This file is indexed.

/usr/lib/python3/dist-packages/xarray/convert.py is in python3-xarray 0.10.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""Functions for converting to and from xarray objects
"""
from __future__ import absolute_import, division, print_function

import numpy as np

from .coding.times import CFDatetimeCoder, CFTimedeltaCoder
from .conventions import decode_cf
from .core.dataarray import DataArray
from .core.dtypes import get_fill_value
from .core.pycompat import OrderedDict, range

cdms2_ignored_attrs = {'name', 'tileIndex'}
iris_forbidden_keys = {'standard_name', 'long_name', 'units', 'bounds', 'axis',
                       'calendar', 'leap_month', 'leap_year', 'month_lengths',
                       'coordinates', 'grid_mapping', 'climatology',
                       'cell_methods', 'formula_terms', 'compress',
                       'missing_value', 'add_offset', 'scale_factor',
                       'valid_max', 'valid_min', 'valid_range', '_FillValue'}
cell_methods_strings = {'point', 'sum', 'maximum', 'median', 'mid_range',
                        'minimum', 'mean', 'mode', 'standard_deviation',
                        'variance'}


def encode(var):
    return CFTimedeltaCoder().encode(CFDatetimeCoder().encode(var.variable))


def _filter_attrs(attrs, ignored_attrs):
    """ Return attrs that are not in ignored_attrs
    """
    return dict((k, v) for k, v in attrs.items() if k not in ignored_attrs)


def from_cdms2(variable):
    """Convert a cdms2 variable into an DataArray
    """
    values = np.asarray(variable)
    name = variable.id
    coords = [(v.id, np.asarray(v),
               _filter_attrs(v.attributes, cdms2_ignored_attrs))
              for v in variable.getAxisList()]
    attrs = _filter_attrs(variable.attributes, cdms2_ignored_attrs)
    dataarray = DataArray(values, coords=coords, name=name, attrs=attrs)
    return decode_cf(dataarray.to_dataset())[dataarray.name]


def to_cdms2(dataarray):
    """Convert a DataArray into a cdms2 variable
    """
    # we don't want cdms2 to be a hard dependency
    import cdms2

    def set_cdms2_attrs(var, attrs):
        for k, v in attrs.items():
            setattr(var, k, v)

    axes = []
    for dim in dataarray.dims:
        coord = encode(dataarray.coords[dim])
        axis = cdms2.createAxis(coord.values, id=dim)
        set_cdms2_attrs(axis, coord.attrs)
        axes.append(axis)

    var = encode(dataarray)
    cdms2_var = cdms2.createVariable(var.values, axes=axes, id=dataarray.name)
    set_cdms2_attrs(cdms2_var, var.attrs)
    return cdms2_var


def _pick_attrs(attrs, keys):
    """ Return attrs with keys in keys list
    """
    return dict((k, v) for k, v in attrs.items() if k in keys)


def _get_iris_args(attrs):
    """ Converts the xarray attrs into args that can be passed into Iris
    """
    # iris.unit is deprecated in Iris v1.9
    import cf_units
    args = {'attributes': _filter_attrs(attrs, iris_forbidden_keys)}
    args.update(_pick_attrs(attrs, ('standard_name', 'long_name',)))
    unit_args = _pick_attrs(attrs, ('calendar',))
    if 'units' in attrs:
        args['units'] = cf_units.Unit(attrs['units'], **unit_args)
    return args


# TODO: Add converting bounds from xarray to Iris and back
def to_iris(dataarray):
    """ Convert a DataArray into a Iris Cube
    """
    # Iris not a hard dependency
    import iris
    from iris.fileformats.netcdf import parse_cell_methods
    from xarray.core.pycompat import dask_array_type

    dim_coords = []
    aux_coords = []

    for coord_name in dataarray.coords:
        coord = encode(dataarray.coords[coord_name])
        coord_args = _get_iris_args(coord.attrs)
        coord_args['var_name'] = coord_name
        axis = None
        if coord.dims:
            axis = dataarray.get_axis_num(coord.dims)
        if coord_name in dataarray.dims:
            iris_coord = iris.coords.DimCoord(coord.values, **coord_args)
            dim_coords.append((iris_coord, axis))
        else:
            iris_coord = iris.coords.AuxCoord(coord.values, **coord_args)
            aux_coords.append((iris_coord, axis))

    args = _get_iris_args(dataarray.attrs)
    args['var_name'] = dataarray.name
    args['dim_coords_and_dims'] = dim_coords
    args['aux_coords_and_dims'] = aux_coords
    if 'cell_methods' in dataarray.attrs:
        args['cell_methods'] = \
            parse_cell_methods(dataarray.attrs['cell_methods'])

