/usr/share/R/doc/manual/R-intro.html is in r-doc-html 3.4.4-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- This manual is for R, version 3.4.4 (2018-03-15).
Copyright (C) 1990 W. N. Venables
Copyright (C) 1992 W. N. Venables & D. M. Smith
Copyright (C) 1997 R. Gentleman & R. Ihaka
Copyright (C) 1997, 1998 M. Maechler
Copyright (C) 1999-2018 R Core Team
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the
entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation
approved by the R Core Team. -->
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>An Introduction to R</title>
<meta name="description" content="An Introduction to R">
<meta name="keywords" content="An Introduction to R">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2any">
<link href="#Top" rel="start" title="Top">
<link href="#Function-and-variable-index" rel="index" title="Function and variable index">
<link href="#SEC_Contents" rel="contents" title="Table of Contents">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
body {
margin-left: 5%;
margin-right: 5%;
}
h1 {
background: white;
color: rgb(25%, 25%, 25%);
font-family: monospace;
font-size: xx-large;
text-align: center;
}
h2 {
background: white;
color: rgb(40%, 40%, 40%);
font-family: monospace;
font-size: x-large;
text-align: center;
}
h3 {
background: white;
color: rgb(40%, 40%, 40%);
font-family: monospace;
font-size: large;
}
h4 {
background: white;
color: rgb(40%, 40%, 40%);
font-family: monospace;
}
span.samp {
font-family: monospace;
}
span.command {
font-family: monospace;
}
span.option {
font-family: monospace;
}
span.file {
font-family: monospace;
}
span.env {
font-family: monospace;
}
ul {
margin-top: 0.25ex;
margin-bottom: 0.25ex;
}
li {
margin-top: 0.25ex;
margin-bottom: 0.25ex;
}
p {
margin-top: 0.6ex;
margin-bottom: 1.2ex;
}
-->
</style>
</head>
<body lang="en">
<h1 class="settitle" align="center">An Introduction to R</h1>
<a name="SEC_Contents"></a>
<h2 class="contents-heading">Table of Contents</h2>
<div class="contents">
<ul class="no-bullet">
<li><a name="toc-Preface-1" href="#Preface">Preface</a></li>
<li><a name="toc-Introduction-and-preliminaries-1" href="#Introduction-and-preliminaries">1 Introduction and preliminaries</a>
<ul class="no-bullet">
<li><a name="toc-The-R-environment-1" href="#The-R-environment">1.1 The R environment</a></li>
<li><a name="toc-Related-software-and-documentation-1" href="#Related-software-and-documentation">1.2 Related software and documentation</a></li>
<li><a name="toc-R-and-statistics-1" href="#R-and-statistics">1.3 R and statistics</a></li>
<li><a name="toc-R-and-the-window-system-1" href="#R-and-the-window-system">1.4 R and the window system</a></li>
<li><a name="toc-Using-R-interactively-1" href="#Using-R-interactively">1.5 Using R interactively</a></li>
<li><a name="toc-An-introductory-session" href="#An-introductory-session">1.6 An introductory session</a></li>
<li><a name="toc-Getting-help-with-functions-and-features" href="#Getting-help">1.7 Getting help with functions and features</a></li>
<li><a name="toc-R-commands_002c-case-sensitivity_002c-etc_002e" href="#R-commands_003b-case-sensitivity-etc">1.8 R commands, case sensitivity, etc.</a></li>
<li><a name="toc-Recall-and-correction-of-previous-commands-1" href="#Recall-and-correction-of-previous-commands">1.9 Recall and correction of previous commands</a></li>
<li><a name="toc-Executing-commands-from-or-diverting-output-to-a-file-1" href="#Executing-commands-from-or-diverting-output-to-a-file">1.10 Executing commands from or diverting output to a file</a></li>
<li><a name="toc-Data-permanency-and-removing-objects-1" href="#Data-permanency-and-removing-objects">1.11 Data permanency and removing objects</a></li>
</ul></li>
<li><a name="toc-Simple-manipulations_003b-numbers-and-vectors" href="#Simple-manipulations-numbers-and-vectors">2 Simple manipulations; numbers and vectors</a>
<ul class="no-bullet">
<li><a name="toc-Vectors-and-assignment-1" href="#Vectors-and-assignment">2.1 Vectors and assignment</a></li>
<li><a name="toc-Vector-arithmetic-1" href="#Vector-arithmetic">2.2 Vector arithmetic</a></li>
<li><a name="toc-Generating-regular-sequences-1" href="#Generating-regular-sequences">2.3 Generating regular sequences</a></li>
<li><a name="toc-Logical-vectors-1" href="#Logical-vectors">2.4 Logical vectors</a></li>
<li><a name="toc-Missing-values-1" href="#Missing-values">2.5 Missing values</a></li>
<li><a name="toc-Character-vectors-1" href="#Character-vectors">2.6 Character vectors</a></li>
<li><a name="toc-Index-vectors_003b-selecting-and-modifying-subsets-of-a-data-set" href="#Index-vectors">2.7 Index vectors; selecting and modifying subsets of a data set</a></li>
<li><a name="toc-Other-types-of-objects-1" href="#Other-types-of-objects">2.8 Other types of objects</a></li>
</ul></li>
<li><a name="toc-Objects_002c-their-modes-and-attributes" href="#Objects">3 Objects, their modes and attributes</a>
<ul class="no-bullet">
<li><a name="toc-Intrinsic-attributes_003a-mode-and-length" href="#The-intrinsic-attributes-mode-and-length">3.1 Intrinsic attributes: mode and length</a></li>
<li><a name="toc-Changing-the-length-of-an-object-1" href="#Changing-the-length-of-an-object">3.2 Changing the length of an object</a></li>
<li><a name="toc-Getting-and-setting-attributes-1" href="#Getting-and-setting-attributes">3.3 Getting and setting attributes</a></li>
<li><a name="toc-The-class-of-an-object-1" href="#The-class-of-an-object">3.4 The class of an object</a></li>
</ul></li>
<li><a name="toc-Ordered-and-unordered-factors" href="#Factors">4 Ordered and unordered factors</a>
<ul class="no-bullet">
<li><a name="toc-A-specific-example" href="#A-specific-example">4.1 A specific example</a></li>
<li><a name="toc-The-function-tapply_0028_0029-and-ragged-arrays-1" href="#The-function-tapply_0028_0029-and-ragged-arrays">4.2 The function <code>tapply()</code> and ragged arrays</a></li>
<li><a name="toc-Ordered-factors-1" href="#Ordered-factors">4.3 Ordered factors</a></li>
</ul></li>
<li><a name="toc-Arrays-and-matrices-1" href="#Arrays-and-matrices">5 Arrays and matrices</a>
<ul class="no-bullet">
<li><a name="toc-Arrays-1" href="#Arrays">5.1 Arrays</a></li>
<li><a name="toc-Array-indexing_002e-Subsections-of-an-array" href="#Array-indexing">5.2 Array indexing. Subsections of an array</a></li>
<li><a name="toc-Index-matrices-1" href="#Index-matrices">5.3 Index matrices</a></li>
<li><a name="toc-The-array_0028_0029-function-1" href="#The-array_0028_0029-function">5.4 The <code>array()</code> function</a>
<ul class="no-bullet">
<li><a name="toc-Mixed-vector-and-array-arithmetic_002e-The-recycling-rule" href="#The-recycling-rule">5.4.1 Mixed vector and array arithmetic. The recycling rule</a></li>
</ul></li>
<li><a name="toc-The-outer-product-of-two-arrays-1" href="#The-outer-product-of-two-arrays">5.5 The outer product of two arrays</a></li>
<li><a name="toc-Generalized-transpose-of-an-array-1" href="#Generalized-transpose-of-an-array">5.6 Generalized transpose of an array</a></li>
<li><a name="toc-Matrix-facilities-1" href="#Matrix-facilities">5.7 Matrix facilities</a>
<ul class="no-bullet">
<li><a name="toc-Matrix-multiplication" href="#Multiplication">5.7.1 Matrix multiplication</a></li>
<li><a name="toc-Linear-equations-and-inversion-1" href="#Linear-equations-and-inversion">5.7.2 Linear equations and inversion</a></li>
<li><a name="toc-Eigenvalues-and-eigenvectors-1" href="#Eigenvalues-and-eigenvectors">5.7.3 Eigenvalues and eigenvectors</a></li>
<li><a name="toc-Singular-value-decomposition-and-determinants-1" href="#Singular-value-decomposition-and-determinants">5.7.4 Singular value decomposition and determinants</a></li>
<li><a name="toc-Least-squares-fitting-and-the-QR-decomposition-1" href="#Least-squares-fitting-and-the-QR-decomposition">5.7.5 Least squares fitting and the QR decomposition</a></li>
</ul></li>
<li><a name="toc-Forming-partitioned-matrices_002c-cbind_0028_0029-and-rbind_0028_0029" href="#Forming-partitioned-matrices">5.8 Forming partitioned matrices, <code>cbind()</code> and <code>rbind()</code></a></li>
<li><a name="toc-The-concatenation-function_002c-c_0028_0029_002c-with-arrays" href="#The-concatenation-function-c_0028_0029-with-arrays">5.9 The concatenation function, <code>c()</code>, with arrays</a></li>
<li><a name="toc-Frequency-tables-from-factors-1" href="#Frequency-tables-from-factors">5.10 Frequency tables from factors</a></li>
</ul></li>
<li><a name="toc-Lists-and-data-frames-1" href="#Lists-and-data-frames">6 Lists and data frames</a>
<ul class="no-bullet">
<li><a name="toc-Lists-1" href="#Lists">6.1 Lists</a></li>
<li><a name="toc-Constructing-and-modifying-lists-1" href="#Constructing-and-modifying-lists">6.2 Constructing and modifying lists</a>
<ul class="no-bullet">
<li><a name="toc-Concatenating-lists-1" href="#Concatenating-lists">6.2.1 Concatenating lists</a></li>
</ul></li>
<li><a name="toc-Data-frames-1" href="#Data-frames">6.3 Data frames</a>
<ul class="no-bullet">
<li><a name="toc-Making-data-frames-1" href="#Making-data-frames">6.3.1 Making data frames</a></li>
<li><a name="toc-attach_0028_0029-and-detach_0028_0029-1" href="#attach_0028_0029-and-detach_0028_0029">6.3.2 <code>attach()</code> and <code>detach()</code></a></li>
<li><a name="toc-Working-with-data-frames-1" href="#Working-with-data-frames">6.3.3 Working with data frames</a></li>
<li><a name="toc-Attaching-arbitrary-lists-1" href="#Attaching-arbitrary-lists">6.3.4 Attaching arbitrary lists</a></li>
<li><a name="toc-Managing-the-search-path-1" href="#Managing-the-search-path">6.3.5 Managing the search path</a></li>
</ul></li>
</ul></li>
<li><a name="toc-Reading-data-from-files-1" href="#Reading-data-from-files">7 Reading data from files</a>
<ul class="no-bullet">
<li><a name="toc-The-read_002etable_0028_0029-function-1" href="#The-read_002etable_0028_0029-function">7.1 The <code>read.table()</code> function</a></li>
<li><a name="toc-The-scan_0028_0029-function-1" href="#The-scan_0028_0029-function">7.2 The <code>scan()</code> function</a></li>
<li><a name="toc-Accessing-builtin-datasets-1" href="#Accessing-builtin-datasets">7.3 Accessing builtin datasets</a>
<ul class="no-bullet">
<li><a name="toc-Loading-data-from-other-R-packages" href="#Loading-data-from-other-R-packages">7.3.1 Loading data from other R packages</a></li>
</ul></li>
<li><a name="toc-Editing-data-1" href="#Editing-data">7.4 Editing data</a></li>
</ul></li>
<li><a name="toc-Probability-distributions-1" href="#Probability-distributions">8 Probability distributions</a>
<ul class="no-bullet">
<li><a name="toc-R-as-a-set-of-statistical-tables-1" href="#R-as-a-set-of-statistical-tables">8.1 R as a set of statistical tables</a></li>
<li><a name="toc-Examining-the-distribution-of-a-set-of-data-1" href="#Examining-the-distribution-of-a-set-of-data">8.2 Examining the distribution of a set of data</a></li>
<li><a name="toc-One_002d-and-two_002dsample-tests-1" href="#One_002d-and-two_002dsample-tests">8.3 One- and two-sample tests</a></li>
</ul></li>
<li><a name="toc-Grouping_002c-loops-and-conditional-execution" href="#Loops-and-conditional-execution">9 Grouping, loops and conditional execution</a>
<ul class="no-bullet">
<li><a name="toc-Grouped-expressions-1" href="#Grouped-expressions">9.1 Grouped expressions</a></li>
<li><a name="toc-Control-statements-1" href="#Control-statements">9.2 Control statements</a>
<ul class="no-bullet">
<li><a name="toc-Conditional-execution_003a-if-statements" href="#Conditional-execution">9.2.1 Conditional execution: <code>if</code> statements</a></li>
<li><a name="toc-Repetitive-execution_003a-for-loops_002c-repeat-and-while" href="#Repetitive-execution">9.2.2 Repetitive execution: <code>for</code> loops, <code>repeat</code> and <code>while</code></a></li>
</ul></li>
</ul></li>
<li><a name="toc-Writing-your-own-functions-1" href="#Writing-your-own-functions">10 Writing your own functions</a>
<ul class="no-bullet">
<li><a name="toc-Simple-examples-1" href="#Simple-examples">10.1 Simple examples</a></li>
<li><a name="toc-Defining-new-binary-operators-1" href="#Defining-new-binary-operators">10.2 Defining new binary operators</a></li>
<li><a name="toc-Named-arguments-and-defaults-1" href="#Named-arguments-and-defaults">10.3 Named arguments and defaults</a></li>
<li><a name="toc-The-_2026-argument" href="#The-three-dots-argument">10.4 The ‘<samp>…</samp>’ argument</a></li>
<li><a name="toc-Assignments-within-functions" href="#Assignment-within-functions">10.5 Assignments within functions</a></li>
<li><a name="toc-More-advanced-examples-1" href="#More-advanced-examples">10.6 More advanced examples</a>
<ul class="no-bullet">
<li><a name="toc-Efficiency-factors-in-block-designs-1" href="#Efficiency-factors-in-block-designs">10.6.1 Efficiency factors in block designs</a></li>
<li><a name="toc-Dropping-all-names-in-a-printed-array-1" href="#Dropping-all-names-in-a-printed-array">10.6.2 Dropping all names in a printed array</a></li>
<li><a name="toc-Recursive-numerical-integration-1" href="#Recursive-numerical-integration">10.6.3 Recursive numerical integration</a></li>
</ul></li>
<li><a name="toc-Scope-1" href="#Scope">10.7 Scope</a></li>
<li><a name="toc-Customizing-the-environment-1" href="#Customizing-the-environment">10.8 Customizing the environment</a></li>
<li><a name="toc-Classes_002c-generic-functions-and-object-orientation" href="#Object-orientation">10.9 Classes, generic functions and object orientation</a></li>
</ul></li>
<li><a name="toc-Statistical-models-in-R-1" href="#Statistical-models-in-R">11 Statistical models in R</a>
<ul class="no-bullet">
<li><a name="toc-Defining-statistical-models_003b-formulae" href="#Formulae-for-statistical-models">11.1 Defining statistical models; formulae</a>
<ul class="no-bullet">
<li><a name="toc-Contrasts-1" href="#Contrasts">11.1.1 Contrasts</a></li>
</ul></li>
<li><a name="toc-Linear-models-1" href="#Linear-models">11.2 Linear models</a></li>
<li><a name="toc-Generic-functions-for-extracting-model-information-1" href="#Generic-functions-for-extracting-model-information">11.3 Generic functions for extracting model information</a></li>
<li><a name="toc-Analysis-of-variance-and-model-comparison-1" href="#Analysis-of-variance-and-model-comparison">11.4 Analysis of variance and model comparison</a>
<ul class="no-bullet">
<li><a name="toc-ANOVA-tables-1" href="#ANOVA-tables">11.4.1 ANOVA tables</a></li>
</ul></li>
<li><a name="toc-Updating-fitted-models-1" href="#Updating-fitted-models">11.5 Updating fitted models</a></li>
<li><a name="toc-Generalized-linear-models-1" href="#Generalized-linear-models">11.6 Generalized linear models</a>
<ul class="no-bullet">
<li><a name="toc-Families-1" href="#Families">11.6.1 Families</a></li>
<li><a name="toc-The-glm_0028_0029-function-1" href="#The-glm_0028_0029-function">11.6.2 The <code>glm()</code> function</a></li>
</ul></li>
<li><a name="toc-Nonlinear-least-squares-and-maximum-likelihood-models-1" href="#Nonlinear-least-squares-and-maximum-likelihood-models">11.7 Nonlinear least squares and maximum likelihood models</a>
<ul class="no-bullet">
<li><a name="toc-Least-squares-1" href="#Least-squares">11.7.1 Least squares</a></li>
<li><a name="toc-Maximum-likelihood-1" href="#Maximum-likelihood">11.7.2 Maximum likelihood</a></li>
</ul></li>
<li><a name="toc-Some-non_002dstandard-models-1" href="#Some-non_002dstandard-models">11.8 Some non-standard models</a></li>
</ul></li>
<li><a name="toc-Graphical-procedures" href="#Graphics">12 Graphical procedures</a>
<ul class="no-bullet">
<li><a name="toc-High_002dlevel-plotting-commands-1" href="#High_002dlevel-plotting-commands">12.1 High-level plotting commands</a>
<ul class="no-bullet">
<li><a name="toc-The-plot_0028_0029-function-1" href="#The-plot_0028_0029-function">12.1.1 The <code>plot()</code> function</a></li>
<li><a name="toc-Displaying-multivariate-data-1" href="#Displaying-multivariate-data">12.1.2 Displaying multivariate data</a></li>
<li><a name="toc-Display-graphics-1" href="#Display-graphics">12.1.3 Display graphics</a></li>
<li><a name="toc-Arguments-to-high_002dlevel-plotting-functions-1" href="#Arguments-to-high_002dlevel-plotting-functions">12.1.4 Arguments to high-level plotting functions</a></li>
</ul></li>
<li><a name="toc-Low_002dlevel-plotting-commands-1" href="#Low_002dlevel-plotting-commands">12.2 Low-level plotting commands</a>
<ul class="no-bullet">
<li><a name="toc-Mathematical-annotation-1" href="#Mathematical-annotation">12.2.1 Mathematical annotation</a></li>
<li><a name="toc-Hershey-vector-fonts-1" href="#Hershey-vector-fonts">12.2.2 Hershey vector fonts</a></li>
</ul></li>
<li><a name="toc-Interacting-with-graphics-1" href="#Interacting-with-graphics">12.3 Interacting with graphics</a></li>
<li><a name="toc-Using-graphics-parameters-1" href="#Using-graphics-parameters">12.4 Using graphics parameters</a>
<ul class="no-bullet">
<li><a name="toc-Permanent-changes_003a-The-par_0028_0029-function" href="#The-par_0028_0029-function">12.4.1 Permanent changes: The <code>par()</code> function</a></li>
<li><a name="toc-Temporary-changes_003a-Arguments-to-graphics-functions" href="#Arguments-to-graphics-functions">12.4.2 Temporary changes: Arguments to graphics functions</a></li>
</ul></li>
<li><a name="toc-Graphics-parameters-list" href="#Graphics-parameters">12.5 Graphics parameters list</a>
<ul class="no-bullet">
<li><a name="toc-Graphical-elements-1" href="#Graphical-elements">12.5.1 Graphical elements</a></li>
<li><a name="toc-Axes-and-tick-marks-1" href="#Axes-and-tick-marks">12.5.2 Axes and tick marks</a></li>
<li><a name="toc-Figure-margins-1" href="#Figure-margins">12.5.3 Figure margins</a></li>
<li><a name="toc-Multiple-figure-environment-1" href="#Multiple-figure-environment">12.5.4 Multiple figure environment</a></li>
</ul></li>
<li><a name="toc-Device-drivers-1" href="#Device-drivers">12.6 Device drivers</a>
