This file is indexed.

/usr/lib/python3/dist-packages/rsa/key.py is in python3-rsa 3.4.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
# -*- coding: utf-8 -*-
#
#  Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      https://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""RSA key generation code.

Create new keys with the newkeys() function. It will give you a PublicKey and a
PrivateKey object.

Loading and saving keys requires the pyasn1 module. This module is imported as
late as possible, such that other functionality will remain working in absence
of pyasn1.

.. note::

    Storing public and private keys via the `pickle` module is possible.
    However, it is insecure to load a key from an untrusted source.
    The pickle module is not secure against erroneous or maliciously
    constructed data. Never unpickle data received from an untrusted
    or unauthenticated source.

"""

import logging
from rsa._compat import b

import rsa.prime
import rsa.pem
import rsa.common
import rsa.randnum
import rsa.core

log = logging.getLogger(__name__)
DEFAULT_EXPONENT = 65537


class AbstractKey(object):
    """Abstract superclass for private and public keys."""

    __slots__ = ('n', 'e')

    def __init__(self, n, e):
        self.n = n
        self.e = e

    @classmethod
    def load_pkcs1(cls, keyfile, format='PEM'):
        """Loads a key in PKCS#1 DER or PEM format.

        :param keyfile: contents of a DER- or PEM-encoded file that contains
            the public key.
        :param format: the format of the file to load; 'PEM' or 'DER'

        :return: a PublicKey object
        """

        methods = {
            'PEM': cls._load_pkcs1_pem,
            'DER': cls._load_pkcs1_der,
        }

        method = cls._assert_format_exists(format, methods)
        return method(keyfile)

    @staticmethod
    def _assert_format_exists(file_format, methods):
        """Checks whether the given file format exists in 'methods'.
        """

        try:
            return methods[file_format]
        except KeyError:
            formats = ', '.join(sorted(methods.keys()))
            raise ValueError('Unsupported format: %r, try one of %s' % (file_format,
                                                                        formats))

    def save_pkcs1(self, format='PEM'):
        """Saves the public key in PKCS#1 DER or PEM format.

        :param format: the format to save; 'PEM' or 'DER'
        :returns: the DER- or PEM-encoded public key.
        """

        methods = {
            'PEM': self._save_pkcs1_pem,
            'DER': self._save_pkcs1_der,
        }

        method = self._assert_format_exists(format, methods)
        return method()

    def blind(self, message, r):
        """Performs blinding on the message using random number 'r'.

        :param message: the message, as integer, to blind.
        :type message: int
        :param r: the random number to blind with.
        :type r: int
        :return: the blinded message.
        :rtype: int

        The blinding is such that message = unblind(decrypt(blind(encrypt(message))).

        See https://en.wikipedia.org/wiki/Blinding_%28cryptography%29
        """

        return (message * pow(r, self.e, self.n)) % self.n

    def unblind(self, blinded, r):
        """Performs blinding on the message using random number 'r'.

        :param blinded: the blinded message, as integer, to unblind.
        :param r: the random number to unblind with.
        :return: the original message.

        The blinding is such that message = unblind(decrypt(blind(encrypt(message))).

        See https://en.wikipedia.org/wiki/Blinding_%28cryptography%29
        """

        return (rsa.common.inverse(r, self.n) * blinded) % self.n


class PublicKey(AbstractKey):
    """Represents a public RSA key.

    This key is also known as the 'encryption key'. It contains the 'n' and 'e'
    values.

    Supports attributes as well as dictionary-like access. Attribute accesss is
    faster, though.

    >>> PublicKey(5, 3)
    PublicKey(5, 3)

    >>> key = PublicKey(5, 3)
    >>> key.n
    5
    >>> key['n']
    5
    >>> key.e
    3
    >>> key['e']
    3

    """

    __slots__ = ('n', 'e')

    def __getitem__(self, key):
        return getattr(self, key)

    def __repr__(self):
        return 'PublicKey(%i, %i)' % (self.n, self.e)

    def __getstate__(self):
        """Returns the key as tuple for pickling."""
        return self.n, self.e

    def __setstate__(self, state):
        """Sets the key from tuple."""
        self.n, self.e = state

    def __eq__(self, other):
        if other is None:
            return False

        if not isinstance(other, PublicKey):
            return False

        return self.n == other.n and self.e == other.e

    def __ne__(self, other):
        return not (self == other)

    @classmethod
    def _load_pkcs1_der(cls, keyfile):
        """Loads a key in PKCS#1 DER format.

