This file is indexed.

/usr/lib/python3/dist-packages/xapian_backend.py is in python3-xapian-haystack 2.1.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
from __future__ import unicode_literals

import datetime
import pickle
import os
import re
import shutil
import sys

from django.utils import six
from django.conf import settings
from django.core.exceptions import ImproperlyConfigured
from django.utils.encoding import force_text

from haystack import connections
from haystack.backends import BaseEngine, BaseSearchBackend, BaseSearchQuery, SearchNode, log_query
from haystack.constants import ID, DJANGO_ID, DJANGO_CT, DEFAULT_OPERATOR
from haystack.exceptions import HaystackError, MissingDependency
from haystack.inputs import AutoQuery
from haystack.models import SearchResult
from haystack.utils import get_identifier, get_model_ct

NGRAM_MIN_LENGTH = 2
NGRAM_MAX_LENGTH = 15

try:
    import xapian
except ImportError:
    raise MissingDependency("The 'xapian' backend requires the installation of 'Xapian'. "
                            "Please refer to the documentation.")


class NotSupportedError(Exception):
    """
    When the installed version of Xapian doesn't support something and we have
    the old implementation.
    """
    pass

# this maps the different reserved fields to prefixes used to
# create the database:
# id str: unique document id.
# django_id int: id of the django model instance.
# django_ct str: of the content type of the django model.
# field str: name of the field of the index.
TERM_PREFIXES = {
    ID: 'Q',
    DJANGO_ID: 'QQ',
    DJANGO_CT: 'CONTENTTYPE',
    'field': 'X'
}

MEMORY_DB_NAME = ':memory:'

DEFAULT_XAPIAN_FLAGS = (
    xapian.QueryParser.FLAG_PHRASE |
    xapian.QueryParser.FLAG_BOOLEAN |
    xapian.QueryParser.FLAG_LOVEHATE |
    xapian.QueryParser.FLAG_WILDCARD |
    xapian.QueryParser.FLAG_PURE_NOT
)

# Mapping from `HAYSTACK_DEFAULT_OPERATOR` to Xapian operators
XAPIAN_OPTS = {'AND': xapian.Query.OP_AND,
               'OR': xapian.Query.OP_OR,
               'PHRASE': xapian.Query.OP_PHRASE,
               'NEAR': xapian.Query.OP_NEAR
               }

# number of documents checked by default when building facets
# this must be improved to be relative to the total number of docs.
DEFAULT_CHECK_AT_LEAST = 1000

# field types accepted to be serialized as values in Xapian
FIELD_TYPES = {'text', 'integer', 'date', 'datetime', 'float', 'boolean',
    'edge_ngram', 'ngram'}

# defines the format used to store types in Xapian
# this format ensures datetimes are sorted correctly
DATETIME_FORMAT = '%Y%m%d%H%M%S'
INTEGER_FORMAT = '%012d'

# defines the distance given between
# texts with positional information
TERMPOS_DISTANCE = 100

class InvalidIndexError(HaystackError):
    """Raised when an index can not be opened."""
    pass


class XHValueRangeProcessor(xapian.ValueRangeProcessor):
    """
    A Processor to construct ranges of values
    """
    def __init__(self, backend):
        self.backend = backend
        xapian.ValueRangeProcessor.__init__(self)

    def __call__(self, begin, end):
        """
        Construct a tuple for value range processing.
        `begin` -- a string in the format '<field_name>:[low_range]'
        If 'low_range' is omitted, assume the smallest possible value.
        `end` -- a string in the the format '[high_range|*]'. If '*', assume
        the highest possible value.
        Return a tuple of three strings: (column, low, high)
        """
        colon = begin.find(':')
        field_name = begin[:colon]
        begin = begin[colon + 1:len(begin)]
        for field_dict in self.backend.schema:
            if field_dict['field_name'] == field_name:
                field_type = field_dict['type']

                if not begin:
                    if field_type == 'text':
                        begin = 'a'  # TODO: A better way of getting a min text value?
                    elif field_type == 'integer':
                        begin = -sys.maxsize - 1
                    elif field_type == 'float':
                        begin = float('-inf')
                    elif field_type == 'date' or field_type == 'datetime':
                        begin = '00010101000000'
                elif end == '*':
                    if field_type == 'text':
                        end = 'z' * 100  # TODO: A better way of getting a max text value?
                    elif field_type == 'integer':
                        end = sys.maxsize
                    elif field_type == 'float':
                        end = float('inf')
                    elif field_type == 'date' or field_type == 'datetime':
                        end = '99990101000000'

                if field_type == 'float':
                    begin = _term_to_xapian_value(float(begin), field_type)
                    end = _term_to_xapian_value(float(end), field_type)
                elif field_type == 'integer':
                    begin = _term_to_xapian_value(int(begin), field_type)
                    end = _term_to_xapian_value(int(end), field_type)
                return field_dict['column'], str(begin), str(end)


class XHExpandDecider(xapian.ExpandDecider):
    def __call__(self, term):
        """
        Return True if the term should be used for expanding the search
        query, False otherwise.

        Ignore terms related with the content type of objects.
        """
        if term.decode('utf-8').startswith(TERM_PREFIXES[DJANGO_CT]):
            return False
        return True


class XapianSearchBackend(BaseSearchBackend):
    """
    `SearchBackend` defines the Xapian search backend for use with the Haystack
    API for Django search.

    It uses the Xapian Python bindings to interface with Xapian, and as
    such is subject to this bug: <http://trac.xapian.org/ticket/364> when
    Django is running with mod_python or mod_wsgi under Apache.

    Until this issue has been fixed by Xapian, it is neccessary to set
    `WSGIApplicationGroup to %{GLOBAL}` when using mod_wsgi, or
    `PythonInterpreter main_interpreter` when using mod_python.

    In order to use this backend, `PATH` must be included in the
    `connection_options`.  This should point to a location where you would your
    indexes to reside.
    """
    inmemory_db = None

    def __init__(self, connection_alias, **connection_options):
        """
        Instantiates an instance of `SearchBackend`.

        Optional arguments:
            `connection_alias` -- The name of the connection
            `language` -- The stemming language (default = 'english')
            `**connection_options` -- The various options needed to setup
              the backend.