<ul class="no-bullet">
<li><a name="toc-PostScript-diagrams-for-typeset-documents-1" href="#PostScript-diagrams-for-typeset-documents">12.6.1 PostScript diagrams for typeset documents</a></li>
<li><a name="toc-Multiple-graphics-devices-1" href="#Multiple-graphics-devices">12.6.2 Multiple graphics devices</a></li>
</ul></li>
<li><a name="toc-Dynamic-graphics-1" href="#Dynamic-graphics">12.7 Dynamic graphics</a></li>
</ul></li>
<li><a name="toc-Packages-1" href="#Packages">13 Packages</a>
<ul class="no-bullet">
<li><a name="toc-Standard-packages-1" href="#Standard-packages">13.1 Standard packages</a></li>
<li><a name="toc-Contributed-packages-and-CRAN-1" href="#Contributed-packages-and-CRAN">13.2 Contributed packages and <acronym>CRAN</acronym></a></li>
<li><a name="toc-Namespaces-1" href="#Namespaces">13.3 Namespaces</a></li>
</ul></li>
<li><a name="toc-OS-facilities-1" href="#OS-facilities">14 OS facilities</a>
<ul class="no-bullet">
<li><a name="toc-Files-and-directories-1" href="#Files-and-directories">14.1 Files and directories</a></li>
<li><a name="toc-Filepaths-1" href="#Filepaths">14.2 Filepaths</a></li>
<li><a name="toc-System-commands-1" href="#System-commands">14.3 System commands</a></li>
<li><a name="toc-Compression-and-Archives-1" href="#Compression-and-Archives">14.4 Compression and Archives</a></li>
</ul></li>
<li><a name="toc-A-sample-session-1" href="#A-sample-session">Appendix A A sample session</a></li>
<li><a name="toc-Invoking-R-1" href="#Invoking-R">Appendix B Invoking R</a>
<ul class="no-bullet">
<li><a name="toc-Invoking-R-from-the-command-line-1" href="#Invoking-R-from-the-command-line">B.1 Invoking R from the command line</a></li>
<li><a name="toc-Invoking-R-under-Windows-1" href="#Invoking-R-under-Windows">B.2 Invoking R under Windows</a></li>
<li><a name="toc-Invoking-R-under-macOS-1" href="#Invoking-R-under-macOS">B.3 Invoking R under macOS</a></li>
<li><a name="toc-Scripting-with-R-1" href="#Scripting-with-R">B.4 Scripting with R</a></li>
</ul></li>
<li><a name="toc-The-command_002dline-editor-1" href="#The-command_002dline-editor">Appendix C The command-line editor</a>
<ul class="no-bullet">
<li><a name="toc-Preliminaries" href="#Preliminaries">C.1 Preliminaries</a></li>
<li><a name="toc-Editing-actions" href="#Editing-actions">C.2 Editing actions</a></li>
<li><a name="toc-Command_002dline-editor-summary" href="#Command_002dline-editor-summary">C.3 Command-line editor summary</a></li>
</ul></li>
<li><a name="toc-Function-and-variable-index-1" href="#Function-and-variable-index">Appendix D Function and variable index</a></li>
<li><a name="toc-Concept-index-1" href="#Concept-index">Appendix E Concept index</a></li>
<li><a name="toc-References-1" href="#References">Appendix F References</a></li>
</ul>
</div>
<a name="Top"></a>
<div class="header">
<p>
Next: <a href="#Preface" accesskey="n" rel="next">Preface</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="An-Introduction-to-R"></a>
<h1 class="top">An Introduction to R</h1>
<p>This is an introduction to R (“GNU S”), a language and environment for
statistical computing and graphics. R is similar to the
award-winning<a name="DOCF1" href="#FOOT1"><sup>1</sup></a> S
system, which was developed at Bell Laboratories by John Chambers et al.
It provides a wide variety of statistical and graphical techniques
(linear and nonlinear modelling, statistical tests, time series
analysis, classification, clustering, ...).
</p>
<p>This manual provides information on data types, programming elements,
statistical modelling and graphics.
</p>
<p>This manual is for R, version 3.4.4 (2018-03-15).
</p>
<p>Copyright © 1990 W. N. Venables<br>
Copyright © 1992 W. N. Venables & D. M. Smith<br>
Copyright © 1997 R. Gentleman & R. Ihaka<br>
Copyright © 1997, 1998 M. Maechler<br>
Copyright © 1999–2018 R Core Team
</p>
<blockquote>
<p>Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
</p>
<p>Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the
entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
</p>
<p>Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation
approved by the R Core Team.
</p></blockquote>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Preface" accesskey="1">Preface</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Introduction-and-preliminaries" accesskey="2">Introduction and preliminaries</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Simple-manipulations-numbers-and-vectors" accesskey="3">Simple manipulations numbers and vectors</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Objects" accesskey="4">Objects</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Factors" accesskey="5">Factors</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Arrays-and-matrices" accesskey="6">Arrays and matrices</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Lists-and-data-frames" accesskey="7">Lists and data frames</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Reading-data-from-files" accesskey="8">Reading data from files</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Probability-distributions" accesskey="9">Probability distributions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Loops-and-conditional-execution">Loops and conditional execution</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Writing-your-own-functions">Writing your own functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Statistical-models-in-R">Statistical models in R</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Graphics">Graphics</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Packages">Packages</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#OS-facilities">OS facilities</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#A-sample-session">A sample session</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Invoking-R">Invoking R</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-command_002dline-editor">The command-line editor</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Function-and-variable-index">Function and variable index</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Concept-index">Concept index</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#References">References</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Preface"></a>
<div class="header">
<p>
Next: <a href="#Introduction-and-preliminaries" accesskey="n" rel="next">Introduction and preliminaries</a>, Previous: <a href="#Top" accesskey="p" rel="prev">Top</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Preface-1"></a>
<h2 class="unnumbered">Preface</h2>
<p>This introduction to R is derived from an original set of notes
describing the S and <small>S-PLUS</small> environments written in 1990–2 by
Bill Venables and David M. Smith when at the University of Adelaide. We
have made a number of small changes to reflect differences between the
R and S programs, and expanded some of the material.
</p>
<p>We would like to extend warm thanks to Bill Venables (and David Smith)
for granting permission to distribute this modified version of the notes
in this way, and for being a supporter of R from way back.
</p>
<p>Comments and corrections are always welcome. Please address email
correspondence to <a href="mailto:R-core@R-project.org">R-core@R-project.org</a>.
</p>
<a name="Suggestions-to-the-reader"></a>
<h4 class="subheading">Suggestions to the reader</h4>
<p>Most R novices will start with the introductory session in Appendix
A. This should give some familiarity with the style of R sessions
and more importantly some instant feedback on what actually happens.
</p>
<p>Many users will come to R mainly for its graphical facilities.
See <a href="#Graphics">Graphics</a>, which can be read at almost any time and need not wait
until all the preceding sections have been digested.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Introduction-and-preliminaries" accesskey="1">Introduction and preliminaries</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Introduction-and-preliminaries"></a>
<div class="header">
<p>
Next: <a href="#Simple-manipulations-numbers-and-vectors" accesskey="n" rel="next">Simple manipulations numbers and vectors</a>, Previous: <a href="#Preface" accesskey="p" rel="prev">Preface</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Introduction-and-preliminaries-1"></a>
<h2 class="chapter">1 Introduction and preliminaries</h2>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#The-R-environment" accesskey="1">The R environment</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Related-software-and-documentation" accesskey="2">Related software and documentation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#R-and-statistics" accesskey="3">R and statistics</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#R-and-the-window-system" accesskey="4">R and the window system</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Using-R-interactively" accesskey="5">Using R interactively</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Getting-help" accesskey="6">Getting help</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#R-commands_003b-case-sensitivity-etc" accesskey="7">R commands; case sensitivity etc</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Recall-and-correction-of-previous-commands" accesskey="8">Recall and correction of previous commands</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Executing-commands-from-or-diverting-output-to-a-file" accesskey="9">Executing commands from or diverting output to a file</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Data-permanency-and-removing-objects">Data permanency and removing objects</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="The-R-environment"></a>
<div class="header">
<p>
Next: <a href="#Related-software-and-documentation" accesskey="n" rel="next">Related software and documentation</a>, Previous: <a href="#Introduction-and-preliminaries" accesskey="p" rel="prev">Introduction and preliminaries</a>, Up: <a href="#Introduction-and-preliminaries" accesskey="u" rel="up">Introduction and preliminaries</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="The-R-environment-1"></a>
<h3 class="section">1.1 The R environment</h3>
<p>R is an integrated suite of software facilities for data
manipulation, calculation and graphical display. Among other things it
has
</p>
<ul>
<li> an effective data handling and storage facility,
</li><li> a suite of operators for calculations on arrays, in particular matrices,
</li><li> a large, coherent, integrated collection of intermediate tools for data
analysis,
</li><li> graphical facilities for data analysis and display either directly at
the computer or on hardcopy, and
</li><li> a well developed, simple and effective programming language (called ‘S’)
which includes conditionals, loops, user defined recursive functions and
input and output facilities. (Indeed most of the system supplied
functions are themselves written in the S language.)
</li></ul>
<p>The term “environment” is intended to characterize it as a fully
planned and coherent system, rather than an incremental accretion of
very specific and inflexible tools, as is frequently the case with other
data analysis software.
</p>
<p>R is very much a vehicle for newly developing methods of interactive
data analysis. It has developed rapidly, and has been extended by a
large collection of <em>packages</em>. However, most programs written in
R are essentially ephemeral, written for a single piece of data
analysis.
</p>
<hr>
<a name="Related-software-and-documentation"></a>
<div class="header">
<p>
Next: <a href="#R-and-statistics" accesskey="n" rel="next">R and statistics</a>, Previous: <a href="#The-R-environment" accesskey="p" rel="prev">The R environment</a>, Up: <a href="#Introduction-and-preliminaries" accesskey="u" rel="up">Introduction and preliminaries</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Related-software-and-documentation-1"></a>
<h3 class="section">1.2 Related software and documentation</h3>
<p>R can be regarded as an implementation of the S language which
was developed at Bell Laboratories by Rick Becker, John Chambers and
Allan Wilks, and also forms the basis of the <small>S-PLUS</small> systems.
</p>
<p>The evolution of the S language is characterized by four books by
John Chambers and coauthors. For R, the basic reference is <em>The
New S Language: A Programming Environment for Data Analysis and
Graphics</em> by Richard A. Becker, John M. Chambers and Allan R.
Wilks. The new features of the 1991 release of S
are covered in <em>Statistical Models in S</em> edited by John M.
Chambers and Trevor J. Hastie. The formal methods and classes of the
<strong>methods</strong> package are based on those described in <em>Programming
with Data</em> by John M. Chambers. See <a href="#References">References</a>, for precise
references.
</p>
<p>There are now a number of books which describe how to use R for data
analysis and statistics, and documentation for S/<small>S-PLUS</small> can
typically be used with R, keeping the differences between the S
implementations in mind. See <a href="R-FAQ.html#What-documentation-exists-for-R_003f">What documentation exists for R?</a> in <cite>The R statistical system FAQ</cite>.
</p>
<hr>
<a name="R-and-statistics"></a>
<div class="header">
<p>
Next: <a href="#R-and-the-window-system" accesskey="n" rel="next">R and the window system</a>, Previous: <a href="#Related-software-and-documentation" accesskey="p" rel="prev">Related software and documentation</a>, Up: <a href="#Introduction-and-preliminaries" accesskey="u" rel="up">Introduction and preliminaries</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="R-and-statistics-1"></a>
<h3 class="section">1.3 R and statistics</h3>
<a name="index-Packages"></a>
<p>Our introduction to the R environment did not mention
<em>statistics</em>, yet many people use R as a statistics system. We
prefer to think of it of an environment within which many classical and
modern statistical techniques have been implemented. A few of these are
built into the base R environment, but many are supplied as
<em>packages</em>. There are about 25 packages supplied with R (called
“standard” and “recommended” packages) and many more are available
through the <acronym>CRAN</acronym> family of Internet sites (via
<a href="https://CRAN.R-project.org">https://CRAN.R-project.org</a>) and elsewhere. More details on
packages are given later (see <a href="#Packages">Packages</a>).
</p>
<p>Most classical statistics and much of the latest methodology is
available for use with R, but users may need to be prepared to do a
little work to find it.
</p>
<p>There is an important difference in philosophy between S (and hence
R) and the other main statistical systems. In S a statistical
analysis is normally done as a series of steps, with intermediate
results being stored in objects. Thus whereas SAS and SPSS will give
copious output from a regression or discriminant analysis, R will
give minimal output and store the results in a fit object for subsequent
interrogation by further R functions.
</p>
<hr>
<a name="R-and-the-window-system"></a>
<div class="header">
<p>
Next: <a href="#Using-R-interactively" accesskey="n" rel="next">Using R interactively</a>, Previous: <a href="#R-and-statistics" accesskey="p" rel="prev">R and statistics</a>, Up: <a href="#Introduction-and-preliminaries" accesskey="u" rel="up">Introduction and preliminaries</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="R-and-the-window-system-1"></a>
<h3 class="section">1.4 R and the window system</h3>
<p>The most convenient way to use R is at a graphics workstation running
a windowing system. This guide is aimed at users who have this
facility. In particular we will occasionally refer to the use of R
on an X window system although the vast bulk of what is said applies
generally to any implementation of the R environment.
</p>
<p>Most users will find it necessary to interact directly with the
operating system on their computer from time to time. In this guide, we
mainly discuss interaction with the operating system on UNIX machines.
If you are running R under Windows or macOS you will need to make
some small adjustments.
</p>
<p>Setting up a workstation to take full advantage of the customizable
features of R is a straightforward if somewhat tedious procedure, and
will not be considered further here. Users in difficulty should seek
local expert help.
</p>
<hr>
<a name="Using-R-interactively"></a>
<div class="header">
<p>
Next: <a href="#Getting-help" accesskey="n" rel="next">Getting help</a>, Previous: <a href="#R-and-the-window-system" accesskey="p" rel="prev">R and the window system</a>, Up: <a href="#Introduction-and-preliminaries" accesskey="u" rel="up">Introduction and preliminaries</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Using-R-interactively-1"></a>
<h3 class="section">1.5 Using R interactively</h3>
<p>When you use the R program it issues a prompt when it expects input
commands. The default prompt is ‘<samp><code>></code></samp>’, which on UNIX might be
the same as the shell prompt, and so it may appear that nothing is
happening. However, as we shall see, it is easy to change to a
different R prompt if you wish. We will assume that the UNIX shell
prompt is ‘<samp><code>$</code></samp>’.
</p>
<p>In using R under UNIX the suggested procedure for the first occasion
is as follows:
</p>
<ol>
<li> Create a separate sub-directory, say <samp>work</samp>, to hold data files on
which you will use R for this problem. This will be the working
directory whenever you use R for this particular problem.
<div class="example">
<pre class="example">$ mkdir work
$ cd work
</pre></div>
</li><li> Start the R program with the command
<div class="example">
<pre class="example">$ R
</pre></div>
</li><li> At this point R commands may be issued (see later).