        :param keyfile: contents of a DER-encoded file that contains the public
            key.
        :return: a PublicKey object

        First let's construct a DER encoded key:

        >>> import base64
        >>> b64der = 'MAwCBQCNGmYtAgMBAAE='
        >>> der = base64.standard_b64decode(b64der)

        This loads the file:

        >>> PublicKey._load_pkcs1_der(der)
        PublicKey(2367317549, 65537)

        """

        from pyasn1.codec.der import decoder
        from rsa.asn1 import AsnPubKey

        (priv, _) = decoder.decode(keyfile, asn1Spec=AsnPubKey())
        return cls(n=int(priv['modulus']), e=int(priv['publicExponent']))

    def _save_pkcs1_der(self):
        """Saves the public key in PKCS#1 DER format.

        @returns: the DER-encoded public key.
        """

        from pyasn1.codec.der import encoder
        from rsa.asn1 import AsnPubKey

        # Create the ASN object
        asn_key = AsnPubKey()
        asn_key.setComponentByName('modulus', self.n)
        asn_key.setComponentByName('publicExponent', self.e)

        return encoder.encode(asn_key)

    @classmethod
    def _load_pkcs1_pem(cls, keyfile):
        """Loads a PKCS#1 PEM-encoded public key file.

        The contents of the file before the "-----BEGIN RSA PUBLIC KEY-----" and
        after the "-----END RSA PUBLIC KEY-----" lines is ignored.

        :param keyfile: contents of a PEM-encoded file that contains the public
            key.
        :return: a PublicKey object
        """

        der = rsa.pem.load_pem(keyfile, 'RSA PUBLIC KEY')
        return cls._load_pkcs1_der(der)

    def _save_pkcs1_pem(self):
        """Saves a PKCS#1 PEM-encoded public key file.

        :return: contents of a PEM-encoded file that contains the public key.
        """

        der = self._save_pkcs1_der()
        return rsa.pem.save_pem(der, 'RSA PUBLIC KEY')

    @classmethod
    def load_pkcs1_openssl_pem(cls, keyfile):
        """Loads a PKCS#1.5 PEM-encoded public key file from OpenSSL.

        These files can be recognised in that they start with BEGIN PUBLIC KEY
        rather than BEGIN RSA PUBLIC KEY.

        The contents of the file before the "-----BEGIN PUBLIC KEY-----" and
        after the "-----END PUBLIC KEY-----" lines is ignored.

        :param keyfile: contents of a PEM-encoded file that contains the public
            key, from OpenSSL.
        :return: a PublicKey object
        """

        der = rsa.pem.load_pem(keyfile, 'PUBLIC KEY')
        return cls.load_pkcs1_openssl_der(der)

    @classmethod
    def load_pkcs1_openssl_der(cls, keyfile):
        """Loads a PKCS#1 DER-encoded public key file from OpenSSL.

        :param keyfile: contents of a DER-encoded file that contains the public
            key, from OpenSSL.
        :return: a PublicKey object

        """

        from rsa.asn1 import OpenSSLPubKey
        from pyasn1.codec.der import decoder
        from pyasn1.type import univ

        (keyinfo, _) = decoder.decode(keyfile, asn1Spec=OpenSSLPubKey())

        if keyinfo['header']['oid'] != univ.ObjectIdentifier('1.2.840.113549.1.1.1'):
            raise TypeError("This is not a DER-encoded OpenSSL-compatible public key")

        return cls._load_pkcs1_der(keyinfo['key'][1:])


class PrivateKey(AbstractKey):
    """Represents a private RSA key.

    This key is also known as the 'decryption key'. It contains the 'n', 'e',
    'd', 'p', 'q' and other values.

    Supports attributes as well as dictionary-like access. Attribute accesss is
    faster, though.