        Also sets the stemming language to be used to `language`.
        """
        super(XapianSearchBackend, self).__init__(connection_alias, **connection_options)

        if not 'PATH' in connection_options:
            raise ImproperlyConfigured("You must specify a 'PATH' in your settings for connection '%s'."
                                       % connection_alias)

        self.path = connection_options.get('PATH')

        if self.path != MEMORY_DB_NAME and not os.path.exists(self.path):
            os.makedirs(self.path)

        self.flags = connection_options.get('FLAGS', DEFAULT_XAPIAN_FLAGS)
        self.language = getattr(settings, 'HAYSTACK_XAPIAN_LANGUAGE', 'english')

        stemming_strategy_string = getattr(settings, 'HAYSTACK_XAPIAN_STEMMING_STRATEGY', 'STEM_SOME')
        self.stemming_strategy = getattr(xapian.QueryParser, stemming_strategy_string, xapian.QueryParser.STEM_SOME)

        # these 4 attributes are caches populated in `build_schema`
        # they are checked in `_update_cache`
        # use property to retrieve them
        self._fields = {}
        self._schema = []
        self._content_field_name = None
        self._columns = {}

    def _update_cache(self):
        """
        To avoid build_schema every time, we cache
        some values: they only change when a SearchIndex
        changes, which typically restarts the Python.
        """
        fields = connections[self.connection_alias].get_unified_index().all_searchfields()
        if self._fields != fields:
            self._fields = fields
            self._content_field_name, self._schema = self.build_schema(self._fields)

    @property
    def schema(self):
        self._update_cache()
        return self._schema

    @property
    def content_field_name(self):
        self._update_cache()
        return self._content_field_name

    @property
    def column(self):
        """
        Returns the column in the database of a given field name.
        """
        self._update_cache()
        return self._columns

    def update(self, index, iterable):
        """
        Updates the `index` with any objects in `iterable` by adding/updating
        the database as needed.

        Required arguments:
            `index` -- The `SearchIndex` to process
            `iterable` -- An iterable of model instances to index

        For each object in `iterable`, a document is created containing all
        of the terms extracted from `index.full_prepare(obj)` with field prefixes,
        and 'as-is' as needed.  Also, if the field type is 'text' it will be
        stemmed and stored with the 'Z' prefix as well.

        eg. `content:Testing` ==> `testing, Ztest, ZXCONTENTtest, XCONTENTtest`

        Each document also contains an extra term in the format:

        `XCONTENTTYPE<app_name>.<model_name>`

        As well as a unique identifier in the the format:

        `Q<app_name>.<model_name>.<pk>`

        eg.: foo.bar (pk=1) ==> `Qfoo.bar.1`, `XCONTENTTYPEfoo.bar`

        This is useful for querying for a specific document corresponding to
        a model instance.

        The document also contains a pickled version of the object itself and
        the document ID in the document data field.

        Finally, we also store field values to be used for sorting data.  We
        store these in the document value slots (position zero is reserver
        for the document ID).  All values are stored as unicode strings with
        conversion of float, int, double, values being done by Xapian itself
        through the use of the :method:xapian.sortable_serialise method.
        """
        database = self._database(writable=True)

        try:
            term_generator = xapian.TermGenerator()
            term_generator.set_database(database)
            term_generator.set_stemmer(xapian.Stem(self.language))
            try:
                term_generator.set_stemming_strategy(self.stemming_strategy)
            except AttributeError:  
                # Versions before Xapian 1.2.11 do not support stemming strategies for TermGenerator
                pass
            if self.include_spelling is True:
                term_generator.set_flags(xapian.TermGenerator.FLAG_SPELLING)

            def _add_text(termpos, text, weight, prefix=''):
                """
                indexes text appending 2 extra terms
                to identify beginning and ending of the text.
                """
                term_generator.set_termpos(termpos)

                start_term = '%s^' % prefix
                end_term = '%s$' % prefix
                # add begin
                document.add_posting(start_term, termpos, weight)
                # add text
                term_generator.index_text(text, weight, prefix)
                termpos = term_generator.get_termpos()
                # add ending
                termpos += 1
                document.add_posting(end_term, termpos, weight)

                # increase termpos
                term_generator.set_termpos(termpos)
                term_generator.increase_termpos(TERMPOS_DISTANCE)

                return term_generator.get_termpos()

            def _add_literal_text(termpos, text, weight, prefix=''):
                """
                Adds sentence to the document with positional information
                but without processing.

                The sentence is bounded by "^" "$" to allow exact matches.
                """
                text = '^ %s $' % text
                for word in text.split():
                    term = '%s%s' % (prefix, word)
                    document.add_posting(term, termpos, weight)
                    termpos += 1
                termpos += TERMPOS_DISTANCE
                return termpos

            def add_text(termpos, prefix, text, weight):
                """
                Adds text to the document with positional information
                and processing (e.g. stemming).
                """
                termpos = _add_text(termpos, text, weight, prefix=prefix)
                termpos = _add_text(termpos, text, weight, prefix='')
                termpos = _add_literal_text(termpos, text, weight, prefix=prefix)
                termpos = _add_literal_text(termpos, text, weight, prefix='')
                return termpos

            def _get_ngram_lengths(value):
                values = value.split()
                for item in values:
                    for ngram_length in six.moves.range(NGRAM_MIN_LENGTH, NGRAM_MAX_LENGTH + 1):
                        yield item, ngram_length

            for obj in iterable:
                document = xapian.Document()
                term_generator.set_document(document)

                def ngram_terms(value):
                    for item, length in _get_ngram_lengths(value):
                        item_length = len(item)
                        for start in six.moves.range(0, item_length - length + 1):
                            for size in six.moves.range(length, length + 1):
                                end = start + size
                                if end > item_length:
                                    continue
                                yield _to_xapian_term(item[start:end])

                def edge_ngram_terms(value):
                    for item, length in _get_ngram_lengths(value):
                        yield _to_xapian_term(item[0:length])

                def add_edge_ngram_to_document(prefix, value, weight):
                    """
                    Splits the term in ngrams and adds each ngram to the index.
                    The minimum and maximum size of the ngram is respectively
                    NGRAM_MIN_LENGTH and NGRAM_MAX_LENGTH.
                    """
                    for term in edge_ngram_terms(value):
                        document.add_term(term, weight)
                        document.add_term(prefix + term, weight)

                def add_ngram_to_document(prefix, value, weight):
                    """
                    Splits the term in ngrams and adds each ngram to the index.
                    The minimum and maximum size of the ngram is respectively
                    NGRAM_MIN_LENGTH and NGRAM_MAX_LENGTH.
                    """
                    for term in ngram_terms(value):
                        document.add_term(term, weight)
                        document.add_term(prefix + term, weight)

                def add_non_text_to_document(prefix, term, weight):
                    """
                    Adds term to the document without positional information
                    and without processing.

