/usr/lib/python3/dist-packages/sasmodels/details.py is in python3-sasmodels 0.97~git20171104-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291  | """
Kernel Call Details
===================
When calling sas computational kernels with polydispersity there are a
number of details that need to be sent to the caller.  This includes the
list of polydisperse parameters, the number of points in the polydispersity
weight distribution, and which parameter is the "theta" parameter for
polar coordinate integration.  The :class:`CallDetails` object maintains
this data.  Use :func:`build_details` to build a *details* object which
can be passed to one of the computational kernels.
"""
from __future__ import print_function
import numpy as np  # type: ignore
from numpy import pi, cos, sin
try:
    np.meshgrid([])
    meshgrid = np.meshgrid
except Exception:
    # CRUFT: np.meshgrid requires multiple vectors
    def meshgrid(*args):
        if len(args) > 1:
            return np.meshgrid(*args)
        else:
            return [np.asarray(v) for v in args]
try:
    from typing import List
except ImportError:
    pass
else:
    from .modelinfo import ModelInfo
class CallDetails(object):
    """
    Manage the polydispersity information for the kernel call.
    Conceptually, a polydispersity calculation is an integral over a mesh
    in n-D space where n is the number of polydisperse parameters.  In order
    to keep the program responsive, and not crash the GPU, only a portion
    of the mesh is computed at a time.  Meshes with a large number of points
    will therefore require many calls to the polydispersity loop.  Restarting
    a nested loop in the middle requires that the indices of the individual
    mesh dimensions can be computed for the current loop location.  This
    is handled by the *pd_stride* vector, with n//stride giving the loop
    index and n%stride giving the position in the sub loops.
    One of the parameters may be the latitude.  When integrating in polar
    coordinates, the total circumference decreases as latitude varies from
    pi r^2 at the equator to 0 at the pole, and the weight associated
    with a range of phi values needs to be scaled by this circumference.
    This scale factor needs to be updated each time the theta value
    changes.  *theta_par* indicates which of the values in the parameter
    vector is the latitude parameter, or -1 if there is no latitude
    parameter in the model.  In practice, the normalization term cancels
    if the latitude is not a polydisperse parameter.
    """
    parts = None  # type: List["CallDetails"]
    def __init__(self, model_info):
        # type: (ModelInfo) -> None
        parameters = model_info.parameters
        max_pd = parameters.max_pd
        # Structure of the call details buffer:
        #   pd_par[max_pd]     pd params in order of length
        #   pd_length[max_pd]  length of each pd param
        #   pd_offset[max_pd]  offset of pd values in parameter array
        #   pd_stride[max_pd]  index of pd value in loop = n//stride[k]
        #   num_eval           total length of pd loop
        #   num_weights        total length of the weight vector
        #   num_active         number of pd params
        #   theta_par          parameter number for theta parameter
        self.buffer = np.empty(4*max_pd + 4, 'i4')
        # generate views on different parts of the array
        self._pd_par = self.buffer[0 * max_pd:1 * max_pd]
        self._pd_length = self.buffer[1 * max_pd:2 * max_pd]
        self._pd_offset = self.buffer[2 * max_pd:3 * max_pd]
        self._pd_stride = self.buffer[3 * max_pd:4 * max_pd]
        # theta_par is fixed
        self.theta_par = parameters.theta_offset
        # offset and length are for all parameters, not just pd parameters
        # They are not sent to the kernel function, though they could be.
        # They are used by the composite models (sum and product) to
        # figure out offsets into the combined value list.
        self.offset = None  # type: np.ndarray
        self.length = None  # type: np.ndarray
        # keep hold of ifno show() so we can break a values vector
        # into the individual components
        self.info = model_info
    @property
    def pd_par(self):
        """List of polydisperse parameters"""
        return self._pd_par
    @property
    def pd_length(self):
        """Number of weights for each polydisperse parameter"""
        return self._pd_length
    @property
    def pd_offset(self):
        """Offsets for the individual weight vectors in the set of weights"""
        return self._pd_offset
    @property
    def pd_stride(self):
        """Stride in the pd mesh for each pd dimension"""
        return self._pd_stride
    @property
    def num_eval(self):
        """Total size of the pd mesh"""
        return self.buffer[-4]
    @num_eval.setter
    def num_eval(self, v):
        """Total size of the pd mesh"""
        self.buffer[-4] = v
    @property
    def num_weights(self):
        """Total length of all the weight vectors"""
        return self.buffer[-3]
    @num_weights.setter
    def num_weights(self, v):
        """Total length of all the weight vectors"""
        self.buffer[-3] = v
    @property
    def num_active(self):
        """Number of active polydispersity loops"""
        return self.buffer[-2]
    @num_active.setter
    def num_active(self, v):
        """Number of active polydispersity loops"""
        self.buffer[-2] = v
    @property
    def theta_par(self):
        """Location of the theta parameter in the parameter vector"""
        return self.buffer[-1]
    @theta_par.setter
    def theta_par(self, v):
        """Location of the theta parameter in the parameter vector"""
        self.buffer[-1] = v
    def show(self, values=None):
        """Print the polydispersity call details to the console"""
        print("===== %s details ===="%self.info.name)
        print("num_active:%d  num_eval:%d  num_weights:%d  theta=%d"
              % (self.num_active, self.num_eval, self.num_weights, self.theta_par))
        if self.pd_par.size:
            print("pd_par", self.pd_par)
            print("pd_length", self.pd_length)
            print("pd_offset", self.pd_offset)
            print("pd_stride", self.pd_stride)
        if values is not None:
            nvalues = self.info.parameters.nvalues
            print("scale, background", values[:2])
            print("val", values[2:nvalues])
            print("pd", values[nvalues:nvalues+self.num_weights])
            print("wt", values[nvalues+self.num_weights:nvalues+2*self.num_weights])
            print("offsets", self.offset)
def make_details(model_info, length, offset, num_weights):
    # type: (ModelInfo, np.ndarray, np.ndarray, int) -> CallDetails
    """
    Return a :class:`CallDetails` object for a polydisperse calculation
    of the model defined by *model_info*.  Polydispersity is defined by
    the *length* of the polydispersity distribution for each parameter
    and the *offset* of the distribution in the polydispersity array.