</li><li> To quit the R program the command is
<div class="example">
<pre class="example">> q()
</pre></div>
<p>At this point you will be asked whether you want to save the data from
your R session. On some systems this will bring up a dialog box, and
on others you will receive a text prompt to which you can respond
<kbd>yes</kbd>, <kbd>no</kbd> or <kbd>cancel</kbd> (a single letter abbreviation will
do) to save the data before quitting, quit without saving, or return to
the R session. Data which is saved will be available in future R
sessions.
</p>
</li></ol>
<p>Further R sessions are simple.
</p>
<ol>
<li> Make <samp>work</samp> the working directory and start the program as before:
<div class="example">
<pre class="example">$ cd work
$ R
</pre></div>
</li><li> Use the R program, terminating with the <code>q()</code> command at the end
of the session.
</li></ol>
<p>To use R under Windows the procedure to
follow is basically the same. Create a folder as the working directory,
and set that in the <samp>Start In</samp> field in your R shortcut.
Then launch R by double clicking on the icon.
</p>
<a name="An-introductory-session"></a>
<h3 class="section">1.6 An introductory session</h3>
<p>Readers wishing to get a feel for R at a computer before proceeding
are strongly advised to work through the introductory session
given in <a href="#A-sample-session">A sample session</a>.
</p>
<hr>
<a name="Getting-help"></a>
<div class="header">
<p>
Next: <a href="#R-commands_003b-case-sensitivity-etc" accesskey="n" rel="next">R commands; case sensitivity etc</a>, Previous: <a href="#Using-R-interactively" accesskey="p" rel="prev">Using R interactively</a>, Up: <a href="#Introduction-and-preliminaries" accesskey="u" rel="up">Introduction and preliminaries</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Getting-help-with-functions-and-features"></a>
<h3 class="section">1.7 Getting help with functions and features</h3>
<a name="index-help"></a>
<p>R has an inbuilt help facility similar to the <code>man</code> facility of
UNIX. To get more information on any specific named function, for
example <code>solve</code>, the command is
</p>
<div class="example">
<pre class="example">> help(solve)
</pre></div>
<a name="index-help-1"></a>
<p>An alternative is
</p>
<div class="example">
<pre class="example">> ?solve
</pre></div>
<a name="index-_003f"></a>
<p>For a feature specified by special characters, the argument must be
enclosed in double or single quotes, making it a “character string”:
This is also necessary for a few words with syntactic meaning including
<code>if</code>, <code>for</code> and <code>function</code>.
</p>
<div class="example">
<pre class="example">> help("[[")
</pre></div>
<p>Either form of quote mark may be used to escape the other, as in the
string <code>"It's important"</code>. Our convention is to use
double quote marks for preference.
</p>
<p>On most R installations help is available in <acronym>HTML</acronym> format by
running
</p>
<div class="example">
<pre class="example">> help.start()
</pre></div>
<a name="index-help_002estart"></a>
<p>which will launch a Web browser that allows the help pages to be browsed
with hyperlinks. On UNIX, subsequent help requests are sent to the
<acronym>HTML</acronym>-based help system. The ‘Search Engine and Keywords’ link in the
page loaded by <code>help.start()</code> is particularly useful as it is
contains a high-level concept list which searches though available
functions. It can be a great way to get your bearings quickly and to
understand the breadth of what R has to offer.
</p>
<a name="index-help_002esearch"></a>
<p>The <code>help.search</code> command (alternatively <code>??</code>)
allows searching for help in various
ways. For example,
</p>
<div class="example">
<pre class="example">> ??solve
</pre></div>
<a name="index-_003f_003f"></a>
<p>Try <code>?help.search</code> for details and more examples.
</p>
<p>The examples on a help topic can normally be run by
</p>
<div class="example">
<pre class="example">> example(<var>topic</var>)
</pre></div>
<a name="index-example"></a>
<p>Windows versions of R have other optional help systems: use
</p>
<div class="example">
<pre class="example">> ?help
</pre></div>
<p>for further details.
</p>
<hr>
<a name="R-commands_003b-case-sensitivity-etc"></a>
<div class="header">
<p>
Next: <a href="#Recall-and-correction-of-previous-commands" accesskey="n" rel="next">Recall and correction of previous commands</a>, Previous: <a href="#Getting-help" accesskey="p" rel="prev">Getting help</a>, Up: <a href="#Introduction-and-preliminaries" accesskey="u" rel="up">Introduction and preliminaries</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="R-commands_002c-case-sensitivity_002c-etc_002e"></a>
<h3 class="section">1.8 R commands, case sensitivity, etc.</h3>
<p>Technically R is an <em>expression language</em> with a very simple
syntax. It is <em>case sensitive</em> as are most UNIX based packages, so
<code>A</code> and <code>a</code> are different symbols and would refer to different
variables. The set of symbols which can be used in R names depends
on the operating system and country within which R is being run
(technically on the <em>locale</em> in use). Normally all alphanumeric
symbols are allowed<a name="DOCF2" href="#FOOT2"><sup>2</sup></a> (and in
some countries this includes accented letters) plus ‘<samp><code>.</code></samp>’ and
‘<samp><code>_</code></samp>’, with the restriction that a name must start with
‘<samp><code>.</code></samp>’ or a letter, and if it starts with ‘<samp><code>.</code></samp>’ the
second character must not be a digit. Names are effectively
unlimited in length.
</p>
<p>Elementary commands consist of either <em>expressions</em> or
<em>assignments</em>. If an expression is given as a command, it is
evaluated, printed (unless specifically made invisible), and the value
is lost. An assignment also evaluates an expression and passes the
value to a variable but the result is not automatically printed.
</p>
<p>Commands are separated either by a semi-colon (‘<samp><code>;</code></samp>’), or by a
newline. Elementary commands can be grouped together into one compound
expression by braces (‘<samp><code>{</code></samp>’ and ‘<samp><code>}</code></samp>’).
<em>Comments</em> can be put almost<a name="DOCF3" href="#FOOT3"><sup>3</sup></a> anywhere,
starting with a hashmark (‘<samp><code>#</code></samp>’), everything to the end of the
line is a comment.
</p>
<p>If a command is not complete at the end of a line, R will
give a different prompt, by default
</p>
<div class="example">
<pre class="example">+
</pre></div>
<p>on second and subsequent lines and continue to read input until the
command is syntactically complete. This prompt may be changed by the
user. We will generally omit the continuation prompt
and indicate continuation by simple indenting.
</p>
<p>Command lines entered at the console are limited<a name="DOCF4" href="#FOOT4"><sup>4</sup></a> to about 4095 bytes (not characters).
</p>
<hr>
<a name="Recall-and-correction-of-previous-commands"></a>
<div class="header">
<p>
Next: <a href="#Executing-commands-from-or-diverting-output-to-a-file" accesskey="n" rel="next">Executing commands from or diverting output to a file</a>, Previous: <a href="#R-commands_003b-case-sensitivity-etc" accesskey="p" rel="prev">R commands; case sensitivity etc</a>, Up: <a href="#Introduction-and-preliminaries" accesskey="u" rel="up">Introduction and preliminaries</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Recall-and-correction-of-previous-commands-1"></a>
<h3 class="section">1.9 Recall and correction of previous commands</h3>
<p>Under many versions of UNIX and on Windows, R provides a mechanism
for recalling and re-executing previous commands. The vertical arrow
keys on the keyboard can be used to scroll forward and backward through
a <em>command history</em>. Once a command is located in this way, the
cursor can be moved within the command using the horizontal arrow keys,
and characters can be removed with the <tt class="key">DEL</tt> key or added with the
other keys. More details are provided later: see <a href="#The-command_002dline-editor">The command-line editor</a>.
</p>
<p>The recall and editing capabilities under UNIX are highly customizable.
You can find out how to do this by reading the manual entry for the
<strong>readline</strong> library.
</p>
<p>Alternatively, the Emacs text editor provides more general support
mechanisms (via <acronym>ESS</acronym>, <em>Emacs Speaks Statistics</em>) for
working interactively with R. See <a href="R-FAQ.html#R-and-Emacs">R and Emacs</a> in <cite>The R
statistical system FAQ</cite>.
</p>
<hr>
<a name="Executing-commands-from-or-diverting-output-to-a-file"></a>
<div class="header">
<p>
Next: <a href="#Data-permanency-and-removing-objects" accesskey="n" rel="next">Data permanency and removing objects</a>, Previous: <a href="#Recall-and-correction-of-previous-commands" accesskey="p" rel="prev">Recall and correction of previous commands</a>, Up: <a href="#Introduction-and-preliminaries" accesskey="u" rel="up">Introduction and preliminaries</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Executing-commands-from-or-diverting-output-to-a-file-1"></a>
<h3 class="section">1.10 Executing commands from or diverting output to a file</h3>
<a name="index-Diverting-input-and-output"></a>
<p>If commands<a name="DOCF5" href="#FOOT5"><sup>5</sup></a> are stored in an external
file, say <samp>commands.R</samp> in the working directory <samp>work</samp>, they
may be executed at any time in an R session with the command
</p>
<div class="example">
<pre class="example">> source("commands.R")
</pre></div>
<a name="index-source"></a>
<p>For Windows <strong>Source</strong> is also available on the
<strong>File</strong> menu. The function <code>sink</code>,
</p>
<div class="example">
<pre class="example">> sink("record.lis")
</pre></div>
<a name="index-sink"></a>
<p>will divert all subsequent output from the console to an external file,
<samp>record.lis</samp>. The command
</p>
<div class="example">
<pre class="example">> sink()
</pre></div>
<p>restores it to the console once again.
</p>
<hr>
<a name="Data-permanency-and-removing-objects"></a>
<div class="header">
<p>
Previous: <a href="#Executing-commands-from-or-diverting-output-to-a-file" accesskey="p" rel="prev">Executing commands from or diverting output to a file</a>, Up: <a href="#Introduction-and-preliminaries" accesskey="u" rel="up">Introduction and preliminaries</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Data-permanency-and-removing-objects-1"></a>
<h3 class="section">1.11 Data permanency and removing objects</h3>
<p>The entities that R creates and manipulates are known as
<em>objects</em>. These may be variables, arrays of numbers, character
strings, functions, or more general structures built from such
components.
</p>
<p>During an R session, objects are created and stored by name (we
discuss this process in the next section). The R command
</p>
<div class="example">
<pre class="example">> objects()
</pre></div>
<p>(alternatively, <code>ls()</code>) can be used to display the names of (most
of) the objects which are currently stored within R. The collection
of objects currently stored is called the <em>workspace</em>.
<a name="index-Workspace"></a>
</p>
<p>To remove objects the function <code>rm</code> is available:
</p>
<div class="example">
<pre class="example">> rm(x, y, z, ink, junk, temp, foo, bar)
</pre></div>
<a name="index-rm"></a>
<a name="index-Removing-objects"></a>
<p>All objects created during an R session can be stored permanently in
a file for use in future R sessions. At the end of each R session
you are given the opportunity to save all the currently available
objects. If you indicate that you want to do this, the objects are
written to a file called <samp>.RData</samp><a name="DOCF6" href="#FOOT6"><sup>6</sup></a> in the
current directory, and the command lines used in the session are saved
to a file called <samp>.Rhistory</samp>.
</p>
<p>When R is started at later time from the same directory it reloads
the workspace from this file. At the same time the associated commands
history is reloaded.
</p>
<p>It is recommended that you should use separate working directories for
analyses conducted with R. It is quite common for objects with names
<code>x</code> and <code>y</code> to be created during an analysis. Names like this
are often meaningful in the context of a single analysis, but it can be
quite hard to decide what they might be when the several analyses have
been conducted in the same directory.
</p>
<hr>
<a name="Simple-manipulations-numbers-and-vectors"></a>
<div class="header">
<p>
Next: <a href="#Objects" accesskey="n" rel="next">Objects</a>, Previous: <a href="#Introduction-and-preliminaries" accesskey="p" rel="prev">Introduction and preliminaries</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Simple-manipulations_003b-numbers-and-vectors"></a>
<h2 class="chapter">2 Simple manipulations; numbers and vectors</h2>
<a name="index-Vectors"></a>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Vectors-and-assignment" accesskey="1">Vectors and assignment</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Vector-arithmetic" accesskey="2">Vector arithmetic</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Generating-regular-sequences" accesskey="3">Generating regular sequences</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Logical-vectors" accesskey="4">Logical vectors</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Missing-values" accesskey="5">Missing values</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Character-vectors" accesskey="6">Character vectors</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Index-vectors" accesskey="7">Index vectors</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Other-types-of-objects" accesskey="8">Other types of objects</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Vectors-and-assignment"></a>
<div class="header">
<p>
Next: <a href="#Vector-arithmetic" accesskey="n" rel="next">Vector arithmetic</a>, Previous: <a href="#Simple-manipulations-numbers-and-vectors" accesskey="p" rel="prev">Simple manipulations numbers and vectors</a>, Up: <a href="#Simple-manipulations-numbers-and-vectors" accesskey="u" rel="up">Simple manipulations numbers and vectors</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Vectors-and-assignment-1"></a>
<h3 class="section">2.1 Vectors and assignment</h3>
<p>R operates on named <em>data structures</em>. The simplest such
structure is the numeric <em>vector</em>, which is a single entity
consisting of an ordered collection of numbers. To set up a vector
named <code>x</code>, say, consisting of five numbers, namely 10.4, 5.6, 3.1,
6.4 and 21.7, use the R command
</p>
<div class="example">
<pre class="example">> x <- c(10.4, 5.6, 3.1, 6.4, 21.7)
</pre></div>
<a name="index-c"></a>
<a name="index-vector"></a>
<p>This is an <em>assignment</em> statement using the <em>function</em>
<code>c()</code> which in this context can take an arbitrary number of vector
<em>arguments</em> and whose value is a vector got by concatenating its
arguments end to end.<a name="DOCF7" href="#FOOT7"><sup>7</sup></a>
</p>
<p>A number occurring by itself in an expression is taken as a vector of
length one.
</p>
<p>Notice that the assignment operator (‘<samp><code><-</code></samp>’), which consists
of the two characters ‘<samp><code><</code></samp>’ (“less than”) and
‘<samp><code>-</code></samp>’ (“minus”) occurring strictly side-by-side and it
‘points’ to the object receiving the value of the expression.
In most contexts the ‘<samp><code>=</code></samp>’ operator can be used as an alternative.
<a name="index-Assignment"></a>
</p>
<p>Assignment can also be made using the function <code>assign()</code>. An
equivalent way of making the same assignment as above is with:
</p>
<div class="example">
<pre class="example">> assign("x", c(10.4, 5.6, 3.1, 6.4, 21.7))
</pre></div>
<p>The usual operator, <code><-</code>, can be thought of as a syntactic
short-cut to this.
</p>
<p>Assignments can also be made in the other direction, using the obvious
change in the assignment operator. So the same assignment could be made
using
</p>
<div class="example">
<pre class="example">> c(10.4, 5.6, 3.1, 6.4, 21.7) -> x
</pre></div>
<p>If an expression is used as a complete command, the value is printed
<em>and lost</em><a name="DOCF8" href="#FOOT8"><sup>8</sup></a>. So now if we
were to use the command
</p>
<div class="example">
<pre class="example">> 1/x
</pre></div>
<p>the reciprocals of the five values would be printed at the terminal (and
the value of <code>x</code>, of course, unchanged).
</p>
<p>The further assignment
</p>
<div class="example">
<pre class="example">> y <- c(x, 0, x)
</pre></div>
<p>would create a vector <code>y</code> with 11 entries consisting of two copies
of <code>x</code> with a zero in the middle place.
</p>
<hr>
<a name="Vector-arithmetic"></a>
<div class="header">
<p>
Next: <a href="#Generating-regular-sequences" accesskey="n" rel="next">Generating regular sequences</a>, Previous: <a href="#Vectors-and-assignment" accesskey="p" rel="prev">Vectors and assignment</a>, Up: <a href="#Simple-manipulations-numbers-and-vectors" accesskey="u" rel="up">Simple manipulations numbers and vectors</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Vector-arithmetic-1"></a>
<h3 class="section">2.2 Vector arithmetic</h3>
<p>Vectors can be used in arithmetic expressions, in which case the
operations are performed element by element. Vectors occurring in the
same expression need not all be of the same length. If they are not,
the value of the expression is a vector with the same length as the
longest vector which occurs in the expression. Shorter vectors in the
expression are <em>recycled</em> as often as need be (perhaps
fractionally) until they match the length of the longest vector. In
particular a constant is simply repeated. So with the above assignments
the command
<a name="index-Recycling-rule"></a>
</p>
<div class="example">
<pre class="example">> v <- 2*x + y + 1
</pre></div>
<p>generates a new vector <code>v</code> of length 11 constructed by adding
together, element by element, <code>2*x</code> repeated 2.2 times, <code>y</code>
repeated just once, and <code>1</code> repeated 11 times.
</p>
<a name="index-Arithmetic-functions-and-operators"></a>
<p>The elementary arithmetic operators are the usual <code>+</code>, <code>-</code>,
<code>*</code>, <code>/</code> and <code>^</code> for raising to a power.
<a name="index-_002b"></a>
<a name="index-_002d"></a>
<a name="index-_002a"></a>
<a name="index-_002f"></a>
<a name="index-_005e"></a>
In addition all of the common arithmetic functions are available.
<code>log</code>, <code>exp</code>, <code>sin</code>, <code>cos</code>, <code>tan</code>, <code>sqrt</code>,
and so on, all have their usual meaning.
<a name="index-log"></a>
<a name="index-exp"></a>
<a name="index-sin"></a>
<a name="index-cos"></a>
<a name="index-tan"></a>
<a name="index-sqrt"></a>
<code>max</code> and <code>min</code> select the largest and smallest elements of a
vector respectively.