                    If the term is alone, also adds it as "^<term>$"
                    to allow exact matches on single terms.
                    """
                    document.add_term(term, weight)
                    document.add_term(prefix + term, weight)

                def add_datetime_to_document(termpos, prefix, term, weight):
                    """
                    Adds a datetime to document with positional order
                    to allow exact matches on it.
                    """
                    date, time = term.split()
                    document.add_posting(date, termpos, weight)
                    termpos += 1
                    document.add_posting(time, termpos, weight)
                    termpos += 1
                    document.add_posting(prefix + date, termpos, weight)
                    termpos += 1
                    document.add_posting(prefix + time, termpos, weight)
                    termpos += TERMPOS_DISTANCE + 1
                    return termpos

                data = index.full_prepare(obj)
                weights = index.get_field_weights()

                termpos = term_generator.get_termpos()  # identifies the current position in the document.
                for field in self.schema:
                    if field['field_name'] not in list(data.keys()):
                        # not supported fields are ignored.
                        continue

                    if field['field_name'] in weights:
                        weight = int(weights[field['field_name']])
                    else:
                        weight = 1

                    value = data[field['field_name']]

                    if field['field_name'] in (ID, DJANGO_ID, DJANGO_CT):
                        # Private fields are indexed in a different way:
                        # `django_id` is an int and `django_ct` is text;
                        # besides, they are indexed by their (unstemmed) value.
                        if field['field_name'] == DJANGO_ID:
                            value = int(value)
                        value = _term_to_xapian_value(value, field['type'])

                        document.add_term(TERM_PREFIXES[field['field_name']] + value, weight)
                        document.add_value(field['column'], value)
                        continue
                    else:
                        prefix = TERM_PREFIXES['field'] + field['field_name'].upper()

                        # if not multi_valued, we add as a document value
                        # for sorting and facets
                        if field['multi_valued'] == 'false':
                            document.add_value(field['column'], _term_to_xapian_value(value, field['type']))
                        else:
                            for t in value:
                                # add the exact match of each value
                                term = _to_xapian_term(t)
                                termpos = add_text(termpos, prefix, term, weight)
                            continue

                        term = _to_xapian_term(value)
                        if term == '':
                            continue
                        # from here on the term is a string;
                        # we now decide how it is indexed

                        if field['type'] == 'text':
                            # text is indexed with positional information
                            termpos = add_text(termpos, prefix, term, weight)
                        elif field['type'] == 'datetime':
                            termpos = add_datetime_to_document(termpos, prefix, term, weight)
                        elif field['type'] == 'ngram':
                            add_ngram_to_document(prefix, value, weight)
                        elif field['type'] == 'edge_ngram':
                            add_edge_ngram_to_document(prefix, value, weight)
                        else:
                            # all other terms are added without positional information
                            add_non_text_to_document(prefix, term, weight)

                # store data without indexing it
                document.set_data(pickle.dumps(
                    (obj._meta.app_label, obj._meta.model_name, obj.pk, data),
                    pickle.HIGHEST_PROTOCOL
                ))

                # add the id of the document
                document_id = TERM_PREFIXES[ID] + get_identifier(obj)
                document.add_term(document_id)

                # finally, replace or add the document to the database
                database.replace_document(document_id, document)

        except UnicodeDecodeError:
            sys.stderr.write('Chunk failed.\n')
            pass

        finally:
            database.close()

    def remove(self, obj):
        """
        Remove indexes for `obj` from the database.

        We delete all instances of `Q<app_name>.<model_name>.<pk>` which
        should be unique to this object.
        """
        database = self._database(writable=True)
        database.delete_document(TERM_PREFIXES[ID] + get_identifier(obj))
        database.close()

    def clear(self, models=(), commit=True):
        """
        Clear all instances of `models` from the database or all models, if
        not specified.

        Optional Arguments:
            `models` -- Models to clear from the database (default = [])

        If `models` is empty, an empty query is executed which matches all
        documents in the database.  Afterwards, each match is deleted.

        Otherwise, for each model, a `delete_document` call is issued with
        the term `XCONTENTTYPE<app_name>.<model_name>`.  This will delete
        all documents with the specified model type.
        """
        if not models:
            # Because there does not appear to be a "clear all" method,
            # it's much quicker to remove the contents of the `self.path`
            # folder than it is to remove each document one at a time.
            if os.path.exists(self.path):
                shutil.rmtree(self.path)
        else:
            database = self._database(writable=True)
            for model in models:
                database.delete_document(TERM_PREFIXES[DJANGO_CT] + get_model_ct(model))
            database.close()

    def document_count(self):
        try:
            return self._database().get_doccount()
        except InvalidIndexError:
            return 0

    def _build_models_query(self, query):
        """
        Builds a query from `query` that filters to documents only from registered models.
        """
        registered_models_ct = self.build_models_list()
        if registered_models_ct:
            restrictions = [xapian.Query('%s%s' % (TERM_PREFIXES[DJANGO_CT], model_ct))
                            for model_ct in registered_models_ct]
            limit_query = xapian.Query(xapian.Query.OP_OR, restrictions)

            query = xapian.Query(xapian.Query.OP_AND, query, limit_query)

        return query

    def _check_field_names(self, field_names):
        """
        Raises InvalidIndexError if any of a field_name in field_names is
        not indexed.
        """
        if field_names:
            for field_name in field_names:
                try:
                    self.column[field_name]
                except KeyError:
                    raise InvalidIndexError('Trying to use non indexed field "%s"' % field_name)

    @log_query
    def search(self, query, sort_by=None, start_offset=0, end_offset=None,
               fields='', highlight=False, facets=None, date_facets=None,
               query_facets=None, narrow_queries=None, spelling_query=None,
               limit_to_registered_models=None, result_class=None, **kwargs):
        """
        Executes the Xapian::query as defined in `query`.

        Required arguments:
            `query` -- Search query to execute

        Optional arguments:
            `sort_by` -- Sort results by specified field (default = None)
            `start_offset` -- Slice results from `start_offset` (default = 0)
            `end_offset` -- Slice results at `end_offset` (default = None), if None, then all documents
            `fields` -- Filter results on `fields` (default = '')
            `highlight` -- Highlight terms in results (default = False)
            `facets` -- Facet results on fields (default = None)
            `date_facets` -- Facet results on date ranges (default = None)
            `query_facets` -- Facet results on queries (default = None)
            `narrow_queries` -- Narrow queries (default = None)
            `spelling_query` -- An optional query to execute spelling suggestion on
            `limit_to_registered_models` -- Limit returned results to models registered in
            the current `SearchSite` (default = True)

        Returns:
            A dictionary with the following keys:
                `results` -- A list of `SearchResult`
                `hits` -- The total available results
                `facets` - A dictionary of facets with the following keys:
                    `fields` -- A list of field facets
                    `dates` -- A list of date facets
                    `queries` -- A list of query facets
            If faceting was not used, the `facets` key will not be present

        If `query` is None, returns no results.