    >>> PrivateKey(3247, 65537, 833, 191, 17)
    PrivateKey(3247, 65537, 833, 191, 17)

    exp1, exp2 and coef can be given, but if None or omitted they will be calculated:

    >>> pk = PrivateKey(3727264081, 65537, 3349121513, 65063, 57287, exp2=4)
    >>> pk.exp1
    55063
    >>> pk.exp2  # this is of course not a correct value, but it is the one we passed.
    4
    >>> pk.coef
    50797

    If you give exp1, exp2 or coef, they will be used as-is:

    >>> pk = PrivateKey(1, 2, 3, 4, 5, 6, 7, 8)
    >>> pk.exp1
    6
    >>> pk.exp2
    7
    >>> pk.coef
    8

    """

    __slots__ = ('n', 'e', 'd', 'p', 'q', 'exp1', 'exp2', 'coef')

    def __init__(self, n, e, d, p, q, exp1=None, exp2=None, coef=None):
        AbstractKey.__init__(self, n, e)
        self.d = d
        self.p = p
        self.q = q

        # Calculate the other values if they aren't supplied
        if exp1 is None:
            self.exp1 = int(d % (p - 1))
        else:
            self.exp1 = exp1

        if exp2 is None:
            self.exp2 = int(d % (q - 1))
        else:
            self.exp2 = exp2

        if coef is None:
            self.coef = rsa.common.inverse(q, p)
        else:
            self.coef = coef

    def __getitem__(self, key):
        return getattr(self, key)

    def __repr__(self):
        return 'PrivateKey(%(n)i, %(e)i, %(d)i, %(p)i, %(q)i)' % self

    def __getstate__(self):
        """Returns the key as tuple for pickling."""
        return self.n, self.e, self.d, self.p, self.q, self.exp1, self.exp2, self.coef

    def __setstate__(self, state):
        """Sets the key from tuple."""
        self.n, self.e, self.d, self.p, self.q, self.exp1, self.exp2, self.coef = state

    def __eq__(self, other):
        if other is None:
            return False

        if not isinstance(other, PrivateKey):
            return False

        return (self.n == other.n and
                self.e == other.e and
                self.d == other.d and
                self.p == other.p and
                self.q == other.q and
                self.exp1 == other.exp1 and
                self.exp2 == other.exp2 and
                self.coef == other.coef)

    def __ne__(self, other):
        return not (self == other)

    def blinded_decrypt(self, encrypted):
        """Decrypts the message using blinding to prevent side-channel attacks.

        :param encrypted: the encrypted message
        :type encrypted: int

        :returns: the decrypted message
        :rtype: int
        """

        blind_r = rsa.randnum.randint(self.n - 1)
        blinded = self.blind(encrypted, blind_r)  # blind before decrypting
        decrypted = rsa.core.decrypt_int(blinded, self.d, self.n)

        return self.unblind(decrypted, blind_r)

    def blinded_encrypt(self, message):
        """Encrypts the message using blinding to prevent side-channel attacks.

        :param message: the message to encrypt
        :type message: int

        :returns: the encrypted message
        :rtype: int
        """

        blind_r = rsa.randnum.randint(self.n - 1)
        blinded = self.blind(message, blind_r)  # blind before encrypting
        encrypted = rsa.core.encrypt_int(blinded, self.d, self.n)
        return self.unblind(encrypted, blind_r)

    @classmethod
    def _load_pkcs1_der(cls, keyfile):
        """Loads a key in PKCS#1 DER format.

        :param keyfile: contents of a DER-encoded file that contains the private
            key.
        :return: a PrivateKey object

        First let's construct a DER encoded key:

        >>> import base64
        >>> b64der = 'MC4CAQACBQDeKYlRAgMBAAECBQDHn4npAgMA/icCAwDfxwIDANcXAgInbwIDAMZt'
        >>> der = base64.standard_b64decode(b64der)

        This loads the file:

        >>> PrivateKey._load_pkcs1_der(der)
        PrivateKey(3727264081, 65537, 3349121513, 65063, 57287)

        """

        from pyasn1.codec.der import decoder
        (priv, _) = decoder.decode(keyfile)

        # ASN.1 contents of DER encoded private key:
        #
        # RSAPrivateKey ::= SEQUENCE {
        #     version           Version,
        #     modulus           INTEGER,  -- n
        #     publicExponent    INTEGER,  -- e
        #     privateExponent   INTEGER,  -- d
        #     prime1            INTEGER,  -- p
        #     prime2            INTEGER,  -- q
        #     exponent1         INTEGER,  -- d mod (p-1)
        #     exponent2         INTEGER,  -- d mod (q-1)
        #     coefficient       INTEGER,  -- (inverse of q) mod p
        #     otherPrimeInfos   OtherPrimeInfos OPTIONAL
        # }

        if priv[0] != 0:
            raise ValueError('Unable to read this file, version %s != 0' % priv[0])

        as_ints = tuple(int(x) for x in priv[1:9])
        return cls(*as_ints)

    def _save_pkcs1_der(self):
        """Saves the private key in PKCS#1 DER format.