<a name="index-max"></a>
<a name="index-min"></a>
<code>range</code> is a function whose value is a vector of length two, namely
<code>c(min(x), max(x))</code>.
<a name="index-range"></a>
<code>length(x)</code> is the number of elements in <code>x</code>,
<a name="index-length"></a>
<code>sum(x)</code> gives the total of the elements in <code>x</code>,
<a name="index-sum"></a>
and <code>prod(x)</code> their product.
<a name="index-prod"></a>
</p>
<p>Two statistical functions are <code>mean(x)</code> which calculates the sample
mean, which is the same as <code>sum(x)/length(x)</code>,
<a name="index-mean"></a>
and <code>var(x)</code> which gives
</p>
<div class="example">
<pre class="example">sum((x-mean(x))^2)/(length(x)-1)
</pre></div>
<a name="index-var"></a>
<p>or sample variance. If the argument to <code>var()</code> is an
<em>n</em>-by-<em>p</em> matrix the value is a <em>p</em>-by-<em>p</em> sample
covariance matrix got by regarding the rows as independent
<em>p</em>-variate sample vectors.
</p>
<p><code>sort(x)</code> returns a vector of the same size as <code>x</code> with the
elements arranged in increasing order; however there are other more
flexible sorting facilities available (see <code>order()</code> or
<code>sort.list()</code> which produce a permutation to do the sorting).
<a name="index-sort"></a>
<a name="index-order"></a>
</p>
<p>Note that <code>max</code> and <code>min</code> select the largest and smallest
values in their arguments, even if they are given several vectors. The
<em>parallel</em> maximum and minimum functions <code>pmax</code> and
<code>pmin</code> return a vector (of length equal to their longest argument)
that contains in each element the largest (smallest) element in that
position in any of the input vectors.
<a name="index-pmax"></a>
<a name="index-pmin"></a>
</p>
<p>For most purposes the user will not be concerned if the “numbers” in a
numeric vector are integers, reals or even complex. Internally
calculations are done as double precision real numbers, or double
precision complex numbers if the input data are complex.
</p>
<p>To work with complex numbers, supply an explicit complex part. Thus
</p>
<div class="example">
<pre class="example">sqrt(-17)
</pre></div>
<p>will give <code>NaN</code> and a warning, but
</p>
<div class="example">
<pre class="example">sqrt(-17+0i)
</pre></div>
<p>will do the computations as complex numbers.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Generating-regular-sequences" accesskey="1">Generating regular sequences</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Generating-regular-sequences"></a>
<div class="header">
<p>
Next: <a href="#Logical-vectors" accesskey="n" rel="next">Logical vectors</a>, Previous: <a href="#Vector-arithmetic" accesskey="p" rel="prev">Vector arithmetic</a>, Up: <a href="#Simple-manipulations-numbers-and-vectors" accesskey="u" rel="up">Simple manipulations numbers and vectors</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Generating-regular-sequences-1"></a>
<h3 class="section">2.3 Generating regular sequences</h3>
<a name="index-Regular-sequences"></a>
<p>R has a number of facilities for generating commonly used sequences
of numbers. For example <code>1:30</code> is the vector <code>c(1, 2,
…, 29, 30)</code>.
<a name="index-_003a"></a>
The colon operator has high priority within an expression, so, for
example <code>2*1:15</code> is the vector <code>c(2, 4, …, 28, 30)</code>.
Put <code>n <- 10</code> and compare the sequences <code>1:n-1</code> and
<code>1:(n-1)</code>.
</p>
<p>The construction <code>30:1</code> may be used to generate a sequence
backwards.
</p>
<a name="index-seq"></a>
<p>The function <code>seq()</code> is a more general facility for generating
sequences. It has five arguments, only some of which may be specified
in any one call. The first two arguments, if given, specify the
beginning and end of the sequence, and if these are the only two
arguments given the result is the same as the colon operator. That is
<code>seq(2,10)</code> is the same vector as <code>2:10</code>.
</p>
<p>Arguments to <code>seq()</code>, and to many other R functions, can also
be given in named form, in which case the order in which they appear is
irrelevant. The first two arguments may be named
<code>from=<var>value</var></code> and <code>to=<var>value</var></code>; thus
<code>seq(1,30)</code>, <code>seq(from=1, to=30)</code> and <code>seq(to=30,
from=1)</code> are all the same as <code>1:30</code>. The next two arguments to
<code>seq()</code> may be named <code>by=<var>value</var></code> and
<code>length=<var>value</var></code>, which specify a step size and a length for
the sequence respectively. If neither of these is given, the default
<code>by=1</code> is assumed.
</p>
<p>For example
</p>
<div class="example">
<pre class="example">> seq(-5, 5, by=.2) -> s3
</pre></div>
<p>generates in <code>s3</code> the vector <code>c(-5.0, -4.8, -4.6, …,
4.6, 4.8, 5.0)</code>. Similarly
</p>
<div class="example">
<pre class="example">> s4 <- seq(length=51, from=-5, by=.2)
</pre></div>
<p>generates the same vector in <code>s4</code>.
</p>
<p>The fifth argument may be named <code>along=<var>vector</var></code>, which is
normally used as the only argument to create the sequence <code>1, 2,
…, length(<var>vector</var>)</code>, or the empty sequence if the vector is
empty (as it can be).
</p>
<p>A related function is <code>rep()</code>
<a name="index-rep"></a>
which can be used for replicating an object in various complicated ways.
The simplest form is
</p>
<div class="example">
<pre class="example">> s5 <- rep(x, times=5)
</pre></div>
<p>which will put five copies of <code>x</code> end-to-end in <code>s5</code>. Another
useful version is
</p>
<div class="example">
<pre class="example">> s6 <- rep(x, each=5)
</pre></div>
<p>which repeats each element of <code>x</code> five times before moving on to
the next.
</p>
<hr>
<a name="Logical-vectors"></a>
<div class="header">
<p>
Next: <a href="#Missing-values" accesskey="n" rel="next">Missing values</a>, Previous: <a href="#Generating-regular-sequences" accesskey="p" rel="prev">Generating regular sequences</a>, Up: <a href="#Simple-manipulations-numbers-and-vectors" accesskey="u" rel="up">Simple manipulations numbers and vectors</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Logical-vectors-1"></a>
<h3 class="section">2.4 Logical vectors</h3>
<p>As well as numerical vectors, R allows manipulation of logical
quantities. The elements of a logical vector can have the values
<code>TRUE</code>, <code>FALSE</code>, and <code>NA</code> (for “not available”, see
below). The first two are often abbreviated as <code>T</code> and <code>F</code>,
respectively. Note however that <code>T</code> and <code>F</code> are just
variables which are set to <code>TRUE</code> and <code>FALSE</code> by default, but
are not reserved words and hence can be overwritten by the user. Hence,
you should always use <code>TRUE</code> and <code>FALSE</code>.
<a name="index-FALSE"></a>
<a name="index-TRUE"></a>
<a name="index-F"></a>
<a name="index-T"></a>
</p>
<p>Logical vectors are generated by <em>conditions</em>. For example
</p>
<div class="example">
<pre class="example">> temp <- x > 13
</pre></div>
<p>sets <code>temp</code> as a vector of the same length as <code>x</code> with values
<code>FALSE</code> corresponding to elements of <code>x</code> where the condition
is <em>not</em> met and <code>TRUE</code> where it is.
</p>
<p>The logical operators are <code><</code>, <code><=</code>, <code>></code>, <code>>=</code>,
<code>==</code> for exact equality and <code>!=</code> for inequality.
<a name="index-_003c"></a>
<a name="index-_003c_003d"></a>
<a name="index-_003e"></a>
<a name="index-_003e_003d"></a>
<a name="index-_003d_003d"></a>
<a name="index-_0021_003d"></a>
In addition if <code>c1</code> and <code>c2</code> are logical expressions, then
<code>c1 & c2</code><!-- /@w --> is their intersection (<em>“and”</em>), <code>c1 | c2</code><!-- /@w -->
is their union (<em>“or”</em>), and <code>!c1</code> is the negation of
<code>c1</code>.
<a name="index-_0021"></a>
<a name="index-_007c"></a>
<a name="index-_0026"></a>
</p>
<p>Logical vectors may be used in ordinary arithmetic, in which case they
are <em>coerced</em> into numeric vectors, <code>FALSE</code> becoming <code>0</code>
and <code>TRUE</code> becoming <code>1</code>. However there are situations where
logical vectors and their coerced numeric counterparts are not
equivalent, for example see the next subsection.
</p>
<hr>
<a name="Missing-values"></a>
<div class="header">
<p>
Next: <a href="#Character-vectors" accesskey="n" rel="next">Character vectors</a>, Previous: <a href="#Logical-vectors" accesskey="p" rel="prev">Logical vectors</a>, Up: <a href="#Simple-manipulations-numbers-and-vectors" accesskey="u" rel="up">Simple manipulations numbers and vectors</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Missing-values-1"></a>
<h3 class="section">2.5 Missing values</h3>
<a name="index-Missing-values"></a>
<p>In some cases the components of a vector may not be completely
known. When an element or value is “not available” or a “missing
value” in the statistical sense, a place within a vector may be
reserved for it by assigning it the special value <code>NA</code>.
<a name="index-NA"></a>
In general any operation on an <code>NA</code> becomes an <code>NA</code>. The
motivation for this rule is simply that if the specification of an
operation is incomplete, the result cannot be known and hence is not
available.
</p>
<a name="index-is_002ena"></a>
<p>The function <code>is.na(x)</code> gives a logical vector of the same size as
<code>x</code> with value <code>TRUE</code> if and only if the corresponding element
in <code>x</code> is <code>NA</code>.
</p>
<div class="example">
<pre class="example">> z <- c(1:3,NA); ind <- is.na(z)
</pre></div>
<p>Notice that the logical expression <code>x == NA</code> is quite different
from <code>is.na(x)</code> since <code>NA</code> is not really a value but a marker
for a quantity that is not available. Thus <code>x == NA</code> is a vector
of the same length as <code>x</code> <em>all</em> of whose values are <code>NA</code>
as the logical expression itself is incomplete and hence undecidable.
</p>
<p>Note that there is a second kind of “missing” values which are
produced by numerical computation, the so-called <em>Not a Number</em>,
<code>NaN</code>,
<a name="index-NaN"></a>
values. Examples are
</p>
<div class="example">
<pre class="example">> 0/0
</pre></div>
<p>or
</p>
<div class="example">
<pre class="example">> Inf - Inf
</pre></div>
<p>which both give <code>NaN</code> since the result cannot be defined sensibly.
</p>
<p>In summary, <code>is.na(xx)</code> is <code>TRUE</code> <em>both</em> for <code>NA</code>
and <code>NaN</code> values. To differentiate these, <code>is.nan(xx)</code> is only
<code>TRUE</code> for <code>NaN</code>s.
<a name="index-is_002enan"></a>
</p>
<p>Missing values are sometimes printed as <code><NA></code> when character
vectors are printed without quotes.
</p>
<hr>
<a name="Character-vectors"></a>
<div class="header">
<p>
Next: <a href="#Index-vectors" accesskey="n" rel="next">Index vectors</a>, Previous: <a href="#Missing-values" accesskey="p" rel="prev">Missing values</a>, Up: <a href="#Simple-manipulations-numbers-and-vectors" accesskey="u" rel="up">Simple manipulations numbers and vectors</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Character-vectors-1"></a>
<h3 class="section">2.6 Character vectors</h3>
<a name="index-Character-vectors"></a>
<p>Character quantities and character vectors are used frequently in R,
for example as plot labels. Where needed they are denoted by a sequence
of characters delimited by the double quote character, e.g.,
<code>"x-values"</code>, <code>"New iteration results"</code>.
</p>
<p>Character strings are entered using either matching double (<code>"</code>) or
single (<code>'</code>) quotes, but are printed using double quotes (or
sometimes without quotes). They use C-style escape sequences, using
<code>\</code> as the escape character, so <code>\\</code> is entered and printed as
<code>\\</code>, and inside double quotes <code>"</code> is entered as <code>\"</code>.
Other useful escape sequences are <code>\n</code>, newline, <code>\t</code>, tab and
<code>\b</code>, backspace—see <code>?Quotes</code> for a full list.
</p>
<p>Character vectors may be concatenated into a vector by the <code>c()</code>
function; examples of their use will emerge frequently.
<a name="index-c-1"></a>
</p>
<a name="index-paste"></a>
<p>The <code>paste()</code> function takes an arbitrary number of arguments and
concatenates them one by one into character strings. Any numbers given
among the arguments are coerced into character strings in the evident
way, that is, in the same way they would be if they were printed. The
arguments are by default separated in the result by a single blank
character, but this can be changed by the named argument,
<code>sep=<var>string</var></code>, which changes it to <code><var>string</var></code>,
possibly empty.
</p>
<p>For example
</p>
<div class="example">
<pre class="example">> labs <- paste(c("X","Y"), 1:10, sep="")
</pre></div>
<p>makes <code>labs</code> into the character vector
</p>
<div class="example">
<pre class="example">c("X1", "Y2", "X3", "Y4", "X5", "Y6", "X7", "Y8", "X9", "Y10")
</pre></div>
<p>Note particularly that recycling of short lists takes place here too;
thus <code>c("X", "Y")</code> is repeated 5 times to match the sequence
<code>1:10</code>.
<a name="DOCF9" href="#FOOT9"><sup>9</sup></a>
</p>
<hr>
<a name="Index-vectors"></a>
<div class="header">
<p>
Next: <a href="#Other-types-of-objects" accesskey="n" rel="next">Other types of objects</a>, Previous: <a href="#Character-vectors" accesskey="p" rel="prev">Character vectors</a>, Up: <a href="#Simple-manipulations-numbers-and-vectors" accesskey="u" rel="up">Simple manipulations numbers and vectors</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Index-vectors_003b-selecting-and-modifying-subsets-of-a-data-set"></a>
<h3 class="section">2.7 Index vectors; selecting and modifying subsets of a data set</h3>
<a name="index-Indexing-vectors"></a>
<p>Subsets of the elements of a vector may be selected by appending to the
name of the vector an <em>index vector</em> in square brackets. More
generally any expression that evaluates to a vector may have subsets of
its elements similarly selected by appending an index vector in square
brackets immediately after the expression.
</p>
<p>Such index vectors can be any of four distinct types.
</p>
<ol>
<li> <strong>A logical vector</strong>. In this case the index vector is recycled to the
same length as the vector from which elements are to be selected.
Values corresponding to <code>TRUE</code> in the index vector are selected and
those corresponding to <code>FALSE</code> are omitted. For example
<div class="example">
<pre class="example">> y <- x[!is.na(x)]
</pre></div>
<p>creates (or re-creates) an object <code>y</code> which will contain the
non-missing values of <code>x</code>, in the same order. Note that if
<code>x</code> has missing values, <code>y</code> will be shorter than <code>x</code>.
Also
</p>
<div class="example">
<pre class="example">> (x+1)[(!is.na(x)) & x>0] -> z
</pre></div>
<p>creates an object <code>z</code> and places in it the values of the vector
<code>x+1</code> for which the corresponding value in <code>x</code> was both
non-missing and positive.
</p>
</li><li> <strong>A vector of positive integral quantities</strong>. In this case the
values in the index vector must lie in the set {1, 2, …,
<code>length(x)</code>}. The corresponding elements of the vector are
selected and concatenated, <em>in that order</em>, in the result. The
index vector can be of any length and the result is of the same length
as the index vector. For example <code>x[6]</code> is the sixth component of
<code>x</code> and
<div class="example">
<pre class="example">> x[1:10]
</pre></div>
<p>selects the first 10 elements of <code>x</code> (assuming <code>length(x)</code> is
not less than 10). Also
</p>
<div class="example">
<pre class="example">> c("x","y")[rep(c(1,2,2,1), times=4)]
</pre></div>
<p>(an admittedly unlikely thing to do) produces a character vector of
length 16 consisting of <code>"x", "y", "y", "x"</code> repeated four times.
</p>
</li><li> <strong>A vector of negative integral quantities</strong>. Such an index vector
specifies the values to be <em>excluded</em> rather than included. Thus
<div class="example">
<pre class="example">> y <- x[-(1:5)]
</pre></div>
<p>gives <code>y</code> all but the first five elements of <code>x</code>.
</p>
</li><li> <strong>A vector of character strings</strong>. This possibility only applies
where an object has a <code>names</code> attribute to identify its components.
In this case a sub-vector of the names vector may be used in the same way
as the positive integral labels in item 2 further above.
<div class="example">
<pre class="example">> fruit <- c(5, 10, 1, 20)
> names(fruit) <- c("orange", "banana", "apple", "peach")
> lunch <- fruit[c("apple","orange")]
</pre></div>
<p>The advantage is that alphanumeric <em>names</em> are often easier to
remember than <em>numeric indices</em>. This option is particularly
useful in connection with data frames, as we shall see later.
</p>
</li></ol>
<p>An indexed expression can also appear on the receiving end of an
assignment, in which case the assignment operation is performed
<em>only on those elements of the vector</em>. The expression must be of
the form <code>vector[<var>index_vector</var>]</code> as having an arbitrary
expression in place of the vector name does not make much sense here.
</p>
<p>For example
</p>
<div class="example">
<pre class="example">> x[is.na(x)] <- 0
</pre></div>
<p>replaces any missing values in <code>x</code> by zeros and
</p>
<div class="example">
<pre class="example">> y[y < 0] <- -y[y < 0]
</pre></div>
<p>has the same effect as
</p>
<div class="example">
<pre class="example">> y <- abs(y)
</pre></div>
<hr>
<a name="Other-types-of-objects"></a>
<div class="header">
<p>
Previous: <a href="#Index-vectors" accesskey="p" rel="prev">Index vectors</a>, Up: <a href="#Simple-manipulations-numbers-and-vectors" accesskey="u" rel="up">Simple manipulations numbers and vectors</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Other-types-of-objects-1"></a>
<h3 class="section">2.8 Other types of objects</h3>
<p>Vectors are the most important type of object in R, but there are
several others which we will meet more formally in later sections.