        If `INCLUDE_SPELLING` was enabled in the connection options, the
        extra flag `FLAG_SPELLING_CORRECTION` will be passed to the query parser
        and any suggestions for spell correction will be returned as well as
        the results.
        """
        if xapian.Query.empty(query):
            return {
                'results': [],
                'hits': 0,
            }

        self._check_field_names(facets)
        self._check_field_names(date_facets)
        self._check_field_names(query_facets)

        database = self._database()

        if limit_to_registered_models is None:
            limit_to_registered_models = getattr(settings, 'HAYSTACK_LIMIT_TO_REGISTERED_MODELS', True)

        if result_class is None:
            result_class = SearchResult

        if self.include_spelling is True:
            spelling_suggestion = self._do_spelling_suggestion(database, query, spelling_query)
        else:
            spelling_suggestion = ''

        if narrow_queries is not None:
            query = xapian.Query(
                xapian.Query.OP_AND, query, xapian.Query(
                    xapian.Query.OP_AND, [self.parse_query(narrow_query) for narrow_query in narrow_queries]
                )
            )

        if limit_to_registered_models:
            query = self._build_models_query(query)

        enquire = xapian.Enquire(database)
        if hasattr(settings, 'HAYSTACK_XAPIAN_WEIGHTING_SCHEME'):
            enquire.set_weighting_scheme(xapian.BM25Weight(*settings.HAYSTACK_XAPIAN_WEIGHTING_SCHEME))
        enquire.set_query(query)

        if sort_by:
            try:
                _xapian_sort(enquire, sort_by, self.column)
            except NotSupportedError:
                _old_xapian_sort(enquire, sort_by, self.column)

        results = []
        facets_dict = {
            'fields': {},
            'dates': {},
            'queries': {},
        }

        if not end_offset:
            end_offset = database.get_doccount() - start_offset

        ## prepare spies in case of facets
        if facets:
            facets_spies = self._prepare_facet_field_spies(facets)
            for spy in facets_spies:
                enquire.add_matchspy(spy)

        # print enquire.get_query()

        matches = self._get_enquire_mset(database, enquire, start_offset, end_offset)

        for match in matches:
            app_label, model_name, pk, model_data = pickle.loads(self._get_document_data(database, match.document))
            if highlight:
                model_data['highlighted'] = {
                    self.content_field_name: self._do_highlight(
                        model_data.get(self.content_field_name), query
                    )
                }
            results.append(
                result_class(app_label, model_name, pk, match.percent, **model_data)
            )

        if facets:
            # pick single valued facets from spies
            single_facets_dict = self._process_facet_field_spies(facets_spies)

            # pick multivalued valued facets from results
            multi_facets_dict = self._do_multivalued_field_facets(results, facets)

            # merge both results (http://stackoverflow.com/a/38990/931303)
            facets_dict['fields'] = dict(list(single_facets_dict.items()) + list(multi_facets_dict.items()))

        if date_facets:
            facets_dict['dates'] = self._do_date_facets(results, date_facets)

        if query_facets:
            facets_dict['queries'] = self._do_query_facets(results, query_facets)

        return {
            'results': results,
            'hits': self._get_hit_count(database, enquire),
            'facets': facets_dict,
            'spelling_suggestion': spelling_suggestion,
        }

    def more_like_this(self, model_instance, additional_query=None,
                       start_offset=0, end_offset=None,
                       limit_to_registered_models=True, result_class=None, **kwargs):
        """
        Given a model instance, returns a result set of similar documents.

        Required arguments:
            `model_instance` -- The model instance to use as a basis for
                                retrieving similar documents.

        Optional arguments:
            `additional_query` -- An additional query to narrow results
            `start_offset` -- The starting offset (default=0)
            `end_offset` -- The ending offset (default=None), if None, then all documents
            `limit_to_registered_models` -- Limit returned results to models registered in the search (default = True)

        Returns:
            A dictionary with the following keys:
                `results` -- A list of `SearchResult`
                `hits` -- The total available results

        Opens a database connection, then builds a simple query using the
        `model_instance` to build the unique identifier.

        For each document retrieved(should always be one), adds an entry into
        an RSet (relevance set) with the document id, then, uses the RSet
        to query for an ESet (A set of terms that can be used to suggest
        expansions to the original query), omitting any document that was in
        the original query.

        Finally, processes the resulting matches and returns.
        """
        database = self._database()

        if result_class is None:
            result_class = SearchResult

        query = xapian.Query(TERM_PREFIXES[ID] + get_identifier(model_instance))

        enquire = xapian.Enquire(database)
        enquire.set_query(query)

        rset = xapian.RSet()

        if not end_offset:
            end_offset = database.get_doccount()

        match = None
        for match in self._get_enquire_mset(database, enquire, 0, end_offset):
            rset.add_document(match.docid)

        if match is None:
            if not self.silently_fail:
                raise InvalidIndexError('Instance %s with id "%d" not indexed' %
                                        (get_identifier(model_instance), model_instance.id))
            else:
                return {'results': [],
                        'hits': 0}

        query = xapian.Query(
            xapian.Query.OP_ELITE_SET,
            [expand.term for expand in enquire.get_eset(match.document.termlist_count(), rset, XHExpandDecider())],
            match.document.termlist_count()
        )
        query = xapian.Query(
            xapian.Query.OP_AND_NOT, [query, TERM_PREFIXES[ID] + get_identifier(model_instance)]
        )

        if limit_to_registered_models:
            query = self._build_models_query(query)

        if additional_query:
            query = xapian.Query(
                xapian.Query.OP_AND, query, additional_query
            )

        enquire.set_query(query)

        results = []
        matches = self._get_enquire_mset(database, enquire, start_offset, end_offset)

        for match in matches:
            app_label, model_name, pk, model_data = pickle.loads(self._get_document_data(database, match.document))
            results.append(
                result_class(app_label, model_name, pk, match.percent, **model_data)
            )

        return {
            'results': results,
            'hits': self._get_hit_count(database, enquire),
            'facets': {
                'fields': {},
                'dates': {},
                'queries': {},
            },
            'spelling_suggestion': None,
        }

    def parse_query(self, query_string):
        """
        Given a `query_string`, will attempt to return a xapian.Query

        Required arguments:
            ``query_string`` -- A query string to parse

        Returns a xapian.Query
        """
        if query_string == '*':
            return xapian.Query('')  # Match everything
        elif query_string == '':
            return xapian.Query()  # Match nothing

        qp = xapian.QueryParser()
        qp.set_database(self._database())
        qp.set_stemmer(xapian.Stem(self.language))
        qp.set_stemming_strategy(self.stemming_strategy)
        qp.set_default_op(XAPIAN_OPTS[DEFAULT_OPERATOR])
        qp.add_boolean_prefix(DJANGO_CT, TERM_PREFIXES[DJANGO_CT])

        for field_dict in self.schema:
            # since 'django_ct' has a boolean_prefix,
            # we ignore it here.
            if field_dict['field_name'] == DJANGO_CT:
                continue

            qp.add_prefix(
                field_dict['field_name'],
                TERM_PREFIXES['field'] + field_dict['field_name'].upper()
            )

        vrp = XHValueRangeProcessor(self)
        qp.add_valuerangeprocessor(vrp)

        return qp.parse_query(query_string, self.flags)

    def build_schema(self, fields):
        """
        Build the schema from fields.

