 62, 90, 118],
    [6, 26, 50, 74, 98, 122],
    [6, 30, 54, 78, 102, 126],
    [6, 26, 52, 78, 104, 130],
    [6, 30, 56, 82, 108, 134],
    [6, 34, 60, 86, 112, 138],
    [6, 30, 58, 86, 114, 142],
    [6, 34, 62, 90, 118, 146],
    [6, 30, 54, 78, 102, 126, 150],
    [6, 24, 50, 76, 102, 128, 154],
    [6, 28, 54, 80, 106, 132, 158],
    [6, 32, 58, 84, 110, 136, 162],
    [6, 26, 54, 82, 110, 138, 166],
    [6, 30, 58, 86, 114, 142, 170]
]

G15 = (
    (1 << 10) | (1 << 8) | (1 << 5) | (1 << 4) | (1 << 2) | (1 << 1) |
    (1 << 0))
G18 = (
    (1 << 12) | (1 << 11) | (1 << 10) | (1 << 9) | (1 << 8) | (1 << 5) |
    (1 << 2) | (1 << 0))
G15_MASK = (1 << 14) | (1 << 12) | (1 << 10) | (1 << 4) | (1 << 1)

PAD0 = 0xEC
PAD1 = 0x11

# Precompute bit count limits, indexed by error correction level and code size
_data_count = lambda block: block.data_count
BIT_LIMIT_TABLE = [
    [0] + [8*sum(map(_data_count, base.rs_blocks(version, error_correction)))
           for version in xrange(1, 41)]
    for error_correction in xrange(4)
]


def BCH_type_info(data):
        d = data << 10
        while BCH_digit(d) - BCH_digit(G15) >= 0:
            d ^= (G15 << (BCH_digit(d) - BCH_digit(G15)))

        return ((data << 10) | d) ^ G15_MASK


def BCH_type_number(data):
    d = data << 12
    while BCH_digit(d) - BCH_digit(G18) >= 0:
        d ^= (G18 << (BCH_digit(d) - BCH_digit(G18)))
    return (data << 12) | d


def BCH_digit(data):
    digit = 0
    while data != 0:
        digit += 1
        data >>= 1
    return digit


def pattern_position(version):
    return PATTERN_POSITION_TABLE[version - 1]


def mask_func(pattern):
    """
    Return the mask function for the given mask pattern.
    """
    if pattern == 0:   # 000
        return lambda i, j: (i + j) % 2 == 0
    if pattern == 1:   # 001
        return lambda i, j: i % 2 == 0
    if pattern == 2:   # 010
        return lambda i, j: j % 3 == 0
    if pattern == 3:   # 011
        return lambda i, j: (i + j) % 3 == 0
    if pattern == 4:   # 100
        return lambda i, j: (math.floor(i / 2) + math.floor(j / 3)) % 2 == 0
    if pattern == 5:  # 101
        return lambda i, j: (i * j) % 2 + (i * j) % 3 == 0
    if pattern == 6:  # 110
        return lambda i, j: ((i * j) % 2 + (i * j) % 3) % 2 == 0
    if pattern == 7:  # 111
        return lambda i, j: ((i * j) % 3 + (i + j) % 2) % 2 == 0
    raise TypeError("Bad mask pattern: " + pattern)  # pragma: no cover


def mode_sizes_for_version(version):
    if version < 10:
        return MODE_SIZE_SMALL
    elif version < 27:
        return MODE_SIZE_MEDIUM
    else:
        return MODE_SIZE_LARGE


def length_in_bits(mode, version):
    if mode not in (
            MODE_NUMBER, MODE_ALPHA_NUM, MODE_8BIT_BYTE, MODE_KANJI):
        raise TypeError("Invalid mode (%s)" % mode)  # pragma: no cover

    if version < 1 or version > 40:  # pragma: no cover
        raise ValueError(
            "Invalid version (was %s, expected 1 to 40)" % version)

    return mode_sizes_for_version(version)[mode]


def lost_point(modules):
    modules_count = len(modules)

    lost_point = 0

    lost_point = _lost_point_level1(modules, modules_count)
    lost_point += _lost_point_level2(modules, modules_count)
    lost_point += _lost_point_level3(modules, modules_count)
    lost_point += _lost_point_level4(modules, modules_count)

    return lost_point


def _lost_point_level1(modules, modules_count):
    lost_point = 0

    modules_range = xrange(modules_count)
    row_range_first = (0, 1)
    row_range_last = (-1, 0)
    row_range_standard = (-1, 0, 1)

    col_range_first = ((0, 1), (1,))
    col_range_last = ((-1, 0), (-1,))
    col_range_standard = ((-1, 0, 1), (-1, 1))

    for row in modules_range:

        if row == 0:
            row_range = row_range_first
        elif row == modules_count-1:
            row_range = row_range_last
        else:
            row_range = row_range_standard