</p>
<ul>
<li> <em>matrices</em> or more generally <em>arrays</em> are multi-dimensional
generalizations of vectors. In fact, they <em>are</em> vectors that can
be indexed by two or more indices and will be printed in special ways.
See <a href="#Arrays-and-matrices">Arrays and matrices</a>.
</li><li> <em>factors</em> provide compact ways to handle categorical data.
See <a href="#Factors">Factors</a>.
</li><li> <em>lists</em> are a general form of vector in which the various elements
need not be of the same type, and are often themselves vectors or lists.
Lists provide a convenient way to return the results of a statistical
computation. See <a href="#Lists">Lists</a>.
</li><li> <em>data frames</em> are matrix-like structures, in which the columns can
be of different types. Think of data frames as ‘data matrices’ with one
row per observational unit but with (possibly) both numerical and
categorical variables. Many experiments are best described by data
frames: the treatments are categorical but the response is numeric.
See <a href="#Data-frames">Data frames</a>.
</li><li> <em>functions</em> are themselves objects in R which can be stored in
the project’s workspace. This provides a simple and convenient way to
extend R. See <a href="#Writing-your-own-functions">Writing your own functions</a>.
</li></ul>
<hr>
<a name="Objects"></a>
<div class="header">
<p>
Next: <a href="#Factors" accesskey="n" rel="next">Factors</a>, Previous: <a href="#Simple-manipulations-numbers-and-vectors" accesskey="p" rel="prev">Simple manipulations numbers and vectors</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Objects_002c-their-modes-and-attributes"></a>
<h2 class="chapter">3 Objects, their modes and attributes</h2>
<a name="index-Objects"></a>
<a name="index-Attributes"></a>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#The-intrinsic-attributes-mode-and-length" accesskey="1">The intrinsic attributes mode and length</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Changing-the-length-of-an-object" accesskey="2">Changing the length of an object</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Getting-and-setting-attributes" accesskey="3">Getting and setting attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-class-of-an-object" accesskey="4">The class of an object</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="The-intrinsic-attributes-mode-and-length"></a>
<div class="header">
<p>
Next: <a href="#Changing-the-length-of-an-object" accesskey="n" rel="next">Changing the length of an object</a>, Previous: <a href="#Objects" accesskey="p" rel="prev">Objects</a>, Up: <a href="#Objects" accesskey="u" rel="up">Objects</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Intrinsic-attributes_003a-mode-and-length"></a>
<h3 class="section">3.1 Intrinsic attributes: mode and length</h3>
<p>The entities R operates on are technically known as <em>objects</em>.
Examples are vectors of numeric (real) or complex values, vectors of
logical values and vectors of character strings. These are known as
“atomic” structures since their components are all of the same type,
or <em>mode</em>, namely <em>numeric</em><a name="DOCF10" href="#FOOT10"><sup>10</sup></a>, <em>complex</em>,
<em>logical</em>, <em>character</em> and <em>raw</em>.
</p>
<p>Vectors must have their values <em>all of the same mode</em>. Thus any
given vector must be unambiguously either <em>logical</em>,
<em>numeric</em>, <em>complex</em>, <em>character</em> or <em>raw</em>. (The
only apparent exception to this rule is the special “value” listed as
<code>NA</code> for quantities not available, but in fact there are several
types of <code>NA</code>). Note that a vector can be empty and still have a
mode. For example the empty character string vector is listed as
<code>character(0)</code> and the empty numeric vector as <code>numeric(0)</code>.
</p>
<p>R also operates on objects called <em>lists</em>, which are of mode
<em>list</em>. These are ordered sequences of objects which individually
can be of any mode. <em>lists</em> are known as “recursive” rather than
atomic structures since their components can themselves be lists in
their own right.
</p>
<p>The other recursive structures are those of mode <em>function</em> and
<em>expression</em>. Functions are the objects that form part of the R
system along with similar user written functions, which we discuss in
some detail later. Expressions as objects form an
advanced part of R which will not be discussed in this guide, except
indirectly when we discuss <em>formulae</em> used with modeling in R.
</p>
<p>By the <em>mode</em> of an object we mean the basic type of its
fundamental constituents. This is a special case of a “property”
of an object. Another property of every object is its <em>length</em>. The
functions <code>mode(<var>object</var>)</code> and <code>length(<var>object</var>)</code> can be
used to find out the mode and length of any defined structure
<a name="DOCF11" href="#FOOT11"><sup>11</sup></a>.
</p>
<p>Further properties of an object are usually provided by
<code>attributes(<var>object</var>)</code>, see <a href="#Getting-and-setting-attributes">Getting and setting attributes</a>.
Because of this, <em>mode</em> and <em>length</em> are also called “intrinsic
attributes” of an object.
<a name="index-mode"></a>
<a name="index-length-1"></a>
</p>
<p>For example, if <code>z</code> is a complex vector of length 100, then in an
expression <code>mode(z)</code> is the character string <code>"complex"</code> and
<code>length(z)</code> is <code>100</code>.
</p>
<p>R caters for changes of mode almost anywhere it could be considered
sensible to do so, (and a few where it might not be). For example with
</p>
<div class="example">
<pre class="example">> z <- 0:9
</pre></div>
<p>we could put
</p>
<div class="example">
<pre class="example">> digits <- as.character(z)
</pre></div>
<p>after which <code>digits</code> is the character vector <code>c("0", "1", "2",
…, "9")</code>. A further <em>coercion</em>, or change of mode,
reconstructs the numerical vector again:
</p>
<div class="example">
<pre class="example">> d <- as.integer(digits)
</pre></div>
<p>Now <code>d</code> and <code>z</code> are the same.<a name="DOCF12" href="#FOOT12"><sup>12</sup></a> There is a
large collection of functions of the form <code>as.<var>something</var>()</code>
for either coercion from one mode to another, or for investing an object
with some other attribute it may not already possess. The reader should
consult the different help files to become familiar with them.
</p>
<hr>
<a name="Changing-the-length-of-an-object"></a>
<div class="header">
<p>
Next: <a href="#Getting-and-setting-attributes" accesskey="n" rel="next">Getting and setting attributes</a>, Previous: <a href="#The-intrinsic-attributes-mode-and-length" accesskey="p" rel="prev">The intrinsic attributes mode and length</a>, Up: <a href="#Objects" accesskey="u" rel="up">Objects</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Changing-the-length-of-an-object-1"></a>
<h3 class="section">3.2 Changing the length of an object</h3>
<p>An “empty” object may still have a mode. For example
</p>
<div class="example">
<pre class="example">> e <- numeric()
</pre></div>
<p>makes <code>e</code> an empty vector structure of mode numeric. Similarly
<code>character()</code> is a empty character vector, and so on. Once an
object of any size has been created, new components may be added to it
simply by giving it an index value outside its previous range. Thus
</p>
<div class="example">
<pre class="example">> e[3] <- 17
</pre></div>
<p>now makes <code>e</code> a vector of length 3, (the first two components of
which are at this point both <code>NA</code>). This applies to any structure
at all, provided the mode of the additional component(s) agrees with the
mode of the object in the first place.
</p>
<p>This automatic adjustment of lengths of an object is used often, for
example in the <code>scan()</code> function for input. (see <a href="#The-scan_0028_0029-function">The scan() function</a>.)
</p>
<p>Conversely to truncate the size of an object requires only an assignment
to do so. Hence if <code>alpha</code> is an object of length 10, then
</p>
<div class="example">
<pre class="example">> alpha <- alpha[2 * 1:5]
</pre></div>
<p>makes it an object of length 5 consisting of just the former components
with even index. (The old indices are not retained, of course.) We can
then retain just the first three values by
</p>
<div class="example">
<pre class="example">> length(alpha) <- 3
</pre></div>
<p>and vectors can be extended (by missing values) in the same way.
</p>
<hr>
<a name="Getting-and-setting-attributes"></a>
<div class="header">
<p>
Next: <a href="#The-class-of-an-object" accesskey="n" rel="next">The class of an object</a>, Previous: <a href="#Changing-the-length-of-an-object" accesskey="p" rel="prev">Changing the length of an object</a>, Up: <a href="#Objects" accesskey="u" rel="up">Objects</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Getting-and-setting-attributes-1"></a>
<h3 class="section">3.3 Getting and setting attributes</h3>
<a name="index-attr"></a>
<a name="index-attributes"></a>
<p>The function <code>attributes(<var>object</var>)</code>
<a name="index-attributes-1"></a>
returns a list of all the non-intrinsic attributes currently defined for
that object. The function <code>attr(<var>object</var>, <var>name</var>)</code>
<a name="index-attr-1"></a>
can be used to select a specific attribute. These functions are rarely
used, except in rather special circumstances when some new attribute is
being created for some particular purpose, for example to associate a
creation date or an operator with an R object. The concept, however,
is very important.
</p>
<p>Some care should be exercised when assigning or deleting attributes
since they are an integral part of the object system used in R.
</p>
<p>When it is used on the left hand side of an assignment it can be used
either to associate a new attribute with <code><var>object</var></code> or to
change an existing one. For example
</p>
<div class="example">
<pre class="example">> attr(z, "dim") <- c(10,10)
</pre></div>
<p>allows R to treat <code>z</code> as if it were a 10-by-10 matrix.
</p>
<hr>
<a name="The-class-of-an-object"></a>
<div class="header">
<p>
Previous: <a href="#Getting-and-setting-attributes" accesskey="p" rel="prev">Getting and setting attributes</a>, Up: <a href="#Objects" accesskey="u" rel="up">Objects</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="The-class-of-an-object-1"></a>
<h3 class="section">3.4 The class of an object</h3>
<a name="index-Classes"></a>
<p>All objects in R have a <em>class</em>, reported by the function
<code>class</code>. For simple vectors this is just the mode, for example
<code>"numeric"</code>, <code>"logical"</code>, <code>"character"</code> or <code>"list"</code>,
but <code>"matrix"</code>, <code>"array"</code>, <code>"factor"</code> and
<code>"data.frame"</code> are other possible values.
</p>
<p>A special attribute known as the <em>class</em> of the object is used to
allow for an object-oriented style<a name="DOCF13" href="#FOOT13"><sup>13</sup></a> of
programming in R. For example if an object has class
<code>"data.frame"</code>, it will be printed in a certain way, the
<code>plot()</code> function will display it graphically in a certain way, and
other so-called generic functions such as <code>summary()</code> will react to
it as an argument in a way sensitive to its class.
</p>
<p>To remove temporarily the effects of class, use the function
<code>unclass()</code>.
<a name="index-unclass"></a>
For example if <code>winter</code> has the class <code>"data.frame"</code> then
</p>
<div class="example">
<pre class="example">> winter
</pre></div>
<p>will print it in data frame form, which is rather like a matrix, whereas
</p>
<div class="example">
<pre class="example">> unclass(winter)
</pre></div>
<p>will print it as an ordinary list. Only in rather special situations do
you need to use this facility, but one is when you are learning to come
to terms with the idea of class and generic functions.
</p>
<p>Generic functions and classes will be discussed further in <a href="#Object-orientation">Object orientation</a>, but only briefly.
</p>
<hr>
<a name="Factors"></a>
<div class="header">
<p>
Next: <a href="#Arrays-and-matrices" accesskey="n" rel="next">Arrays and matrices</a>, Previous: <a href="#Objects" accesskey="p" rel="prev">Objects</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Ordered-and-unordered-factors"></a>
<h2 class="chapter">4 Ordered and unordered factors</h2>
<a name="index-Factors"></a>
<a name="index-Ordered-factors"></a>
<p>A <em>factor</em> is a vector object used to specify a discrete
classification (grouping) of the components of other vectors of the same length.
R provides both <em>ordered</em> and <em>unordered</em> factors.
While the “real” application of factors is with model formulae
(see <a href="#Contrasts">Contrasts</a>), we here look at a specific example.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#The-function-tapply_0028_0029-and-ragged-arrays" accesskey="1">The function tapply() and ragged arrays</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Ordered-factors" accesskey="2">Ordered factors</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<a name="A-specific-example"></a>
<h3 class="section">4.1 A specific example</h3>
<p>Suppose, for example, we have a sample of 30 tax accountants from all
the states and territories of Australia<a name="DOCF14" href="#FOOT14"><sup>14</sup></a>
and their individual state of origin is specified by a character vector
of state mnemonics as
</p>
<div class="example">
<pre class="example">> state <- c("tas", "sa", "qld", "nsw", "nsw", "nt", "wa", "wa",
"qld", "vic", "nsw", "vic", "qld", "qld", "sa", "tas",
"sa", "nt", "wa", "vic", "qld", "nsw", "nsw", "wa",
"sa", "act", "nsw", "vic", "vic", "act")
</pre></div>
<p>Notice that in the case of a character vector, “sorted” means sorted
in alphabetical order.
</p>
<p>A <em>factor</em> is similarly created using the <code>factor()</code> function:
<a name="index-factor"></a>
</p>
<div class="example">
<pre class="example">> statef <- factor(state)
</pre></div>
<p>The <code>print()</code> function handles factors slightly differently from
other objects:
</p>
<div class="example">
<pre class="example">> statef
[1] tas sa qld nsw nsw nt wa wa qld vic nsw vic qld qld sa
[16] tas sa nt wa vic qld nsw nsw wa sa act nsw vic vic act
Levels: act nsw nt qld sa tas vic wa
</pre></div>
<p>To find out the levels of a factor the function <code>levels()</code> can be
used.
<a name="index-levels"></a>
</p>
<div class="example">
<pre class="example">> levels(statef)
[1] "act" "nsw" "nt" "qld" "sa" "tas" "vic" "wa"
</pre></div>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#The-function-tapply_0028_0029-and-ragged-arrays" accesskey="1">The function tapply() and ragged arrays</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Ordered-factors" accesskey="2">Ordered factors</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="The-function-tapply_0028_0029-and-ragged-arrays"></a>
<div class="header">
<p>
Next: <a href="#Ordered-factors" accesskey="n" rel="next">Ordered factors</a>, Previous: <a href="#Factors" accesskey="p" rel="prev">Factors</a>, Up: <a href="#Factors" accesskey="u" rel="up">Factors</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="The-function-tapply_0028_0029-and-ragged-arrays-1"></a>
<h3 class="section">4.2 The function <code>tapply()</code> and ragged arrays</h3>
<a name="index-tapply"></a>
<p>To continue the previous example, suppose we have the incomes of the
same tax accountants in another vector (in suitably large units of
money)
</p>
<div class="example">
<pre class="example">> incomes <- c(60, 49, 40, 61, 64, 60, 59, 54, 62, 69, 70, 42, 56,
61, 61, 61, 58, 51, 48, 65, 49, 49, 41, 48, 52, 46,
59, 46, 58, 43)
</pre></div>
<p>To calculate the sample mean income for each state we can now use the
special function <code>tapply()</code>:
</p>
<div class="example">
<pre class="example">> incmeans <- tapply(incomes, statef, mean)
</pre></div>
<p>giving a means vector with the components labelled by the levels
</p>
<div class="example">
<pre class="example"> act nsw nt qld sa tas vic wa
44.500 57.333 55.500 53.600 55.000 60.500 56.000 52.250
</pre></div>
<p>The function <code>tapply()</code> is used to apply a function, here
<code>mean()</code>, to each group of components of the first argument, here
<code>incomes</code>, defined by the levels of the second component, here
<code>statef</code><a name="DOCF15" href="#FOOT15"><sup>15</sup></a>, as if they were separate vector
structures. The result is a structure of the same length as the levels
attribute of the factor containing the results. The reader should
consult the help document for more details.
</p>
<p>Suppose further we needed to calculate the standard errors of the state
income means. To do this we need to write an R function to calculate
the standard error for any given vector. Since there is an builtin
function <code>var()</code> to calculate the sample variance, such a function
is a very simple one liner, specified by the assignment:
</p>
<div class="example">
<pre class="example">> stdError <- function(x) sqrt(var(x)/length(x))
</pre></div>
<p>(Writing functions will be considered later in <a href="#Writing-your-own-functions">Writing your own functions</a>. Note that R’s a builtin function <code>sd()</code> is something different.)
<a name="index-sd"></a>
<a name="index-var-1"></a>
After this assignment, the standard errors are calculated by
</p>
<div class="example">
<pre class="example">> incster <- tapply(incomes, statef, stdError)
</pre></div>
<p>and the values calculated are then
</p>
<div class="example">
<pre class="example">> incster
act nsw nt qld sa tas vic wa
1.5 4.3102 4.5 4.1061 2.7386 0.5 5.244 2.6575
</pre></div>
<p>As an exercise you may care to find the usual 95% confidence limits for
the state mean incomes. To do this you could use <code>tapply()</code> once
more with the <code>length()</code> function to find the sample sizes, and the
<code>qt()</code> function to find the percentage points of the appropriate
<em>t</em>-distributions. (You could also investigate R’s facilities
for <em>t</em>-tests.)
</p>
<p>The function <code>tapply()</code> can also be used to handle more complicated
indexing of a vector by multiple categories. For example, we might wish
to split the tax accountants by both state and sex. However in this
simple instance (just one factor) what happens can be thought of as
follows. The values in the vector are collected into groups
corresponding to the distinct entries in the factor. The function is
then applied to each of these groups individually. The value is a
vector of function results, labelled by the <code>levels</code> attribute of
the factor.