        :param fields: A list of fields in the index
        :returns: list of dictionaries

        Each dictionary has the keys
         field_name: The name of the field index
         type: what type of value it is
         'multi_valued': if it allows more than one value
         'column': a number identifying it
         'type': the type of the field
         'multi_valued': 'false', 'column': 0}
        """
        content_field_name = ''
        schema_fields = [
            {'field_name': ID,
             'type': 'text',
             'multi_valued': 'false',
             'column': 0},
            {'field_name': DJANGO_ID,
             'type': 'integer',
             'multi_valued': 'false',
             'column': 1},
            {'field_name': DJANGO_CT,
             'type': 'text',
             'multi_valued': 'false',
             'column': 2},
        ]
        self._columns[ID] = 0
        self._columns[DJANGO_ID] = 1
        self._columns[DJANGO_CT] = 2

        column = len(schema_fields)

        for field_name, field_class in sorted(list(fields.items()), key=lambda n: n[0]):
            if field_class.document is True:
                content_field_name = field_class.index_fieldname

            if field_class.indexed is True:
                field_data = {
                    'field_name': field_class.index_fieldname,
                    'type': 'text',
                    'multi_valued': 'false',
                    'column': column,
                }

                if field_class.field_type == 'date':
                    field_data['type'] = 'date'
                elif field_class.field_type == 'datetime':
                    field_data['type'] = 'datetime'
                elif field_class.field_type == 'integer':
                    field_data['type'] = 'integer'
                elif field_class.field_type == 'float':
                    field_data['type'] = 'float'
                elif field_class.field_type == 'boolean':
                    field_data['type'] = 'boolean'
                elif field_class.field_type == 'ngram':
                    field_data['type'] = 'ngram'
                elif field_class.field_type == 'edge_ngram':
                    field_data['type'] = 'edge_ngram'

                if field_class.is_multivalued:
                    field_data['multi_valued'] = 'true'

                schema_fields.append(field_data)
                self._columns[field_data['field_name']] = column
                column += 1

        return content_field_name, schema_fields

    @staticmethod
    def _do_highlight(content, query, tag='em'):
        """
        Highlight `query` terms in `content` with html `tag`.

        This method assumes that the input text (`content`) does not contain
        any special formatting.  That is, it does not contain any html tags
        or similar markup that could be screwed up by the highlighting.

        Required arguments:
            `content` -- Content to search for instances of `text`
            `text` -- The text to be highlighted
        """
        for term in query:
            term = term.decode('utf-8')
            for match in re.findall('[^A-Z]+', term):  # Ignore field identifiers
                match_re = re.compile(match, re.I)
                content = match_re.sub('<%s>%s</%s>' % (tag, term, tag), content)

        return content

    def _prepare_facet_field_spies(self, facets):
        """
        Returns a list of spies based on the facets
        used to count frequencies.
        """
        spies = []
        for facet in facets:
            slot = self.column[facet]
            spy = xapian.ValueCountMatchSpy(slot)
            # add attribute "slot" to know which column this spy is targeting.
            spy.slot = slot
            spies.append(spy)
        return spies

    def _process_facet_field_spies(self, spies):
        """
        Returns a dict of facet names with lists of
        tuples of the form (term, term_frequency)
        from a list of spies that observed the enquire.
        """
        facet_dict = {}
        for spy in spies:
            field = self.schema[spy.slot]
            field_name, field_type = field['field_name'], field['type']

            facet_dict[field_name] = []
            for facet in list(spy.values()):
                if field_type == 'float':
                    # the float term is a Xapian serialized object, which is
                    # in bytes.
                    term = facet.term
                else:
                    term = facet.term.decode('utf-8')

                facet_dict[field_name].append((_from_xapian_value(term, field_type),
                                               facet.termfreq))
        return facet_dict

    def _do_multivalued_field_facets(self, results, field_facets):
        """
        Implements a multivalued field facet on the results.

        This is implemented using brute force - O(N^2) -
        because Xapian does not have it implemented yet
        (see http://trac.xapian.org/ticket/199)
        """
        facet_dict = {}

        for field in field_facets:
            facet_list = {}
            if not self._multi_value_field(field):
                continue

            for result in results:
                field_value = getattr(result, field)
                for item in field_value:  # Facet each item in a MultiValueField
                    facet_list[item] = facet_list.get(item, 0) + 1

            facet_dict[field] = list(facet_list.items())
        return facet_dict

    @staticmethod
    def _do_date_facets(results, date_facets):
        """
        Private method that facets a document by date ranges

        Required arguments:
            `results` -- A list SearchResults to facet
            `date_facets` -- A dictionary containing facet parameters:
                {'field': {'start_date': ..., 'end_date': ...: 'gap_by': '...', 'gap_amount': n}}
                nb., gap must be one of the following:
                    year|month|day|hour|minute|second

        For each date facet field in `date_facets`, generates a list
        of date ranges (from `start_date` to `end_date` by `gap_by`) then
        iterates through `results` and tallies the count for each date_facet.

        Returns a dictionary of date facets (fields) containing a list with
        entries for each range and a count of documents matching the range.

        eg. {
            'pub_date': [
                (datetime.datetime(2009, 1, 1, 0, 0), 5),
                (datetime.datetime(2009, 2, 1, 0, 0), 0),
                (datetime.datetime(2009, 3, 1, 0, 0), 0),
                (datetime.datetime(2008, 4, 1, 0, 0), 1),
                (datetime.datetime(2008, 5, 1, 0, 0), 2),
            ],
        }
        """
        def next_datetime(previous, gap_value, gap_type):
            year = previous.year
            month = previous.month

            if gap_type == 'year':
                next = previous.replace(year=year + gap_value)
            elif gap_type == 'month':
                if month + gap_value <= 12:
                    next = previous.replace(month=month + gap_value)
                else:
                    next = previous.replace(
                        month=((month + gap_value) % 12),
                        year=(year + (month + gap_value) // 12)
                    )
            elif gap_type == 'day':
                next = previous + datetime.timedelta(days=gap_value)
            elif gap_type == 'hour':
                return previous + datetime.timedelta(hours=gap_value)
            elif gap_type == 'minute':
                next = previous + datetime.timedelta(minutes=gap_value)
            elif gap_type == 'second':
                next = previous + datetime.timedelta(seconds=gap_value)
            else:
                raise TypeError('\'gap_by\' must be '
                                '{second, minute, day, month, year}')
            return next

        facet_dict = {}

        for date_facet, facet_params in list(date_facets.items()):
            gap_type = facet_params.get('gap_by')
            gap_value = facet_params.get('gap_amount', 1)
            date_range = facet_params['start_date']