        for col in modules_range:

            sameCount = 0
            dark = modules[row][col]

            if col == 0:
                col_range = col_range_first
            elif col == modules_count-1:
                col_range = col_range_last
            else:
                col_range = col_range_standard

            for r in row_range:

                row_offset = row + r

                if r != 0:
                    col_idx = 0
                else:
                    col_idx = 1

                for c in col_range[col_idx]:

                    if dark == modules[row_offset][col + c]:
                        sameCount += 1

            if sameCount > 5:
                lost_point += (3 + sameCount - 5)

    return lost_point


def _lost_point_level2(modules, modules_count):
    lost_point = 0

    modules_range = xrange(modules_count - 1)

    for row in modules_range:
        this_row = modules[row]
        next_row = modules[row+1]
        for col in modules_range:
            count = 0
            if this_row[col]:
                count += 1
            if next_row[col]:
                count += 1
            if this_row[col + 1]:
                count += 1
            if next_row[col + 1]:
                count += 1
            if count == 0 or count == 4:
                lost_point += 3

    return lost_point


def _lost_point_level3(modules, modules_count):
    modules_range_short = xrange(modules_count-6)

    lost_point = 0
    for row in xrange(modules_count):
        this_row = modules[row]
        for col in modules_range_short:
            if (this_row[col]
                    and not this_row[col + 1]
                    and this_row[col + 2]
                    and this_row[col + 3]
                    and this_row[col + 4]
                    and not this_row[col + 5]
                    and this_row[col + 6]):
                lost_point += 40

    for col in xrange(modules_count):
        for row in modules_range_short:
            if (modules[row][col]
                    and not modules[row + 1][col]
                    and modules[row + 2][col]
                    and modules[row + 3][col]
                    and modules[row + 4][col]
                    and not modules[row + 5][col]
                    and modules[row + 6][col]):
                lost_point += 40

    return lost_point


def _lost_point_level4(modules, modules_count):
    modules_range = xrange(modules_count)
    dark_count = 0

    for row in modules_range:
        this_row = modules[row]
        for col in modules_range:
            if this_row[col]:
                dark_count += 1

    ratio = abs(100 * dark_count / modules_count / modules_count - 50) / 5
    return ratio * 10


def optimal_data_chunks(data, minimum=4):
    """
    An iterator returning QRData chunks optimized to the data content.

    :param minimum: The minimum number of bytes in a row to split as a chunk.
    """
    data = to_bytestring(data)
    re_repeat = (
        six.b('{') + six.text_type(minimum).encode('ascii') + six.b(',}'))
    num_pattern = re.compile(six.b('\d') + re_repeat)
    num_bits = _optimal_split(data, num_pattern)
    alpha_pattern = re.compile(
        six.b('[') + re.escape(ALPHA_NUM) + six.b(']') + re_repeat)
    for is_num, chunk in num_bits:
        if is_num:
            yield QRData(chunk, mode=MODE_NUMBER, check_data=False)
        else:
            for is_alpha, sub_chunk in _optimal_split(chunk, alpha_pattern):
                if is_alpha:
                    mode = MODE_ALPHA_NUM
                else:
                    mode = MODE_8BIT_BYTE
                yield QRData(sub_chunk, mode=mode, check_data=False)


def _optimal_split(data, pattern):
    while data:
        match = re.search(pattern, data)
        if not match:
            break
        start, end = match.start(), match.end()
        if start:
            yield False, data[:start]
        yield True, data[start:end]
        data = data[end:]
    if data:
        yield False, data


def to_bytestring(data):
    """
    Convert data to a (utf-8 encoded) byte-string if it isn't a byte-string
    already.
    """
    if not isinstance(data, six.binary_type):
        data = six.text_type(data).encode('utf-8')
    return data


def optimal_mode(data):
    """
    Calculate the optimal mode for this chunk of data.
    """
    if data.isdigit():
        return MODE_NUMBER
    if RE_ALPHA_NUM.match(data):
        return MODE_ALPHA_NUM
    return MODE_8BIT_BYTE


class QRData:
    """
    Data held in a QR compatible format.

    Doesn't currently handle KANJI.
    """

    def __init__(self, data, mode=None, check_data=True):
        """
        If ``mode`` isn't provided, the most compact QR data type possible is
        chosen.
        """
        if check_data:
            data = to_bytestring(data)

        if mode is None:
            self.mode = optimal_mode(data)
        else:
            self.mode = mode
            if mode not in (MODE_NUMBER, MODE_ALPHA_NUM, MODE_8BIT_BYTE):
                raise TypeError("Invalid mode (%s)" % mode)  # pragma: no cover
            if check_data and mode < optimal_mode(data):  # pragma: no cover
                raise ValueError(
                    "Provided data can not be represented in mode "
                    "{0}".format(mode))

        self.data = data

    def __len__(self):
        return len(self.data)