</p>
<p>The combination of a vector and a labelling factor is an example of what
is sometimes called a <em>ragged array</em>, since the subclass sizes are
possibly irregular. When the subclass sizes are all the same the
indexing may be done implicitly and much more efficiently, as we see in
the next section.
</p>
<hr>
<a name="Ordered-factors"></a>
<div class="header">
<p>
Previous: <a href="#The-function-tapply_0028_0029-and-ragged-arrays" accesskey="p" rel="prev">The function tapply() and ragged arrays</a>, Up: <a href="#Factors" accesskey="u" rel="up">Factors</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Ordered-factors-1"></a>
<h3 class="section">4.3 Ordered factors</h3>
<a name="index-ordered"></a>
<p>The levels of factors are stored in alphabetical order, or in the order
they were specified to <code>factor</code> if they were specified explicitly.
</p>
<p>Sometimes the levels will have a natural ordering that we want to record
and want our statistical analysis to make use of. The <code>ordered()</code>
<a name="index-ordered-1"></a>
function creates such ordered factors but is otherwise identical to
<code>factor</code>. For most purposes the only difference between ordered
and unordered factors is that the former are printed showing the
ordering of the levels, but the contrasts generated for them in fitting
linear models are different.
</p>
<hr>
<a name="Arrays-and-matrices"></a>
<div class="header">
<p>
Next: <a href="#Lists-and-data-frames" accesskey="n" rel="next">Lists and data frames</a>, Previous: <a href="#Factors" accesskey="p" rel="prev">Factors</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Arrays-and-matrices-1"></a>
<h2 class="chapter">5 Arrays and matrices</h2>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Arrays" accesskey="1">Arrays</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Array-indexing" accesskey="2">Array indexing</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Index-matrices" accesskey="3">Index matrices</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-array_0028_0029-function" accesskey="4">The array() function</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-outer-product-of-two-arrays" accesskey="5">The outer product of two arrays</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Generalized-transpose-of-an-array" accesskey="6">Generalized transpose of an array</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Matrix-facilities" accesskey="7">Matrix facilities</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Forming-partitioned-matrices" accesskey="8">Forming partitioned matrices</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-concatenation-function-c_0028_0029-with-arrays" accesskey="9">The concatenation function c() with arrays</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Frequency-tables-from-factors">Frequency tables from factors</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Arrays"></a>
<div class="header">
<p>
Next: <a href="#Array-indexing" accesskey="n" rel="next">Array indexing</a>, Previous: <a href="#Arrays-and-matrices" accesskey="p" rel="prev">Arrays and matrices</a>, Up: <a href="#Arrays-and-matrices" accesskey="u" rel="up">Arrays and matrices</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Arrays-1"></a>
<h3 class="section">5.1 Arrays</h3>
<a name="index-Arrays"></a>
<a name="index-Matrices"></a>
<p>An array can be considered as a multiply subscripted collection of data
entries, for example numeric. R allows simple facilities for
creating and handling arrays, and in particular the special case of
matrices.
</p>
<p>A dimension vector is a vector of non-negative integers. If its length is
<em>k</em> then the array is <em>k</em>-dimensional, e.g. a matrix is a
<em>2</em>-dimensional array. The dimensions are indexed from one up to
the values given in the dimension vector.
</p>
<p>A vector can be used by R as an array only if it has a dimension
vector as its <em>dim</em> attribute. Suppose, for example, <code>z</code> is a
vector of 1500 elements. The assignment
</p>
<div class="example">
<pre class="example">> dim(z) <- c(3,5,100)
</pre></div>
<a name="index-dim"></a>
<p>gives it the <em>dim</em> attribute that allows it to be treated as a
<em>3</em> by <em>5</em> by <em>100</em> array.
</p>
<p>Other functions such as <code>matrix()</code> and <code>array()</code> are available
for simpler and more natural looking assignments, as we shall see in
<a href="#The-array_0028_0029-function">The array() function</a>.
</p>
<p>The values in the data vector give the values in the array in the same
order as they would occur in FORTRAN, that is “column major order,”
with the first subscript moving fastest and the last subscript slowest.
</p>
<p>For example if the dimension vector for an array, say <code>a</code>, is
<code>c(3,4,2)</code> then there are 3 * 4 * 2
= 24 entries in <code>a</code> and the data vector holds them in the order
<code>a[1,1,1], a[2,1,1], …, a[2,4,2], a[3,4,2]</code>.
</p>
<p>Arrays can be one-dimensional: such arrays are usually treated in the
same way as vectors (including when printing), but the exceptions can
cause confusion.
</p>
<hr>
<a name="Array-indexing"></a>
<div class="header">
<p>
Next: <a href="#Index-matrices" accesskey="n" rel="next">Index matrices</a>, Previous: <a href="#Arrays" accesskey="p" rel="prev">Arrays</a>, Up: <a href="#Arrays-and-matrices" accesskey="u" rel="up">Arrays and matrices</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Array-indexing_002e-Subsections-of-an-array"></a>
<h3 class="section">5.2 Array indexing. Subsections of an array</h3>
<a name="index-Indexing-of-and-by-arrays"></a>
<p>Individual elements of an array may be referenced by giving the name of
the array followed by the subscripts in square brackets, separated by
commas.
</p>
<p>More generally, subsections of an array may be specified by giving a
sequence of <em>index vectors</em> in place of subscripts; however
<em>if any index position is given an empty index vector, then the
full range of that subscript is taken</em>.
</p>
<p>Continuing the previous example, <code>a[2,,]</code> is a 4 *
2 array with dimension vector <code>c(4,2)</code> and data vector containing
the values
</p>
<div class="example">
<pre class="example">c(a[2,1,1], a[2,2,1], a[2,3,1], a[2,4,1],
a[2,1,2], a[2,2,2], a[2,3,2], a[2,4,2])
</pre></div>
<p>in that order. <code>a[,,]</code> stands for the entire array, which is the
same as omitting the subscripts entirely and using <code>a</code> alone.
</p>
<p>For any array, say <code>Z</code>, the dimension vector may be referenced
explicitly as <code>dim(Z)</code> (on either side of an assignment).
</p>
<p>Also, if an array name is given with just <em>one subscript or index
vector</em>, then the corresponding values of the data vector only are used;
in this case the dimension vector is ignored. This is not the case,
however, if the single index is not a vector but itself an array, as we
next discuss.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Index-matrices" accesskey="1">Index matrices</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-array_0028_0029-function" accesskey="2">The array() function</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Index-matrices"></a>
<div class="header">
<p>
Next: <a href="#The-array_0028_0029-function" accesskey="n" rel="next">The array() function</a>, Previous: <a href="#Array-indexing" accesskey="p" rel="prev">Array indexing</a>, Up: <a href="#Arrays-and-matrices" accesskey="u" rel="up">Arrays and matrices</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Index-matrices-1"></a>
<h3 class="section">5.3 Index matrices</h3>
<p>As well as an index vector in any subscript position, a matrix may be
used with a single <em>index matrix</em> in order either to assign a vector
of quantities to an irregular collection of elements in the array, or to
extract an irregular collection as a vector.
</p>
<p>A matrix example makes the process clear. In the case of a doubly
indexed array, an index matrix may be given consisting of two columns
and as many rows as desired. The entries in the index matrix are the
row and column indices for the doubly indexed array. Suppose for
example we have a <em>4</em> by <em>5</em> array <code>X</code> and we wish to do
the following:
</p>
<ul>
<li> Extract elements <code>X[1,3]</code>, <code>X[2,2]</code> and <code>X[3,1]</code> as a
vector structure, and
</li><li> Replace these entries in the array <code>X</code> by zeroes.
</li></ul>
<p>In this case we need a <em>3</em> by <em>2</em> subscript array, as in the
following example.
</p>
<div class="example">
<pre class="example">> x <- array(1:20, dim=c(4,5)) # <span class="roman">Generate a 4 by 5 array.</span>
> x
[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20
> i <- array(c(1:3,3:1), dim=c(3,2))
> i # <span class="roman"><code>i</code> is a 3 by 2 index array.</span>
[,1] [,2]
[1,] 1 3
[2,] 2 2
[3,] 3 1
> x[i] # <span class="roman">Extract those elements</span>
[1] 9 6 3
> x[i] <- 0 # <span class="roman">Replace those elements by zeros.</span>
> x
[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 0 13 17
[2,] 2 0 10 14 18
[3,] 0 7 11 15 19
[4,] 4 8 12 16 20
>
</pre></div>
<p>Negative indices are not allowed in index matrices. <code>NA</code> and zero
values are allowed: rows in the index matrix containing a zero are
ignored, and rows containing an <code>NA</code> produce an <code>NA</code> in the
result.
</p>
<p>As a less trivial example, suppose we wish to generate an (unreduced)
design matrix for a block design defined by factors <code>blocks</code>
(<code>b</code> levels) and <code>varieties</code> (<code>v</code> levels). Further
suppose there are <code>n</code> plots in the experiment. We could proceed as
follows:
</p>
<div class="example">
<pre class="example">> Xb <- matrix(0, n, b)
> Xv <- matrix(0, n, v)
> ib <- cbind(1:n, blocks)
> iv <- cbind(1:n, varieties)
> Xb[ib] <- 1
> Xv[iv] <- 1
> X <- cbind(Xb, Xv)
</pre></div>
<p>To construct the incidence matrix, <code>N</code> say, we could use
</p>
<div class="example">
<pre class="example">> N <- crossprod(Xb, Xv)
</pre></div>
<a name="index-crossprod"></a>
<p>However a simpler direct way of producing this matrix is to use
<code>table()</code>:
<a name="index-table"></a>
</p>
<div class="example">
<pre class="example">> N <- table(blocks, varieties)
</pre></div>
<p>Index matrices must be numerical: any other form of matrix (e.g. a
logical or character matrix) supplied as a matrix is treated as an
indexing vector.
</p>
<hr>
<a name="The-array_0028_0029-function"></a>
<div class="header">
<p>
Next: <a href="#The-outer-product-of-two-arrays" accesskey="n" rel="next">The outer product of two arrays</a>, Previous: <a href="#Index-matrices" accesskey="p" rel="prev">Index matrices</a>, Up: <a href="#Arrays-and-matrices" accesskey="u" rel="up">Arrays and matrices</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="The-array_0028_0029-function-1"></a>
<h3 class="section">5.4 The <code>array()</code> function</h3>
<a name="index-array"></a>
<p>As well as giving a vector structure a <code>dim</code> attribute, arrays can
be constructed from vectors by the <code>array</code> function, which has the
form
</p>
<div class="example">
<pre class="example">> Z <- array(<var>data_vector</var>, <var>dim_vector</var>)
</pre></div>
<p>For example, if the vector <code>h</code> contains 24 or fewer, numbers then
the command
</p>
<div class="example">
<pre class="example">> Z <- array(h, dim=c(3,4,2))
</pre></div>
<p>would use <code>h</code> to set up <em>3</em> by <em>4</em> by <em>2</em> array in
<code>Z</code>. If the size of <code>h</code> is exactly 24 the result is the same as
</p>
<div class="example">
<pre class="example">> Z <- h ; dim(Z) <- c(3,4,2)
</pre></div>
<p>However if <code>h</code> is shorter than 24, its values are recycled from the
beginning again to make it up to size 24 (see <a href="#The-recycling-rule">The recycling rule</a>)
but <code>dim(h) <- c(3,4,2)</code> would signal an error about mismatching
length.
As an extreme but common example
</p>
<div class="example">
<pre class="example">> Z <- array(0, c(3,4,2))
</pre></div>
<p>makes <code>Z</code> an array of all zeros.
</p>
<p>At this point <code>dim(Z)</code> stands for the dimension vector
<code>c(3,4,2)</code>, and <code>Z[1:24]</code> stands for the data vector as it was
in <code>h</code>, and <code>Z[]</code> with an empty subscript or <code>Z</code> with no
subscript stands for the entire array as an array.
</p>
<p>Arrays may be used in arithmetic expressions and the result is an array
formed by element-by-element operations on the data vector. The
<code>dim</code> attributes of operands generally need to be the same, and
this becomes the dimension vector of the result. So if <code>A</code>,
<code>B</code> and <code>C</code> are all similar arrays, then
</p>
<div class="example">
<pre class="example">> D <- 2*A*B + C + 1
</pre></div>
<p>makes <code>D</code> a similar array with its data vector being the result of
the given element-by-element operations. However the precise rule
concerning mixed array and vector calculations has to be considered a
little more carefully.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#The-recycling-rule" accesskey="1">The recycling rule</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="The-recycling-rule"></a>
<div class="header">
<p>
Previous: <a href="#The-array_0028_0029-function" accesskey="p" rel="prev">The array() function</a>, Up: <a href="#The-array_0028_0029-function" accesskey="u" rel="up">The array() function</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Mixed-vector-and-array-arithmetic_002e-The-recycling-rule"></a>
<h4 class="subsection">5.4.1 Mixed vector and array arithmetic. The recycling rule</h4>
<a name="index-Recycling-rule-1"></a>
<p>The precise rule affecting element by element mixed calculations with
vectors and arrays is somewhat quirky and hard to find in the
references. From experience we have found the following to be a reliable
guide.
</p>
<ul>
<li> The expression is scanned from left to right.
</li><li> Any short vector operands are extended by recycling their values until
they match the size of any other operands.
</li><li> As long as short vectors and arrays <em>only</em> are encountered, the
arrays must all have the same <code>dim</code> attribute or an error results.
</li><li> Any vector operand longer than a matrix or array operand generates an error.
</li><li> If array structures are present and no error or coercion to vector has
been precipitated, the result is an array structure with the common
<code>dim</code> attribute of its array operands.
</li></ul>
<hr>
<a name="The-outer-product-of-two-arrays"></a>
<div class="header">
<p>
Next: <a href="#Generalized-transpose-of-an-array" accesskey="n" rel="next">Generalized transpose of an array</a>, Previous: <a href="#The-array_0028_0029-function" accesskey="p" rel="prev">The array() function</a>, Up: <a href="#Arrays-and-matrices" accesskey="u" rel="up">Arrays and matrices</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="The-outer-product-of-two-arrays-1"></a>
<h3 class="section">5.5 The outer product of two arrays</h3>
<a name="index-Outer-products-of-arrays"></a>
<p>An important operation on arrays is the <em>outer product</em>. If
<code>a</code> and <code>b</code> are two numeric arrays, their outer product is an
array whose dimension vector is obtained by concatenating their two
dimension vectors (order is important), and whose data vector is got by
forming all possible products of elements of the data vector of <code>a</code>
with those of <code>b</code>. The outer product is formed by the special
operator <code>%o%</code>:
<a name="index-_0025o_0025"></a>
</p>
<div class="example">
<pre class="example">> ab <- a %o% b
</pre></div>
<p>An alternative is
</p>
<div class="example">
<pre class="example">> ab <- outer(a, b, "*")
</pre></div>
<a name="index-outer"></a>
<p>The multiplication function can be replaced by an arbitrary function of
two variables. For example if we wished to evaluate the function
f(x; y) = cos(y)/(1 + x^2)
over a regular grid of values with <em>x</em>- and <em>y</em>-coordinates
defined by the R vectors <code>x</code> and <code>y</code> respectively, we could
proceed as follows:
</p>
<div class="example">
<pre class="example">> f <- function(x, y) cos(y)/(1 + x^2)
> z <- outer(x, y, f)
</pre></div>
<p>In particular the outer product of two ordinary vectors is a doubly
subscripted array (that is a matrix, of rank at most 1). Notice that
the outer product operator is of course non-commutative. Defining your
own R functions will be considered further in <a href="#Writing-your-own-functions">Writing your own functions</a>.
</p>
<a name="An-example_003a-Determinants-of-2-by-2-single_002ddigit-matrices"></a>
<h4 class="subsubheading">An example: Determinants of 2 by 2 single-digit matrices</h4>
<p>As an artificial but cute example, consider the determinants of <em>2</em>
by <em>2</em> matrices <em>[a, b; c, d]</em> where each entry is a
non-negative integer in the range <em>0, 1, …, 9</em>, that is a
digit.
</p>
<p>The problem is to find the determinants, <em>ad - bc</em>, of all possible
matrices of this form and represent the frequency with which each value
occurs as a <em>high density</em> plot. This amounts to finding the
probability distribution of the determinant if each digit is chosen
independently and uniformly at random.
</p>
<p>A neat way of doing this uses the <code>outer()</code> function twice:
</p>
<div class="example">
<pre class="example">> d <- outer(0:9, 0:9)
> fr <- table(outer(d, d, "-"))
> plot(fr, xlab="Determinant", ylab="Frequency")
</pre></div>
<p>Notice that <code>plot()</code> here uses a histogram like plot method, because
it “sees” that <code>fr</code> is of class <code>"table"</code>.
The “obvious” way of doing this problem with <code>for</code> loops, to be
discussed in <a href="#Loops-and-conditional-execution">Loops and conditional execution</a>, is so inefficient as
to be impractical.
</p>
<p>It is also perhaps surprising that about 1 in 20 such matrices is
singular.