            # construct the bins of the histogram
            facet_list = []
            while date_range < facet_params['end_date']:
                facet_list.append((date_range, 0))
                date_range = next_datetime(date_range, gap_value, gap_type)

            facet_list = sorted(facet_list, key=lambda x: x[0], reverse=True)

            for result in results:
                result_date = getattr(result, date_facet)

                # convert date to datetime
                if not isinstance(result_date, datetime.datetime):
                    result_date = datetime.datetime(result_date.year,
                                                    result_date.month,
                                                    result_date.day)

                # ignore results outside the boundaries.
                if facet_list[0][0] < result_date < facet_list[-1][0]:
                    continue

                # populate the histogram by putting the result on the right bin.
                for n, facet_date in enumerate(facet_list):
                    if result_date > facet_date[0]:
                        # equal to facet_list[n][1] += 1, but for a tuple
                        facet_list[n] = (facet_list[n][0], (facet_list[n][1] + 1))
                        break  # bin found; go to next result

            facet_dict[date_facet] = facet_list

        return facet_dict

    def _do_query_facets(self, results, query_facets):
        """
        Private method that facets a document by query

        Required arguments:
            `results` -- A list SearchResults to facet
            `query_facets` -- A dictionary containing facet parameters:
                {'field': 'query', [...]}

        For each query in `query_facets`, generates a dictionary entry with
        the field name as the key and a tuple with the query and result count
        as the value.

        eg. {'name': ('a*', 5)}
        """
        facet_dict = {}
        for field, query in list(dict(query_facets).items()):
            facet_dict[field] = (query, self.search(self.parse_query(query))['hits'])

        return facet_dict

    @staticmethod
    def _do_spelling_suggestion(database, query, spelling_query):
        """
        Private method that returns a single spelling suggestion based on
        `spelling_query` or `query`.

        Required arguments:
            `database` -- The database to check spelling against
            `query` -- The query to check
            `spelling_query` -- If not None, this will be checked instead of `query`

        Returns a string with a suggested spelling
        """
        if spelling_query:
            if ' ' in spelling_query:
                return ' '.join([database.get_spelling_suggestion(term).decode('utf-8') for term in spelling_query.split()])
            else:
                return database.get_spelling_suggestion(spelling_query).decode('utf-8')

        term_set = set()
        for term in query:
            for match in re.findall('[^A-Z]+', term.decode('utf-8')):  # Ignore field identifiers
                term_set.add(database.get_spelling_suggestion(match).decode('utf-8'))

        return ' '.join(term_set)

    def _database(self, writable=False):
        """
        Private method that returns a xapian.Database for use.

        Optional arguments:
            ``writable`` -- Open the database in read/write mode (default=False)

        Returns an instance of a xapian.Database or xapian.WritableDatabase
        """
        if self.path == MEMORY_DB_NAME:
            if not self.inmemory_db:
                self.inmemory_db = xapian.inmemory_open()
            return self.inmemory_db
        if writable:
            database = xapian.WritableDatabase(self.path, xapian.DB_CREATE_OR_OPEN)
        else:
            try:
                database = xapian.Database(self.path)
            except xapian.DatabaseOpeningError:
                raise InvalidIndexError('Unable to open index at %s' % self.path)

        return database

    @staticmethod
    def _get_enquire_mset(database, enquire, start_offset, end_offset, checkatleast=DEFAULT_CHECK_AT_LEAST):
        """
        A safer version of Xapian.enquire.get_mset

        Simply wraps the Xapian version and catches any `Xapian.DatabaseModifiedError`,
        attempting a `database.reopen` as needed.

        Required arguments:
            `database` -- The database to be read
            `enquire` -- An instance of an Xapian.enquire object
            `start_offset` -- The start offset to pass to `enquire.get_mset`
            `end_offset` -- The end offset to pass to `enquire.get_mset`
        """
        try:
            return enquire.get_mset(start_offset, end_offset, checkatleast)
        except xapian.DatabaseModifiedError:
            database.reopen()
            return enquire.get_mset(start_offset, end_offset, checkatleast)

    @staticmethod
    def _get_document_data(database, document):
        """
        A safer version of Xapian.document.get_data

        Simply wraps the Xapian version and catches any `Xapian.DatabaseModifiedError`,
        attempting a `database.reopen` as needed.

        Required arguments:
            `database` -- The database to be read
            `document` -- An instance of an Xapian.document object
        """
        try:
            return document.get_data()
        except xapian.DatabaseModifiedError:
            database.reopen()
            return document.get_data()

    def _get_hit_count(self, database, enquire):
        """
        Given a database and enquire instance, returns the estimated number
        of matches.

        Required arguments:
            `database` -- The database to be queried
            `enquire` -- The enquire instance
        """
        return self._get_enquire_mset(
            database, enquire, 0, database.get_doccount()
        ).size()

    def _multi_value_field(self, field):
        """
        Private method that returns `True` if a field is multi-valued, else
        `False`.

        Required arguemnts:
            `field` -- The field to lookup

        Returns a boolean value indicating whether the field is multi-valued.
        """
        for field_dict in self.schema:
            if field_dict['field_name'] == field:
                return field_dict['multi_valued'] == 'true'
        return False


class XapianSearchQuery(BaseSearchQuery):
    """
    This class is the Xapian specific version of the SearchQuery class.
    It acts as an intermediary between the ``SearchQuerySet`` and the
    ``SearchBackend`` itself.
    """
    def build_params(self, *args, **kwargs):
        kwargs = super(XapianSearchQuery, self).build_params(*args, **kwargs)

        if self.end_offset is not None:
            kwargs['end_offset'] = self.end_offset - self.start_offset

        return kwargs

    def build_query(self):
        if not self.query_filter:
            query = xapian.Query('')
        else:
            query = self._query_from_search_node(self.query_filter)

        if self.models:
            subqueries = [
                xapian.Query(
                    xapian.Query.OP_SCALE_WEIGHT,
                    xapian.Query('%s%s' % (TERM_PREFIXES[DJANGO_CT], get_model_ct(model))),
                    0  # Pure boolean sub-query
                ) for model in self.models
            ]
            query = xapian.Query(
                xapian.Query.OP_AND, query,
                xapian.Query(xapian.Query.OP_OR, subqueries)
            )

        if self.boost:
            subqueries = [
                xapian.Query(
                    xapian.Query.OP_SCALE_WEIGHT,
                    self._term_query(term, None, None), value
                ) for term, value in list(self.boost.items())
            ]
            query = xapian.Query(
                xapian.Query.OP_AND_MAYBE, query,
                xapian.Query(xapian.Query.OP_OR, subqueries)
            )

        return query

    def _query_from_search_node(self, search_node, is_not=False):
        query_list = []

        for child in search_node.children:
            if isinstance(child, SearchNode):
                query_list.append(
                    self._query_from_search_node(child, child.negated)
                )
            else:
                expression, term = child
                field_name, filter_type = search_node.split_expression(expression)

                constructed_query_list = self._query_from_term(term, field_name, filter_type, is_not)
                query_list.extend(constructed_query_list)

        if search_node.connector == 'OR':
            return xapian.Query(xapian.Query.OP_OR, query_list)
        else:
            return xapian.Query(xapian.Query.OP_AND, query_list)

    def _query_from_term(self, term, field_name, filter_type, is_not):
        """
        Uses arguments to construct a list of xapian.Query's.
        """
        if field_name != 'content' and field_name not in self.backend.column:
            raise InvalidIndexError('field "%s" not indexed' % field_name)