    Monodisperse parameters should use a polydispersity length of one
    with weight 1.0. *num_weights* is the total length of the polydispersity
    array.
    """
    #pars = model_info.parameters.call_parameters[2:model_info.parameters.npars+2]
    #print(", ".join(str(i)+"-"+p.id for i,p in enumerate(pars)))
    #print("len:",length)
    #print("off:",offset)
    # Check that we arn't using too many polydispersity loops
    num_active = np.sum(length > 1)
    max_pd = model_info.parameters.max_pd
    if num_active > max_pd:
        raise ValueError("Too many polydisperse parameters")
    # Decreasing list of polydpersity lengths
    # Note: the reversing view, x[::-1], does not require a copy
    idx = np.argsort(length)[::-1][:max_pd]
    pd_stride = np.cumprod(np.hstack((1, length[idx])))
    call_details = CallDetails(model_info)
    call_details.pd_par[:max_pd] = idx
    call_details.pd_length[:max_pd] = length[idx]
    call_details.pd_offset[:max_pd] = offset[idx]
    call_details.pd_stride[:max_pd] = pd_stride[:-1]
    call_details.num_eval = pd_stride[-1]
    call_details.num_weights = num_weights
    call_details.num_active = num_active
    call_details.length = length
    call_details.offset = offset
    #call_details.show()
    return call_details
ZEROS = tuple([0.]*31)
def make_kernel_args(kernel, pairs):
    # type: (Kernel, Tuple[List[np.ndarray], List[np.ndarray]]) -> Tuple[CallDetails, np.ndarray, bool]
    """
    Converts (value, weight) pairs into parameters for the kernel call.
    Returns a CallDetails object indicating the polydispersity, a data object
    containing the different values, and the magnetic flag indicating whether
    any magnetic magnitudes are non-zero. Magnetic vectors (M0, phi, theta) are
    converted to rectangular coordinates (mx, my, mz).
    """
    npars = kernel.info.parameters.npars
    nvalues = kernel.info.parameters.nvalues
    scalars = [(v[0] if len(v) else np.NaN) for v, w in pairs]
    values, weights = zip(*pairs[2:npars+2]) if npars else ((),())
    length = np.array([len(w) for w in weights])
    offset = np.cumsum(np.hstack((0, length)))
    call_details = make_details(kernel.info, length, offset[:-1], offset[-1])
    # Pad value array to a 32 value boundaryd
    data_len = nvalues + 2*sum(len(v) for v in values)
    extra = (32 - data_len%32)%32
    data = np.hstack((scalars,) + values + weights + ZEROS[:extra])
    data = data.astype(kernel.dtype)
    is_magnetic = convert_magnetism(kernel.info.parameters, data)
    #call_details.show()
    return call_details, data, is_magnetic
def convert_magnetism(parameters, values):
    """
    Convert magnetism values from polar to rectangular coordinates.
    Returns True if any magnetism is present.
    """
    mag = values[parameters.nvalues-3*parameters.nmagnetic:parameters.nvalues]
    mag = mag.reshape(-1, 3)
    scale = mag[:,0]
    if np.any(scale):
        theta, phi = mag[:, 1]*pi/180., mag[:, 2]*pi/180.
        cos_theta = cos(theta)
        mag[:, 0] = scale*cos_theta*cos(phi)  # mx
        mag[:, 1] = scale*sin(theta)  # my
        mag[:, 2] = -scale*cos_theta*sin(phi)  # mz
        return True
    else:
        return False
def dispersion_mesh(model_info, pars):
    # type: (ModelInfo) -> Tuple[List[np.ndarray], List[np.ndarray]]
    """
    Create a mesh grid of dispersion parameters and weights.
    Returns [p1,p2,...],w where pj is a vector of values for parameter j
    and w is a vector containing the products for weights for each
    parameter set in the vector.
    """
    value, weight = zip(*pars)
    #weight = [w if len(w)>0 else [1.] for w in weight]
    weight = np.vstack([v.flatten() for v in meshgrid(*weight)])
    weight = np.prod(weight, axis=0)
    value = [v.flatten() for v in meshgrid(*value)]
    lengths = [par.length for par in model_info.parameters.kernel_parameters
               if par.type == 'volume']
    if any(n > 1 for n in lengths):
        pars = []
        offset = 0
        for n in lengths:
            pars.append(np.vstack(value[offset:offset+n])
                        if n > 1 else value[offset])
            offset += n
        value = pars
    return value, weight
 |