</p>
<hr>
<a name="Generalized-transpose-of-an-array"></a>
<div class="header">
<p>
Next: <a href="#Matrix-facilities" accesskey="n" rel="next">Matrix facilities</a>, Previous: <a href="#The-outer-product-of-two-arrays" accesskey="p" rel="prev">The outer product of two arrays</a>, Up: <a href="#Arrays-and-matrices" accesskey="u" rel="up">Arrays and matrices</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Generalized-transpose-of-an-array-1"></a>
<h3 class="section">5.6 Generalized transpose of an array</h3>
<a name="index-Generalized-transpose-of-an-array"></a>
<p>The function <code>aperm(a, perm)</code>
<a name="index-aperm"></a>
may be used to permute an array, <code>a</code>. The argument <code>perm</code>
must be a permutation of the integers <em>{1, …, k}</em>, where
<em>k</em> is the number of subscripts in <code>a</code>. The result of the
function is an array of the same size as <code>a</code> but with old dimension
given by <code>perm[j]</code> becoming the new <code>j</code>-th dimension. The
easiest way to think of this operation is as a generalization of
transposition for matrices. Indeed if <code>A</code> is a matrix, (that is, a
doubly subscripted array) then <code>B</code> given by
</p>
<div class="example">
<pre class="example">> B <- aperm(A, c(2,1))
</pre></div>
<p>is just the transpose of <code>A</code>. For this special case a simpler
function <code>t()</code>
<a name="index-t"></a>
is available, so we could have used <code>B <- t(A)</code>.
</p>
<hr>
<a name="Matrix-facilities"></a>
<div class="header">
<p>
Next: <a href="#Forming-partitioned-matrices" accesskey="n" rel="next">Forming partitioned matrices</a>, Previous: <a href="#Generalized-transpose-of-an-array" accesskey="p" rel="prev">Generalized transpose of an array</a>, Up: <a href="#Arrays-and-matrices" accesskey="u" rel="up">Arrays and matrices</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Matrix-facilities-1"></a>
<h3 class="section">5.7 Matrix facilities</h3>
<p>As noted above, a matrix is just an array with two subscripts. However
it is such an important special case it needs a separate discussion.
R contains many operators and functions that are available only for
matrices. For example <code>t(X)</code> is the matrix transpose function, as
noted above. The functions <code>nrow(A)</code> and <code>ncol(A)</code> give the
number of rows and columns in the matrix <code>A</code> respectively.
<a name="index-nrow"></a>
<a name="index-ncol"></a>
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Multiplication" accesskey="1">Multiplication</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Linear-equations-and-inversion" accesskey="2">Linear equations and inversion</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Eigenvalues-and-eigenvectors" accesskey="3">Eigenvalues and eigenvectors</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Singular-value-decomposition-and-determinants" accesskey="4">Singular value decomposition and determinants</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Least-squares-fitting-and-the-QR-decomposition" accesskey="5">Least squares fitting and the QR decomposition</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Multiplication"></a>
<div class="header">
<p>
Next: <a href="#Linear-equations-and-inversion" accesskey="n" rel="next">Linear equations and inversion</a>, Previous: <a href="#Matrix-facilities" accesskey="p" rel="prev">Matrix facilities</a>, Up: <a href="#Matrix-facilities" accesskey="u" rel="up">Matrix facilities</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Matrix-multiplication"></a>
<h4 class="subsection">5.7.1 Matrix multiplication</h4>
<a name="index-Matrix-multiplication"></a>
<p>The operator <code>%*%</code> is used for matrix multiplication.
<a name="index-_0025_002a_0025"></a>
An <em>n</em> by <em>1</em> or <em>1</em> by <em>n</em> matrix may of course be
used as an <em>n</em>-vector if in the context such is appropriate.
Conversely, vectors which occur in matrix multiplication expressions are
automatically promoted either to row or column vectors, whichever is
multiplicatively coherent, if possible, (although this is not always
unambiguously possible, as we see later).
</p>
<p>If, for example, <code>A</code> and <code>B</code> are square matrices of the same
size, then
</p>
<div class="example">
<pre class="example">> A * B
</pre></div>
<p>is the matrix of element by element products and
</p>
<div class="example">
<pre class="example">> A %*% B
</pre></div>
<p>is the matrix product. If <code>x</code> is a vector, then
</p>
<div class="example">
<pre class="example">> x %*% A %*% x
</pre></div>
<p>is a quadratic form.<a name="DOCF16" href="#FOOT16"><sup>16</sup></a>
</p>
<a name="index-crossprod-1"></a>
<p>The function <code>crossprod()</code> forms “crossproducts”, meaning that
<code>crossprod(X, y)</code> is the same as <code>t(X) %*% y</code> but the
operation is more efficient. If the second argument to
<code>crossprod()</code> is omitted it is taken to be the same as the first.
</p>
<a name="index-diag"></a>
<p>The meaning of <code>diag()</code> depends on its argument. <code>diag(v)</code>,
where <code>v</code> is a vector, gives a diagonal matrix with elements of the
vector as the diagonal entries. On the other hand <code>diag(M)</code>, where
<code>M</code> is a matrix, gives the vector of main diagonal entries of
<code>M</code>. This is the same convention as that used for <code>diag()</code> in
<small>MATLAB</small>. Also, somewhat confusingly, if <code>k</code> is a single
numeric value then <code>diag(k)</code> is the <code>k</code> by <code>k</code> identity
matrix!
</p>
<hr>
<a name="Linear-equations-and-inversion"></a>
<div class="header">
<p>
Next: <a href="#Eigenvalues-and-eigenvectors" accesskey="n" rel="next">Eigenvalues and eigenvectors</a>, Previous: <a href="#Multiplication" accesskey="p" rel="prev">Multiplication</a>, Up: <a href="#Matrix-facilities" accesskey="u" rel="up">Matrix facilities</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Linear-equations-and-inversion-1"></a>
<h4 class="subsection">5.7.2 Linear equations and inversion</h4>
<a name="index-Linear-equations"></a>
<a name="index-solve"></a>
<p>Solving linear equations is the inverse of matrix multiplication.
When after
</p>
<div class="example">
<pre class="example">> b <- A %*% x
</pre></div>
<p>only <code>A</code> and <code>b</code> are given, the vector <code>x</code> is the
solution of that linear equation system. In R,
</p>
<div class="example">
<pre class="example">> solve(A,b)
</pre></div>
<p>solves the system, returning <code>x</code> (up to some accuracy loss).
Note that in linear algebra, formally
<code>x = A^{-1} %*% b</code>
where
<code>A^{-1}</code> denotes the <em>inverse</em> of
<code>A</code>, which can be computed by
</p>
<div class="example">
<pre class="example">solve(A)
</pre></div>
<p>but rarely is needed. Numerically, it is both inefficient and
potentially unstable to compute <code>x <- solve(A) %*% b</code> instead of
<code>solve(A,b)</code>.
</p>
<p>The quadratic form <code>x %*% A^{-1} %*%
x</code> which is used in multivariate computations, should be computed by
something like<a name="DOCF17" href="#FOOT17"><sup>17</sup></a> <code>x %*% solve(A,x)</code>, rather
than computing the inverse of <code>A</code>.
</p>
<hr>
<a name="Eigenvalues-and-eigenvectors"></a>
<div class="header">
<p>
Next: <a href="#Singular-value-decomposition-and-determinants" accesskey="n" rel="next">Singular value decomposition and determinants</a>, Previous: <a href="#Linear-equations-and-inversion" accesskey="p" rel="prev">Linear equations and inversion</a>, Up: <a href="#Matrix-facilities" accesskey="u" rel="up">Matrix facilities</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Eigenvalues-and-eigenvectors-1"></a>
<h4 class="subsection">5.7.3 Eigenvalues and eigenvectors</h4>
<a name="index-Eigenvalues-and-eigenvectors"></a>
<a name="index-eigen"></a>
<p>The function <code>eigen(Sm)</code> calculates the eigenvalues and
eigenvectors of a symmetric matrix <code>Sm</code>. The result of this
function is a list of two components named <code>values</code> and
<code>vectors</code>. The assignment
</p>
<div class="example">
<pre class="example">> ev <- eigen(Sm)
</pre></div>
<p>will assign this list to <code>ev</code>. Then <code>ev$val</code> is the vector of
eigenvalues of <code>Sm</code> and <code>ev$vec</code> is the matrix of
corresponding eigenvectors. Had we only needed the eigenvalues we could
have used the assignment:
</p>
<div class="example">
<pre class="example">> evals <- eigen(Sm)$values
</pre></div>
<p><code>evals</code> now holds the vector of eigenvalues and the second
component is discarded. If the expression
</p>
<div class="example">
<pre class="example">> eigen(Sm)
</pre></div>
<p>is used by itself as a command the two components are printed, with
their names. For large matrices it is better to avoid computing the
eigenvectors if they are not needed by using the expression
</p>
<div class="example">
<pre class="example">> evals <- eigen(Sm, only.values = TRUE)$values
</pre></div>
<hr>
<a name="Singular-value-decomposition-and-determinants"></a>
<div class="header">
<p>
Next: <a href="#Least-squares-fitting-and-the-QR-decomposition" accesskey="n" rel="next">Least squares fitting and the QR decomposition</a>, Previous: <a href="#Eigenvalues-and-eigenvectors" accesskey="p" rel="prev">Eigenvalues and eigenvectors</a>, Up: <a href="#Matrix-facilities" accesskey="u" rel="up">Matrix facilities</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Singular-value-decomposition-and-determinants-1"></a>
<h4 class="subsection">5.7.4 Singular value decomposition and determinants</h4>
<a name="index-Singular-value-decomposition"></a>
<a name="index-svd"></a>
<p>The function <code>svd(M)</code> takes an arbitrary matrix argument, <code>M</code>,
and calculates the singular value decomposition of <code>M</code>. This
consists of a matrix of orthonormal columns <code>U</code> with the same
column space as <code>M</code>, a second matrix of orthonormal columns
<code>V</code> whose column space is the row space of <code>M</code> and a diagonal
matrix of positive entries <code>D</code> such that <code>M = U %*% D %*%
t(V)</code>. <code>D</code> is actually returned as a vector of the diagonal
elements. The result of <code>svd(M)</code> is actually a list of three
components named <code>d</code>, <code>u</code> and <code>v</code>, with evident meanings.
</p>
<p>If <code>M</code> is in fact square, then, it is not hard to see that
</p>
<div class="example">
<pre class="example">> absdetM <- prod(svd(M)$d)
</pre></div>
<p>calculates the absolute value of the determinant of <code>M</code>. If this
calculation were needed often with a variety of matrices it could be
defined as an R function
</p>
<div class="example">
<pre class="example">> absdet <- function(M) prod(svd(M)$d)
</pre></div>
<a name="index-Determinants"></a>
<p>after which we could use <code>absdet()</code> as just another R function.
As a further trivial but potentially useful example, you might like to
consider writing a function, say <code>tr()</code>, to calculate the trace of
a square matrix. [Hint: You will not need to use an explicit loop.
Look again at the <code>diag()</code> function.]
</p>
<a name="index-det"></a>
<a name="index-determinant"></a>
<p>R has a builtin function <code>det</code> to calculate a determinant,
including the sign, and another, <code>determinant</code>, to give the sign
and modulus (optionally on log scale),
</p>
<hr>
<a name="Least-squares-fitting-and-the-QR-decomposition"></a>
<div class="header">
<p>
Previous: <a href="#Singular-value-decomposition-and-determinants" accesskey="p" rel="prev">Singular value decomposition and determinants</a>, Up: <a href="#Matrix-facilities" accesskey="u" rel="up">Matrix facilities</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Least-squares-fitting-and-the-QR-decomposition-1"></a>
<h4 class="subsection">5.7.5 Least squares fitting and the QR decomposition</h4>
<a name="index-Least-squares-fitting"></a>
<a name="index-QR-decomposition"></a>
<p>The function <code>lsfit()</code> returns a list giving results of a least
squares fitting procedure. An assignment such as
</p>
<div class="example">
<pre class="example">> ans <- lsfit(X, y)
</pre></div>
<a name="index-lsfit"></a>
<p>gives the results of a least squares fit where <code>y</code> is the vector of
observations and <code>X</code> is the design matrix. See the help facility
for more details, and also for the follow-up function <code>ls.diag()</code>
for, among other things, regression diagnostics. Note that a grand mean
term is automatically included and need not be included explicitly as a
column of <code>X</code>. Further note that you almost always will prefer
using <code>lm(.)</code> (see <a href="#Linear-models">Linear models</a>) to <code>lsfit()</code> for
regression modelling.
</p>
<a name="index-qr"></a>
<p>Another closely related function is <code>qr()</code> and its allies.
Consider the following assignments
</p>
<div class="example">
<pre class="example">> Xplus <- qr(X)
> b <- qr.coef(Xplus, y)
> fit <- qr.fitted(Xplus, y)
> res <- qr.resid(Xplus, y)
</pre></div>
<p>These compute the orthogonal projection of <code>y</code> onto the range of
<code>X</code> in <code>fit</code>, the projection onto the orthogonal complement in
<code>res</code> and the coefficient vector for the projection in <code>b</code>,
that is, <code>b</code> is essentially the result of the <small>MATLAB</small>
‘backslash’ operator.
</p>
<p>It is not assumed that <code>X</code> has full column rank. Redundancies will
be discovered and removed as they are found.
</p>
<p>This alternative is the older, low-level way to perform least squares
calculations. Although still useful in some contexts, it would now
generally be replaced by the statistical models features, as will be
discussed in <a href="#Statistical-models-in-R">Statistical models in R</a>.
</p>
<hr>
<a name="Forming-partitioned-matrices"></a>
<div class="header">
<p>
Next: <a href="#The-concatenation-function-c_0028_0029-with-arrays" accesskey="n" rel="next">The concatenation function c() with arrays</a>, Previous: <a href="#Matrix-facilities" accesskey="p" rel="prev">Matrix facilities</a>, Up: <a href="#Arrays-and-matrices" accesskey="u" rel="up">Arrays and matrices</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Forming-partitioned-matrices_002c-cbind_0028_0029-and-rbind_0028_0029"></a>
<h3 class="section">5.8 Forming partitioned matrices, <code>cbind()</code> and <code>rbind()</code></h3>
<a name="index-cbind"></a>
<a name="index-rbind"></a>
<p>As we have already seen informally, matrices can be built up from other
vectors and matrices by the functions <code>cbind()</code> and <code>rbind()</code>.
Roughly <code>cbind()</code> forms matrices by binding together matrices
horizontally, or column-wise, and <code>rbind()</code> vertically, or
row-wise.
</p>
<p>In the assignment
</p>
<div class="example">
<pre class="example">> X <- cbind(<var>arg_1</var>, <var>arg_2</var>, <var>arg_3</var>, …)
</pre></div>
<p>the arguments to <code>cbind()</code> must be either vectors of any length, or
matrices with the same column size, that is the same number of rows.
The result is a matrix with the concatenated arguments <var>arg_1</var>,
<var>arg_2</var>, … forming the columns.
</p>
<p>If some of the arguments to <code>cbind()</code> are vectors they may be
shorter than the column size of any matrices present, in which case they
are cyclically extended to match the matrix column size (or the length
of the longest vector if no matrices are given).
</p>
<p>The function <code>rbind()</code> does the corresponding operation for rows.
In this case any vector argument, possibly cyclically extended, are of
course taken as row vectors.
</p>
<p>Suppose <code>X1</code> and <code>X2</code> have the same number of rows. To
combine these by columns into a matrix <code>X</code>, together with an
initial column of <code>1</code>s we can use
</p>
<div class="example">
<pre class="example">> X <- cbind(1, X1, X2)
</pre></div>
<p>The result of <code>rbind()</code> or <code>cbind()</code> always has matrix status.
Hence <code>cbind(x)</code> and <code>rbind(x)</code> are possibly the simplest ways
explicitly to allow the vector <code>x</code> to be treated as a column or row
matrix respectively.
</p>
<hr>
<a name="The-concatenation-function-c_0028_0029-with-arrays"></a>
<div class="header">
<p>
Next: <a href="#Frequency-tables-from-factors" accesskey="n" rel="next">Frequency tables from factors</a>, Previous: <a href="#Forming-partitioned-matrices" accesskey="p" rel="prev">Forming partitioned matrices</a>, Up: <a href="#Arrays-and-matrices" accesskey="u" rel="up">Arrays and matrices</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="The-concatenation-function_002c-c_0028_0029_002c-with-arrays"></a>
<h3 class="section">5.9 The concatenation function, <code>c()</code>, with arrays</h3>
<p>It should be noted that whereas <code>cbind()</code> and <code>rbind()</code> are
concatenation functions that respect <code>dim</code> attributes, the basic
<code>c()</code> function does not, but rather clears numeric objects of all
<code>dim</code> and <code>dimnames</code> attributes. This is occasionally useful
in its own right.
</p>
<p>The official way to coerce an array back to a simple vector object is to
use <code>as.vector()</code>
</p>
<div class="example">
<pre class="example">> vec <- as.vector(X)
</pre></div>
<a name="index-as_002evector"></a>
<p>However a similar result can be achieved by using <code>c()</code> with just
one argument, simply for this side-effect:
</p>
<div class="example">
<pre class="example">> vec <- c(X)
</pre></div>
<a name="index-c-2"></a>
<p>There are slight differences between the two, but ultimately the choice
between them is largely a matter of style (with the former being
preferable).
</p>
<hr>
<a name="Frequency-tables-from-factors"></a>
<div class="header">
<p>
Previous: <a href="#The-concatenation-function-c_0028_0029-with-arrays" accesskey="p" rel="prev">The concatenation function c() with arrays</a>, Up: <a href="#Arrays-and-matrices" accesskey="u" rel="up">Arrays and matrices</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Frequency-tables-from-factors-1"></a>
<h3 class="section">5.10 Frequency tables from factors</h3>
<a name="index-Tabulation"></a>
<p>Recall that a factor defines a partition into groups. Similarly a pair
of factors defines a two way cross classification, and so on.
<a name="index-table-1"></a>
The function <code>table()</code> allows frequency tables to be calculated
from equal length factors. If there are <em>k</em> factor arguments,
the result is a <em>k</em>-way array of frequencies.