        # It it is an AutoQuery, it has no filters
        # or others, thus we short-circuit the procedure.
        if isinstance(term, AutoQuery):
            if field_name != 'content':
                query = '%s:%s' % (field_name, term.prepare(self))
            else:
                query = term.prepare(self)
            return [self.backend.parse_query(query)]
        query_list = []

        # Handle `ValuesListQuerySet`.
        if hasattr(term, 'values_list'):
            term = list(term)

        if field_name == 'content':
            # content is the generic search:
            # force no field_name search
            # and the field_type to be 'text'.
            field_name = None
            field_type = 'text'

            # we don't know what is the type(term), so we parse it.
            # Ideally this would not be required, but
            # some filters currently depend on the term to make decisions.
            term = _to_xapian_term(term)

            query_list.append(self._filter_contains(term, field_name, field_type, is_not))
            # when filter has no filter_type, haystack uses
            # filter_type = 'content'. Here we remove it
            # since the above query is already doing this
            if filter_type == 'content':
                filter_type = None
        else:
            # get the field_type from the backend
            field_type = self.backend.schema[self.backend.column[field_name]]['type']

        # private fields don't accept 'contains' or 'startswith'
        # since they have no meaning.
        if filter_type in ('contains', 'startswith') and field_name in (ID, DJANGO_ID, DJANGO_CT):
            filter_type = 'exact'

        if field_type == 'text':
            # we don't know what type "term" is, but we know we are searching as text
            # so we parse it like that.
            # Ideally this would not be required since _term_query does it, but
            # some filters currently depend on the term to make decisions.
            if isinstance(term, list):
                term = [_to_xapian_term(term) for term in term]
            else:
                term = _to_xapian_term(term)

        # todo: we should check that the filter is valid for this field_type or raise InvalidIndexError
        if filter_type == 'contains':
            query_list.append(self._filter_contains(term, field_name, field_type, is_not))
        elif filter_type in ('content', 'exact'):
            query_list.append(self._filter_exact(term, field_name, field_type, is_not))
        elif filter_type == 'in':
            query_list.append(self._filter_in(term, field_name, field_type, is_not))
        elif filter_type == 'startswith':
            query_list.append(self._filter_startswith(term, field_name, field_type, is_not))
        elif filter_type == 'endswith':
            raise NotImplementedError("The Xapian search backend doesn't support endswith queries.")
        elif filter_type == 'gt':
            query_list.append(self._filter_gt(term, field_name, field_type, is_not))
        elif filter_type == 'gte':
            query_list.append(self._filter_gte(term, field_name, field_type, is_not))
        elif filter_type == 'lt':
            query_list.append(self._filter_lt(term, field_name, field_type, is_not))
        elif filter_type == 'lte':
            query_list.append(self._filter_lte(term, field_name, field_type, is_not))
        elif filter_type == 'range':
            query_list.append(self._filter_range(term, field_name, field_type, is_not))
        return query_list

    def _all_query(self):
        """
        Returns a match all query.
        """
        return xapian.Query('')

    def _filter_contains(self, term, field_name, field_type, is_not):
        """
        Splits the sentence in terms and join them with OR,
        using stemmed and un-stemmed.

        Assumes term is not a list.
        """
        if field_type == 'text':
            term_list = term.split()
        else:
            term_list = [term]

        query = self._or_query(term_list, field_name, field_type)
        if is_not:
            return xapian.Query(xapian.Query.OP_AND_NOT, self._all_query(), query)
        else:
            return query

    def _filter_in(self, term_list, field_name, field_type, is_not):
        """
        Returns a query that matches exactly ANY term in term_list.

        Notice that:
         A in {B,C} <=> (A = B or A = C)
         ~(A in {B,C}) <=> ~(A = B or A = C)
        Because OP_AND_NOT(C, D) <=> (C and ~D), then D=(A in {B,C}) requires `is_not=False`.

        Assumes term is a list.
        """
        query_list = [self._filter_exact(term, field_name, field_type, is_not=False)
                      for term in term_list]

        if is_not:
            return xapian.Query(xapian.Query.OP_AND_NOT, self._all_query(),
                                xapian.Query(xapian.Query.OP_OR, query_list))
        else:
            return xapian.Query(xapian.Query.OP_OR, query_list)

    def _filter_exact(self, term, field_name, field_type, is_not):
        """
        Returns a query that matches exactly the un-stemmed term
        with positional order.

        Assumes term is not a list.
        """
        if field_type == 'text' and field_name not in (DJANGO_CT,):
            term = '^ %s $' % term
            query = self._phrase_query(term.split(), field_name, field_type)
        else:
            query = self._term_query(term, field_name, field_type, stemmed=False)

        if is_not:
            return xapian.Query(xapian.Query.OP_AND_NOT, self._all_query(), query)
        else:
            return query

    def _filter_startswith(self, term, field_name, field_type, is_not):
        """
        Returns a startswith query on the un-stemmed term.

        Assumes term is not a list.
        """
        if field_type == 'text':
            if len(term.split()) == 1:
                term = '^ %s*' % term
                query = self.backend.parse_query(term)
            else:
                term = '^ %s' % term
                query = self._phrase_query(term.split(), field_name, field_type)
        else:
            term = '^%s*' % term
            query = self.backend.parse_query(term)

        if is_not:
            return xapian.Query(xapian.Query.OP_AND_NOT, self._all_query(), query)
        return query

    def _or_query(self, term_list, field, field_type):
        """
        Joins each item of term_list decorated by _term_query with an OR.
        """
        term_list = [self._term_query(term, field, field_type) for term in term_list]
        return xapian.Query(xapian.Query.OP_OR, term_list)

    def _phrase_query(self, term_list, field_name, field_type):
        """
        Returns a query that matches exact terms with
        positional order (i.e. ["this", "thing"] != ["thing", "this"])
        and no stem.

        If `field_name` is not `None`, restrict to the field.
        """
        term_list = [self._term_query(term, field_name, field_type,
                                      stemmed=False) for term in term_list]

        query = xapian.Query(xapian.Query.OP_PHRASE, term_list)
        return query

    def _term_query(self, term, field_name, field_type, stemmed=True):
        """
        Constructs a query of a single term.