    # Create the right type of masked array (should be easier after #1769)
    if isinstance(dataarray.data, dask_array_type):
        from dask.array import ma as dask_ma
        masked_data = dask_ma.masked_invalid(dataarray)
    else:
        masked_data = np.ma.masked_invalid(dataarray)

    cube = iris.cube.Cube(masked_data, **args)

    return cube


def _iris_obj_to_attrs(obj):
    """ Return a dictionary of attrs when given a Iris object
    """
    attrs = {'standard_name': obj.standard_name,
             'long_name': obj.long_name}
    if obj.units.calendar:
        attrs['calendar'] = obj.units.calendar
    if obj.units.origin != '1':
        attrs['units'] = obj.units.origin
    attrs.update(obj.attributes)
    return dict((k, v) for k, v in attrs.items() if v is not None)


def _iris_cell_methods_to_str(cell_methods_obj):
    """ Converts a Iris cell methods into a string
    """
    cell_methods = []
    for cell_method in cell_methods_obj:
        names = ''.join(['{}: '.format(n) for n in cell_method.coord_names])
        intervals = ' '.join(['interval: {}'.format(interval)
                              for interval in cell_method.intervals])
        comments = ' '.join(['comment: {}'.format(comment)
                             for comment in cell_method.comments])
        extra = ' '.join([intervals, comments]).strip()
        if extra:
            extra = ' ({})'.format(extra)
        cell_methods.append(names + cell_method.method + extra)
    return ' '.join(cell_methods)


def from_iris(cube):
    """ Convert a Iris cube into an DataArray
    """
    import iris.exceptions
    from xarray.core.pycompat import dask_array_type

    name = cube.var_name
    dims = []
    for i in range(cube.ndim):
        try:
            dim_coord = cube.coord(dim_coords=True, dimensions=(i,))
            dims.append(dim_coord.var_name)
        except iris.exceptions.CoordinateNotFoundError:
            dims.append("dim_{}".format(i))

    coords = OrderedDict()

    for coord in cube.coords():
        coord_attrs = _iris_obj_to_attrs(coord)
        coord_dims = [dims[i] for i in cube.coord_dims(coord)]
        if not coord.var_name:
            raise ValueError("Coordinate '{}' has no "
                             "var_name attribute".format(coord.name()))
        if coord_dims:
            coords[coord.var_name] = (coord_dims, coord.points, coord_attrs)
        else:
            coords[coord.var_name] = ((),
                                      np.asscalar(coord.points), coord_attrs)

    array_attrs = _iris_obj_to_attrs(cube)
    cell_methods = _iris_cell_methods_to_str(cube.cell_methods)
    if cell_methods:
        array_attrs['cell_methods'] = cell_methods

    # Deal with iris 1.* and 2.*
    cube_data = cube.core_data() if hasattr(cube, 'core_data') else cube.data

    # Deal with dask and numpy masked arrays
    if isinstance(cube_data, dask_array_type):
        from dask.array import ma as dask_ma
        filled_data = dask_ma.filled(cube_data, get_fill_value(cube.dtype))
    elif isinstance(cube_data, np.ma.MaskedArray):
        filled_data = np.ma.filled(cube_data, get_fill_value(cube.dtype))
    else:
        filled_data = cube_data

    dataarray = DataArray(filled_data, coords=coords, name=name,
                          attrs=array_attrs, dims=dims)
    decoded_ds = decode_cf(dataarray._to_temp_dataset())
    return dataarray._from_temp_dataset(decoded_ds)