        @returns: the DER-encoded private key.
        """

        from pyasn1.type import univ, namedtype
        from pyasn1.codec.der import encoder

        class AsnPrivKey(univ.Sequence):
            componentType = namedtype.NamedTypes(
                    namedtype.NamedType('version', univ.Integer()),
                    namedtype.NamedType('modulus', univ.Integer()),
                    namedtype.NamedType('publicExponent', univ.Integer()),
                    namedtype.NamedType('privateExponent', univ.Integer()),
                    namedtype.NamedType('prime1', univ.Integer()),
                    namedtype.NamedType('prime2', univ.Integer()),
                    namedtype.NamedType('exponent1', univ.Integer()),
                    namedtype.NamedType('exponent2', univ.Integer()),
                    namedtype.NamedType('coefficient', univ.Integer()),
            )

        # Create the ASN object
        asn_key = AsnPrivKey()
        asn_key.setComponentByName('version', 0)
        asn_key.setComponentByName('modulus', self.n)
        asn_key.setComponentByName('publicExponent', self.e)
        asn_key.setComponentByName('privateExponent', self.d)
        asn_key.setComponentByName('prime1', self.p)
        asn_key.setComponentByName('prime2', self.q)
        asn_key.setComponentByName('exponent1', self.exp1)
        asn_key.setComponentByName('exponent2', self.exp2)
        asn_key.setComponentByName('coefficient', self.coef)

        return encoder.encode(asn_key)

    @classmethod
    def _load_pkcs1_pem(cls, keyfile):
        """Loads a PKCS#1 PEM-encoded private key file.

        The contents of the file before the "-----BEGIN RSA PRIVATE KEY-----" and
        after the "-----END RSA PRIVATE KEY-----" lines is ignored.

        :param keyfile: contents of a PEM-encoded file that contains the private
            key.
        :return: a PrivateKey object
        """

        der = rsa.pem.load_pem(keyfile, b('RSA PRIVATE KEY'))
        return cls._load_pkcs1_der(der)

    def _save_pkcs1_pem(self):
        """Saves a PKCS#1 PEM-encoded private key file.

        :return: contents of a PEM-encoded file that contains the private key.
        """

        der = self._save_pkcs1_der()
        return rsa.pem.save_pem(der, b('RSA PRIVATE KEY'))


def find_p_q(nbits, getprime_func=rsa.prime.getprime, accurate=True):
    """Returns a tuple of two different primes of nbits bits each.

    The resulting p * q has exacty 2 * nbits bits, and the returned p and q
    will not be equal.

    :param nbits: the number of bits in each of p and q.
    :param getprime_func: the getprime function, defaults to
        :py:func:`rsa.prime.getprime`.

        *Introduced in Python-RSA 3.1*

    :param accurate: whether to enable accurate mode or not.
    :returns: (p, q), where p > q

    >>> (p, q) = find_p_q(128)
    >>> from rsa import common
    >>> common.bit_size(p * q)
    256

    When not in accurate mode, the number of bits can be slightly less

    >>> (p, q) = find_p_q(128, accurate=False)
    >>> from rsa import common
    >>> common.bit_size(p * q) <= 256
    True
    >>> common.bit_size(p * q) > 240
    True

    """

    total_bits = nbits * 2

    # Make sure that p and q aren't too close or the factoring programs can
    # factor n.
    shift = nbits // 16
    pbits = nbits + shift
    qbits = nbits - shift

    # Choose the two initial primes
    log.debug('find_p_q(%i): Finding p', nbits)
    p = getprime_func(pbits)
    log.debug('find_p_q(%i): Finding q', nbits)
    q = getprime_func(qbits)

    def is_acceptable(p, q):
        """Returns True iff p and q are acceptable:

            - p and q differ
            - (p * q) has the right nr of bits (when accurate=True)
        """

        if p == q:
            return False

        if not accurate:
            return True

        # Make sure we have just the right amount of bits
        found_size = rsa.common.bit_size(p * q)
        return total_bits == found_size

    # Keep choosing other primes until they match our requirements.
    change_p = False
    while not is_acceptable(p, q):
        # Change p on one iteration and q on the other
        if change_p:
            p = getprime_func(pbits)
        else:
            q = getprime_func(qbits)

        change_p = not change_p

    # We want p > q as described on
    # http://www.di-mgt.com.au/rsa_alg.html#crt
    return max(p, q), min(p, q)


def calculate_keys_custom_exponent(p, q, exponent):
    """Calculates an encryption and a decryption key given p, q and an exponent,
    and returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int

    """

    phi_n = (p - 1) * (q - 1)

    try:
        d = rsa.common.inverse(exponent, phi_n)
    except ValueError:
        raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
                         (exponent, phi_n))

    if (exponent * d) % phi_n != 1:
        raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
                         "phi_n (%d)" % (exponent, d, phi_n))

    return exponent, d


def calculate_keys(p, q):
    """Calculates an encryption and a decryption key given p and q, and
    returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime

    :return: tuple (e, d) with the encryption and decryption exponents.
    """

    return calculate_keys_custom_exponent(p, q, DEFAULT_EXPONENT)


def gen_keys(nbits, getprime_func, accurate=True, exponent=DEFAULT_EXPONENT):
    """Generate RSA keys of nbits bits. Returns (p, q, e, d).

    Note: this can take a long time, depending on the key size.

    :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
        ``q`` will use ``nbits/2`` bits.
    :param getprime_func: either :py:func:`rsa.prime.getprime` or a function
        with similar signature.
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int
    """

    # Regenerate p and q values, until calculate_keys doesn't raise a
    # ValueError.
    while True:
        (p, q) = find_p_q(nbits // 2, getprime_func, accurate)
        try:
            (e, d) = calculate_keys_custom_exponent(p, q, exponent=exponent)
            break
        except ValueError:
            pass

    return p, q, e, d


def newkeys(nbits, accurate=True, poolsize=1, exponent=DEFAULT_EXPONENT):
    """Generates public and private keys, and returns them as (pub, priv).

    The public key is also known as the 'encryption key', and is a
    :py:class:`rsa.PublicKey` object. The private key is also known as the
    'decryption key' and is a :py:class:`rsa.PrivateKey` object.

    :param nbits: the number of bits required to store ``n = p*q``.
    :param accurate: when True, ``n`` will have exactly the number of bits you
        asked for. However, this makes key generation much slower. When False,
        `n`` may have slightly less bits.
    :param poolsize: the number of processes to use to generate the prime
        numbers. If set to a number > 1, a parallel algorithm will be used.
        This requires Python 2.6 or newer.
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int

    :returns: a tuple (:py:class:`rsa.PublicKey`, :py:class:`rsa.PrivateKey`)

    The ``poolsize`` parameter was added in *Python-RSA 3.1* and requires
    Python 2.6 or newer.

    """

    if nbits < 16:
        raise ValueError('Key too small')

    if poolsize < 1:
        raise ValueError('Pool size (%i) should be >= 1' % poolsize)

    # Determine which getprime function to use
    if poolsize > 1:
        from rsa import parallel
        import functools

        getprime_func = functools.partial(parallel.getprime, poolsize=poolsize)
    else:
        getprime_func = rsa.prime.getprime

    # Generate the key components
    (p, q, e, d) = gen_keys(nbits, getprime_func, accurate=accurate, exponent=exponent)

    # Create the key objects
    n = p * q

    return (
        PublicKey(n, e),
        PrivateKey(n, e, d, p, q)
    )


__all__ = ['PublicKey', 'PrivateKey', 'newkeys']

if __name__ == '__main__':
    import doctest

    try:
        for count in range(100):
            (failures, tests) = doctest.testmod()
            if failures:
                break

            if (count and count % 10 == 0) or count == 1:
                print('%i times' % count)
    except KeyboardInterrupt:
        print('Aborted')
    else:
        print('Doctests done')