        If `field_name` is not `None`, the term is search on that field only.
        If exact is `True`, the search is restricted to boolean matches.
        """
        constructor = '{prefix}{term}'

        # construct the prefix to be used.
        prefix = ''
        if field_name:
            prefix = TERM_PREFIXES['field'] + field_name.upper()
            term = _to_xapian_term(term)

        if field_name in (ID, DJANGO_ID, DJANGO_CT):
            # to ensure the value is serialized correctly.
            if field_name == DJANGO_ID:
                term = int(term)
            term = _term_to_xapian_value(term, field_type)
            return xapian.Query('%s%s' % (TERM_PREFIXES[field_name], term))

        # we construct the query dates in a slightly different way
        if field_type == 'datetime':
            date, time = term.split()
            return xapian.Query(xapian.Query.OP_AND_MAYBE,
                                constructor.format(prefix=prefix, term=date),
                                constructor.format(prefix=prefix, term=time)
                                )

        # only use stem if field is text or "None"
        if field_type not in ('text', None):
            stemmed = False

        unstemmed_term = constructor.format(prefix=prefix, term=term)
        if stemmed:
            stem = xapian.Stem(self.backend.language)
            stemmed_term = 'Z' + constructor.format(prefix=prefix, term=stem(term).decode('utf-8'))

            return xapian.Query(xapian.Query.OP_OR,
                                xapian.Query(stemmed_term),
                                xapian.Query(unstemmed_term)
                                )
        else:
            return xapian.Query(unstemmed_term)

    def _filter_gt(self, term, field_name, field_type, is_not):
        return self._filter_lte(term, field_name, field_type, is_not=not is_not)

    def _filter_lt(self, term, field_name, field_type, is_not):
        return self._filter_gte(term, field_name, field_type, is_not=not is_not)

    def _filter_gte(self, term, field_name, field_type, is_not):
        """
        Private method that returns a xapian.Query that searches for any term
        that is greater than `term` in a specified `field`.
        """
        vrp = XHValueRangeProcessor(self.backend)
        pos, begin, end = vrp('%s:%s' % (field_name, _term_to_xapian_value(term, field_type)), '*')
        if is_not:
            return xapian.Query(xapian.Query.OP_AND_NOT,
                                self._all_query(),
                                xapian.Query(xapian.Query.OP_VALUE_RANGE, pos, begin, end)
                                )
        return xapian.Query(xapian.Query.OP_VALUE_RANGE, pos, begin, end)

    def _filter_lte(self, term, field_name, field_type, is_not):
        """
        Private method that returns a xapian.Query that searches for any term
        that is less than `term` in a specified `field`.
        """
        vrp = XHValueRangeProcessor(self.backend)
        pos, begin, end = vrp('%s:' % field_name, '%s' % _term_to_xapian_value(term, field_type))
        if is_not:
            return xapian.Query(xapian.Query.OP_AND_NOT,
                                self._all_query(),
                                xapian.Query(xapian.Query.OP_VALUE_RANGE, pos, begin, end)
                                )
        return xapian.Query(xapian.Query.OP_VALUE_RANGE, pos, begin, end)

    def _filter_range(self, term, field_name, field_type, is_not):
        """
        Private method that returns a xapian.Query that searches for any term
        that is between the values from the `term` list.
        """
        vrp = XHValueRangeProcessor(self.backend)
        pos, begin, end = vrp('%s:%s' % (field_name, _term_to_xapian_value(term[0], field_type)),
                              '%s' % _term_to_xapian_value(term[1], field_type))
        if is_not:
            return xapian.Query(xapian.Query.OP_AND_NOT,
                                self._all_query(),
                                xapian.Query(xapian.Query.OP_VALUE_RANGE, pos, begin, end)
                                )
        return xapian.Query(xapian.Query.OP_VALUE_RANGE, pos, begin, end)


def _term_to_xapian_value(term, field_type):
    """
    Converts a term to a serialized
    Xapian value based on the field_type.
    """
    assert field_type in FIELD_TYPES

    def strf(dt):
        """
        Equivalent to datetime.datetime.strptime(dt, DATETIME_FORMAT)
        but accepts years below 1900 (see http://stackoverflow.com/q/10263956/931303)
        """
        return '%04d%02d%02d%02d%02d%02d' % (
            dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second)

    if field_type == 'boolean':
        assert isinstance(term, bool)
        if term:
            value = 't'
        else:
            value = 'f'

    elif field_type == 'integer':
        value = INTEGER_FORMAT % term
    elif field_type == 'float':
        value = xapian.sortable_serialise(term)
    elif field_type == 'date' or field_type == 'datetime':
        if field_type == 'date':
            # http://stackoverflow.com/a/1937636/931303 and comments
            term = datetime.datetime.combine(term, datetime.time())
        value = strf(term)
    else:  # field_type == 'text'
        value = _to_xapian_term(term)

    return value


def _to_xapian_term(term):
    """
    Converts a Python type to a
    Xapian term that can be indexed.
    """
    return force_text(term).lower()


def _from_xapian_value(value, field_type):
    """
    Converts a serialized Xapian value
    to Python equivalent based on the field_type.

    Doesn't accept multivalued fields.
    """
    assert field_type in FIELD_TYPES
    if field_type == 'boolean':
        if value == 't':
            return True
        elif value == 'f':
            return False
        else:
            InvalidIndexError('Field type "%d" does not accept value "%s"' % (field_type, value))
    elif field_type == 'integer':
        return int(value)
    elif field_type == 'float':
        return xapian.sortable_unserialise(value)
    elif field_type == 'date' or field_type == 'datetime':
        datetime_value = datetime.datetime.strptime(value, DATETIME_FORMAT)
        if field_type == 'datetime':
            return datetime_value
        else:
            return datetime_value.date()
    else:  # field_type == 'text'
        return value


def _old_xapian_sort(enquire, sort_by, column):
    sorter = xapian.MultiValueSorter()

    for sort_field in sort_by:
        if sort_field.startswith('-'):
            reverse = True
            sort_field = sort_field[1:]  # Strip the '-'
        else:
            reverse = False  # Reverse is inverted in Xapian -- http://trac.xapian.org/ticket/311
        sorter.add(column[sort_field], reverse)

    enquire.set_sort_by_key_then_relevance(sorter, True)


def _xapian_sort(enquire, sort_by, column):
    try:
        sorter = xapian.MultiValueKeyMaker()
    except AttributeError:
        raise NotSupportedError

    for sort_field in sort_by:
        if sort_field.startswith('-'):
            reverse = False
            sort_field = sort_field[1:]  # Strip the '-'
        else:
            reverse = True
        sorter.add_value(column[sort_field], reverse)

    enquire.set_sort_by_key_then_relevance(sorter, True)


class XapianEngine(BaseEngine):
    backend = XapianSearchBackend
    query = XapianSearchQuery