This file is indexed.

/usr/lib/python3/dist-packages/rsa/prime.py is in python3-rsa 3.4.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# -*- coding: utf-8 -*-
#
#  Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      https://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Numerical functions related to primes.

Implementation based on the book Algorithm Design by Michael T. Goodrich and
Roberto Tamassia, 2002.
"""

import rsa.randnum

__all__ = ['getprime', 'are_relatively_prime']


def gcd(p, q):
    """Returns the greatest common divisor of p and q

    >>> gcd(48, 180)
    12
    """

    while q != 0:
        (p, q) = (q, p % q)
    return p


def miller_rabin_primality_testing(n, k):
    """Calculates whether n is composite (which is always correct) or prime
    (which theoretically is incorrect with error probability 4**-k), by
    applying Miller-Rabin primality testing.

    For reference and implementation example, see:
    https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test

    :param n: Integer to be tested for primality.
    :type n: int
    :param k: Number of rounds (witnesses) of Miller-Rabin testing.
    :type k: int
    :return: False if the number is composite, True if it's probably prime.
    :rtype: bool
    """

    # prevent potential infinite loop when d = 0
    if n < 2:
        return False

    # Decompose (n - 1) to write it as (2 ** r) * d
    # While d is even, divide it by 2 and increase the exponent.
    d = n - 1
    r = 0

    while not (d & 1):
        r += 1
        d >>= 1

    # Test k witnesses.
    for _ in range(k):
        # Generate random integer a, where 2 <= a <= (n - 2)
        a = rsa.randnum.randint(n - 4) + 2

        x = pow(a, d, n)
        if x == 1 or x == n - 1:
            continue

        for _ in range(r - 1):
            x = pow(x, 2, n)
            if x == 1:
                # n is composite.
                return False
            if x == n - 1:
                # Exit inner loop and continue with next witness.
                break
        else:
            # If loop doesn't break, n is composite.
            return False

    return True


def is_prime(number):
    """Returns True if the number is prime, and False otherwise.

    >>> is_prime(2)
    True
    >>> is_prime(42)
    False
    >>> is_prime(41)
    True
    >>> [x for x in range(901, 1000) if is_prime(x)]
    [907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]
    """

    # Check for small numbers.
    if number < 10:
        return number in [2, 3, 5, 7]

    # Check for even numbers.
    if not (number & 1):
        return False

    # According to NIST FIPS 186-4, Appendix C, Table C.3, minimum number of
    # rounds of M-R testing, using an error probability of 2 ** (-100), for
    # different p, q bitsizes are:
    #   * p, q bitsize: 512; rounds: 7
    #   * p, q bitsize: 1024; rounds: 4
    #   * p, q bitsize: 1536; rounds: 3
    # See: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
    return miller_rabin_primality_testing(number, 7)


def getprime(nbits):
    """Returns a prime number that can be stored in 'nbits' bits.

    >>> p = getprime(128)
    >>> is_prime(p-1)
    False
    >>> is_prime(p)
    True
    >>> is_prime(p+1)
    False

    >>> from rsa import common
    >>> common.bit_size(p) == 128
    True
    """

    assert nbits > 3  # the loop wil hang on too small numbers

    while True:
        integer = rsa.randnum.read_random_odd_int(nbits)

        # Test for primeness
        if is_prime(integer):
            return integer

            # Retry if not prime


def are_relatively_prime(a, b):
    """Returns True if a and b are relatively prime, and False if they
    are not.

    >>> are_relatively_prime(2, 3)
    True
    >>> are_relatively_prime(2, 4)
    False
    """

    d = gcd(a, b)
    return d == 1


if __name__ == '__main__':
    print('Running doctests 1000x or until failure')
    import doctest

    for count in range(1000):
        (failures, tests) = doctest.testmod()
        if failures:
            break

        if count and count % 100 == 0:
            print('%i times' % count)

    print('Doctests done')