    def write(self, buffer):
        if self.mode == MODE_NUMBER:
            for i in xrange(0, len(self.data), 3):
                chars = self.data[i:i + 3]
                bit_length = NUMBER_LENGTH[len(chars)]
                buffer.put(int(chars), bit_length)
        elif self.mode == MODE_ALPHA_NUM:
            for i in xrange(0, len(self.data), 2):
                chars = self.data[i:i + 2]
                if len(chars) > 1:
                    buffer.put(
                        ALPHA_NUM.find(chars[0]) * 45 +
                        ALPHA_NUM.find(chars[1]), 11)
                else:
                    buffer.put(ALPHA_NUM.find(chars), 6)
        else:
            if six.PY3:
                # Iterating a bytestring in Python 3 returns an integer,
                # no need to ord().
                data = self.data
            else:
                data = [ord(c) for c in self.data]
            for c in data:
                buffer.put(c, 8)

    def __repr__(self):
        return repr(self.data)


class BitBuffer:

    def __init__(self):
        self.buffer = []
        self.length = 0

    def __repr__(self):
        return ".".join([str(n) for n in self.buffer])

    def get(self, index):
        buf_index = math.floor(index / 8)
        return ((self.buffer[buf_index] >> (7 - index % 8)) & 1) == 1

    def put(self, num, length):
        for i in range(length):
            self.put_bit(((num >> (length - i - 1)) & 1) == 1)

    def __len__(self):
        return self.length

    def put_bit(self, bit):
        buf_index = self.length // 8
        if len(self.buffer) <= buf_index:
            self.buffer.append(0)
        if bit:
            self.buffer[buf_index] |= (0x80 >> (self.length % 8))
        self.length += 1


def create_bytes(buffer, rs_blocks):
    offset = 0

    maxDcCount = 0
    maxEcCount = 0

    dcdata = [0] * len(rs_blocks)
    ecdata = [0] * len(rs_blocks)

    for r in range(len(rs_blocks)):

        dcCount = rs_blocks[r].data_count
        ecCount = rs_blocks[r].total_count - dcCount

        maxDcCount = max(maxDcCount, dcCount)
        maxEcCount = max(maxEcCount, ecCount)

        dcdata[r] = [0] * dcCount

        for i in range(len(dcdata[r])):
            dcdata[r][i] = 0xff & buffer.buffer[i + offset]
        offset += dcCount

        # Get error correction polynomial.
        rsPoly = base.Polynomial([1], 0)
        for i in range(ecCount):
            rsPoly = rsPoly * base.Polynomial([1, base.gexp(i)], 0)

        rawPoly = base.Polynomial(dcdata[r], len(rsPoly) - 1)

        modPoly = rawPoly % rsPoly
        ecdata[r] = [0] * (len(rsPoly) - 1)
        for i in range(len(ecdata[r])):
            modIndex = i + len(modPoly) - len(ecdata[r])
            if (modIndex >= 0):
                ecdata[r][i] = modPoly[modIndex]
            else:
                ecdata[r][i] = 0

    totalCodeCount = 0
    for rs_block in rs_blocks:
        totalCodeCount += rs_block.total_count

    data = [None] * totalCodeCount
    index = 0

    for i in range(maxDcCount):
        for r in range(len(rs_blocks)):
            if i < len(dcdata[r]):
                data[index] = dcdata[r][i]
                index += 1

    for i in range(maxEcCount):
        for r in range(len(rs_blocks)):
            if i < len(ecdata[r]):
                data[index] = ecdata[r][i]
                index += 1

    return data


def create_data(version, error_correction, data_list):

    buffer = BitBuffer()
    for data in data_list:
        buffer.put(data.mode, 4)
        buffer.put(len(data), length_in_bits(data.mode, version))
        data.write(buffer)

    # Calculate the maximum number of bits for the given version.
    rs_blocks = base.rs_blocks(version, error_correction)
    bit_limit = 0
    for block in rs_blocks:
        bit_limit += block.data_count * 8

    if len(buffer) > bit_limit:
        raise exceptions.DataOverflowError(
            "Code length overflow. Data size (%s) > size available (%s)" %
            (len(buffer), bit_limit))

    # Terminate the bits (add up to four 0s).
    for i in range(min(bit_limit - len(buffer), 4)):
        buffer.put_bit(False)

    # Delimit the string into 8-bit words, padding with 0s if necessary.
    delimit = len(buffer) % 8
    if delimit:
        for i in range(8 - delimit):
            buffer.put_bit(False)

    # Add special alternating padding bitstrings until buffer is full.
    bytes_to_fill = (bit_limit - len(buffer)) // 8
    for i in range(bytes_to_fill):
        if i % 2 == 0:
            buffer.put(PAD0, 8)
        else:
            buffer.put(PAD1, 8)

    return create_bytes(buffer, rs_blocks)