</p>
<p>Suppose, for example, that <code>statef</code> is a factor giving the state
code for each entry in a data vector. The assignment
</p>
<div class="example">
<pre class="example">> statefr <- table(statef)
</pre></div>
<p>gives in <code>statefr</code> a table of frequencies of each state in the
sample. The frequencies are ordered and labelled by the <code>levels</code>
attribute of the factor. This simple case is equivalent to, but more
convenient than,
</p>
<div class="example">
<pre class="example">> statefr <- tapply(statef, statef, length)
</pre></div>
<p>Further suppose that <code>incomef</code> is a factor giving a suitably
defined “income class” for each entry in the data vector, for example
with the <code>cut()</code> function:
</p>
<div class="example">
<pre class="example">> factor(cut(incomes, breaks = 35+10*(0:7))) -> incomef
</pre></div>
<a name="index-cut"></a>
<p>Then to calculate a two-way table of frequencies:
</p>
<div class="example">
<pre class="example">> table(incomef,statef)
statef
incomef act nsw nt qld sa tas vic wa
(35,45] 1 1 0 1 0 0 1 0
(45,55] 1 1 1 1 2 0 1 3
(55,65] 0 3 1 3 2 2 2 1
(65,75] 0 1 0 0 0 0 1 0
</pre></div>
<p>Extension to higher-way frequency tables is immediate.
</p>
<hr>
<a name="Lists-and-data-frames"></a>
<div class="header">
<p>
Next: <a href="#Reading-data-from-files" accesskey="n" rel="next">Reading data from files</a>, Previous: <a href="#Arrays-and-matrices" accesskey="p" rel="prev">Arrays and matrices</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Lists-and-data-frames-1"></a>
<h2 class="chapter">6 Lists and data frames</h2>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Lists" accesskey="1">Lists</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Constructing-and-modifying-lists" accesskey="2">Constructing and modifying lists</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Data-frames" accesskey="3">Data frames</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Lists"></a>
<div class="header">
<p>
Next: <a href="#Constructing-and-modifying-lists" accesskey="n" rel="next">Constructing and modifying lists</a>, Previous: <a href="#Lists-and-data-frames" accesskey="p" rel="prev">Lists and data frames</a>, Up: <a href="#Lists-and-data-frames" accesskey="u" rel="up">Lists and data frames</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Lists-1"></a>
<h3 class="section">6.1 Lists</h3>
<a name="index-Lists"></a>
<p>An R <em>list</em> is an object consisting of an ordered collection of
objects known as its <em>components</em>.
</p>
<p>There is no particular need for the components to be of the same mode or
type, and, for example, a list could consist of a numeric vector, a
logical value, a matrix, a complex vector, a character array, a
function, and so on. Here is a simple example of how to make a list:
</p>
<div class="example">
<pre class="example">> Lst <- list(name="Fred", wife="Mary", no.children=3,
child.ages=c(4,7,9))
</pre></div>
<a name="index-list"></a>
<p>Components are always <em>numbered</em> and may always be referred to as
such. Thus if <code>Lst</code> is the name of a list with four components,
these may be individually referred to as <code>Lst[[1]]</code>,
<code>Lst[[2]]</code>, <code>Lst[[3]]</code> and <code>Lst[[4]]</code>. If, further,
<code>Lst[[4]]</code> is a vector subscripted array then <code>Lst[[4]][1]</code> is
its first entry.
</p>
<p>If <code>Lst</code> is a list, then the function <code>length(Lst)</code> gives the
number of (top level) components it has.
</p>
<p>Components of lists may also be <em>named</em>, and in this case the
component may be referred to either by giving the component name as a
character string in place of the number in double square brackets, or,
more conveniently, by giving an expression of the form
</p>
<div class="example">
<pre class="example">> <var>name</var>$<var>component_name</var>
</pre></div>
<p>for the same thing.
</p>
<p>This is a very useful convention as it makes it easier to get the right
component if you forget the number.
</p>
<p>So in the simple example given above:
</p>
<p><code>Lst$name</code> is the same as <code>Lst[[1]]</code> and is the string
<code>"Fred"</code>,
</p>
<p><code>Lst$wife</code> is the same as <code>Lst[[2]]</code> and is the string
<code>"Mary"</code>,
</p>
<p><code>Lst$child.ages[1]</code> is the same as <code>Lst[[4]][1]</code> and is the
number <code>4</code>.
</p>
<p>Additionally, one can also use the names of the list components in
double square brackets, i.e., <code>Lst[["name"]]</code> is the same as
<code>Lst$name</code>. This is especially useful, when the name of the
component to be extracted is stored in another variable as in
</p>
<div class="example">
<pre class="example">> x <- "name"; Lst[[x]]
</pre></div>
<p>It is very important to distinguish <code>Lst[[1]]</code> from <code>Lst[1]</code>.
‘<samp><code>[[<var>…</var>]]</code></samp>’ is the operator used to select a single
element, whereas ‘<samp><code>[<var>…</var>]</code></samp>’ is a general subscripting
operator. Thus the former is the <em>first object in the list</em>
<code>Lst</code>, and if it is a named list the name is <em>not</em> included.
The latter is a <em>sublist of the list <code>Lst</code> consisting of the
first entry only. If it is a named list, the names are transferred to
the sublist.</em>
</p>
<p>The names of components may be abbreviated down to the minimum number of
letters needed to identify them uniquely. Thus <code>Lst$coefficients</code>
may be minimally specified as <code>Lst$coe</code> and <code>Lst$covariance</code>
as <code>Lst$cov</code>.
</p>
<p>The vector of names is in fact simply an attribute of the list like any
other and may be handled as such. Other structures besides lists may,
of course, similarly be given a <em>names</em> attribute also.
</p>
<hr>
<a name="Constructing-and-modifying-lists"></a>
<div class="header">
<p>
Next: <a href="#Data-frames" accesskey="n" rel="next">Data frames</a>, Previous: <a href="#Lists" accesskey="p" rel="prev">Lists</a>, Up: <a href="#Lists-and-data-frames" accesskey="u" rel="up">Lists and data frames</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Constructing-and-modifying-lists-1"></a>
<h3 class="section">6.2 Constructing and modifying lists</h3>
<p>New lists may be formed from existing objects by the function
<code>list()</code>. An assignment of the form
</p>
<div class="example">
<pre class="example">> Lst <- list(<var>name_1</var>=<var>object_1</var>, <var>…</var>, <var>name_m</var>=<var>object_m</var>)
</pre></div>
<p>sets up a list <code>Lst</code> of <em>m</em> components using <var>object_1</var>,
…, <var>object_m</var> for the components and giving them names as
specified by the argument names, (which can be freely chosen). If these
names are omitted, the components are numbered only. The components
used to form the list are <em>copied</em> when forming the new list and
the originals are not affected.
</p>
<p>Lists, like any subscripted object, can be extended by specifying
additional components. For example
</p>
<div class="example">
<pre class="example">> Lst[5] <- list(matrix=Mat)
</pre></div>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Concatenating-lists" accesskey="1">Concatenating lists</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Concatenating-lists"></a>
<div class="header">
<p>
Previous: <a href="#Constructing-and-modifying-lists" accesskey="p" rel="prev">Constructing and modifying lists</a>, Up: <a href="#Constructing-and-modifying-lists" accesskey="u" rel="up">Constructing and modifying lists</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Concatenating-lists-1"></a>
<h4 class="subsection">6.2.1 Concatenating lists</h4>
<a name="index-Concatenating-lists"></a>
<a name="index-c-3"></a>
<p>When the concatenation function <code>c()</code> is given list arguments, the
result is an object of mode list also, whose components are those of the
argument lists joined together in sequence.
</p>
<div class="example">
<pre class="example">> list.ABC <- c(list.A, list.B, list.C)
</pre></div>
<p>Recall that with vector objects as arguments the concatenation function
similarly joined together all arguments into a single vector structure.
In this case all other attributes, such as <code>dim</code> attributes, are
discarded.
</p>
<hr>
<a name="Data-frames"></a>
<div class="header">
<p>
Previous: <a href="#Constructing-and-modifying-lists" accesskey="p" rel="prev">Constructing and modifying lists</a>, Up: <a href="#Lists-and-data-frames" accesskey="u" rel="up">Lists and data frames</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Data-frames-1"></a>
<h3 class="section">6.3 Data frames</h3>
<a name="index-Data-frames"></a>
<p>A <em>data frame</em> is a list with class <code>"data.frame"</code>. There are
restrictions on lists that may be made into data frames, namely
</p>
<ul>
<li> The components must be vectors (numeric, character, or logical),
factors, numeric matrices, lists, or other data frames.
</li><li> Matrices, lists, and data frames provide as many variables to the new
data frame as they have columns, elements, or variables, respectively.
</li><li> Numeric vectors, logicals and factors are included as is, and by
default<a name="DOCF18" href="#FOOT18"><sup>18</sup></a> character vectors are coerced to be
factors, whose levels are the unique values appearing in the vector.
</li><li> Vector structures appearing as variables of the data frame must all have
the <em>same length</em>, and matrix structures must all have the same
<em>row size</em>.
</li></ul>
<p>A data frame may for many purposes be regarded as a matrix with columns
possibly of differing modes and attributes. It may be displayed in
matrix form, and its rows and columns extracted using matrix indexing
conventions.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Making-data-frames" accesskey="1">Making data frames</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#attach_0028_0029-and-detach_0028_0029" accesskey="2">attach() and detach()</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Working-with-data-frames" accesskey="3">Working with data frames</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Attaching-arbitrary-lists" accesskey="4">Attaching arbitrary lists</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Managing-the-search-path" accesskey="5">Managing the search path</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Making-data-frames"></a>
<div class="header">
<p>
Next: <a href="#attach_0028_0029-and-detach_0028_0029" accesskey="n" rel="next">attach() and detach()</a>, Previous: <a href="#Data-frames" accesskey="p" rel="prev">Data frames</a>, Up: <a href="#Data-frames" accesskey="u" rel="up">Data frames</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Making-data-frames-1"></a>
<h4 class="subsection">6.3.1 Making data frames</h4>
<p>Objects satisfying the restrictions placed on the columns (components)
of a data frame may be used to form one using the function
<code>data.frame</code>:
<a name="index-data_002eframe"></a>
</p>
<div class="example">
<pre class="example">> accountants <- data.frame(home=statef, loot=incomes, shot=incomef)
</pre></div>
<p>A list whose components conform to the restrictions of a data frame may
be <em>coerced</em> into a data frame using the function
<code>as.data.frame()</code>
<a name="index-as_002edata_002eframe"></a>
</p>
<p>The simplest way to construct a data frame from scratch is to use the
<code>read.table()</code> function to read an entire data frame from an
external file. This is discussed further in <a href="#Reading-data-from-files">Reading data from files</a>.
</p>
<hr>
<a name="attach_0028_0029-and-detach_0028_0029"></a>
<div class="header">
<p>
Next: <a href="#Working-with-data-frames" accesskey="n" rel="next">Working with data frames</a>, Previous: <a href="#Making-data-frames" accesskey="p" rel="prev">Making data frames</a>, Up: <a href="#Data-frames" accesskey="u" rel="up">Data frames</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="attach_0028_0029-and-detach_0028_0029-1"></a>
<h4 class="subsection">6.3.2 <code>attach()</code> and <code>detach()</code></h4>
<a name="index-attach"></a>
<a name="index-detach"></a>
<p>The <code>$</code> notation, such as <code>accountants$home</code>, for list
components is not always very convenient. A useful facility would be
somehow to make the components of a list or data frame temporarily
visible as variables under their component name, without the need to
quote the list name explicitly each time.
</p>
<p>The <code>attach()</code> function takes a ‘database’ such as a list or data
frame as its argument. Thus suppose <code>lentils</code> is a
data frame with three variables <code>lentils$u</code>, <code>lentils$v</code>,
<code>lentils$w</code>. The attach
</p>
<div class="example">
<pre class="example">> attach(lentils)
</pre></div>
<p>places the data frame in the search path at position 2<!-- /@w -->, and provided
there are no variables <code>u</code>, <code>v</code> or <code>w</code> in position 1<!-- /@w -->,
<code>u</code>, <code>v</code> and <code>w</code> are available as variables from the data
frame in their own right. At this point an assignment such as
</p>
<div class="example">
<pre class="example">> u <- v+w
</pre></div>
<p>does not replace the component <code>u</code> of the data frame, but rather
masks it with another variable <code>u</code> in the working directory at
position 1<!-- /@w --> on the search path. To make a permanent change to the
data frame itself, the simplest way is to resort once again to the
<code>$</code> notation:
</p>
<div class="example">
<pre class="example">> lentils$u <- v+w
</pre></div>
<p>However the new value of component <code>u</code> is not visible until the
data frame is detached and attached again.
</p>
<p>To detach a data frame, use the function
</p>
<div class="example">
<pre class="example">> detach()
</pre></div>
<p>More precisely, this statement detaches from the search path the entity
currently at position 2<!-- /@w -->. Thus in the present context the variables
<code>u</code>, <code>v</code> and <code>w</code> would be no longer visible, except under
the list notation as <code>lentils$u</code> and so on. Entities at positions
greater than 2 on the search path can be detached by giving their number
to <code>detach</code>, but it is much safer to always use a name, for example
by <code>detach(lentils)</code> or <code>detach("lentils")</code>
</p>
<blockquote>
<p><b>Note:</b> In R lists and data frames can only be attached at position 2 or
above, and what is attached is a <em>copy</em> of the original object.
You can alter the attached values <em>via</em> <code>assign</code>, but the
original list or data frame is unchanged.
</p></blockquote>
<hr>
<a name="Working-with-data-frames"></a>
<div class="header">
<p>
Next: <a href="#Attaching-arbitrary-lists" accesskey="n" rel="next">Attaching arbitrary lists</a>, Previous: <a href="#attach_0028_0029-and-detach_0028_0029" accesskey="p" rel="prev">attach() and detach()</a>, Up: <a href="#Data-frames" accesskey="u" rel="up">Data frames</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Working-with-data-frames-1"></a>
<h4 class="subsection">6.3.3 Working with data frames</h4>
<p>A useful convention that allows you to work with many different problems
comfortably together in the same working directory is
</p>
<ul>
<li> gather together all variables for any well defined and separate problem
in a data frame under a suitably informative name;
</li><li> when working with a problem attach the appropriate data frame at
position 2<!-- /@w -->, and use the working directory at level 1<!-- /@w --> for
operational quantities and temporary variables;
</li><li> before leaving a problem, add any variables you wish to keep for future
reference to the data frame using the <code>$</code> form of assignment, and
then <code>detach()</code>;
</li><li> finally remove all unwanted variables from the working directory and
keep it as clean of left-over temporary variables as possible.
</li></ul>
<p>In this way it is quite simple to work with many problems in the same
directory, all of which have variables named <code>x</code>, <code>y</code> and
<code>z</code>, for example.
</p>
<hr>
<a name="Attaching-arbitrary-lists"></a>
<div class="header">
<p>
Next: <a href="#Managing-the-search-path" accesskey="n" rel="next">Managing the search path</a>, Previous: <a href="#Working-with-data-frames" accesskey="p" rel="prev">Working with data frames</a>, Up: <a href="#Data-frames" accesskey="u" rel="up">Data frames</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Attaching-arbitrary-lists-1"></a>
<h4 class="subsection">6.3.4 Attaching arbitrary lists</h4>
<p><code>attach()</code> is a generic function that allows not only directories
and data frames to be attached to the search path, but other classes of
object as well. In particular any object of mode <code>"list"</code> may be
attached in the same way:
</p>
<div class="example">
<pre class="example">> attach(any.old.list)
</pre></div>
<p>Anything that has been attached can be detached by <code>detach</code>, by
position number or, preferably, by name.
</p>
<hr>
<a name="Managing-the-search-path"></a>
<div class="header">
<p>
Previous: <a href="#Attaching-arbitrary-lists" accesskey="p" rel="prev">Attaching arbitrary lists</a>, Up: <a href="#Data-frames" accesskey="u" rel="up">Data frames</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Managing-the-search-path-1"></a>
<h4 class="subsection">6.3.5 Managing the search path</h4>
<a name="index-search"></a>
<a name="index-Search-path"></a>
<p>The function <code>search</code> shows the current search path and so is
a very useful way to keep track of which data frames and lists (and
packages) have been attached and detached. Initially it gives
</p>
<div class="example">
<pre class="example">> search()
[1] ".GlobalEnv" "Autoloads" "package:base"
</pre></div>
<p>where <code>.GlobalEnv</code> is the workspace.<a name="DOCF19" href="#FOOT19"><sup>19</sup></a>
</p>
<p>After <code>lentils</code> is attached we have
</p>
<div class="example">
<pre class="example">> search()
[1] ".GlobalEnv" "lentils" "Autoloads" "package:base"
> ls(2)
[1] "u" "v" "w"
</pre></div>
<p>and as we see <code>ls</code> (or <code>objects</code>) can be used to examine the
contents of any position on the search path.
</p>
<p>Finally, we detach the data frame and confirm it has been removed from
the search path.
</p>
<div class="example">
<pre class="example">> detach("lentils")
> search()
[1] ".GlobalEnv" "Autoloads" "package:base"
</pre></div>
<hr>
<a name="Reading-data-from-files"></a>
<div class="header">
<p>
Next: <a href="#Probability-distributions" accesskey="n" rel="next">Probability distributions</a>, Previous: <a href="#Lists-and-data-frames" accesskey="p" rel="prev">Lists and data frames</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Reading-data-from-files-1"></a>
<h2 class="chapter">7 Reading data from files</h2>
<a name="index-Reading-data-from-files"></a>
<p>Large data objects will usually be read as values from external files
rather than entered during an R session at the keyboard. R input
facilities are simple and their requirements are fairly strict and even
rather inflexible. There is a clear presumption by the designers of
R that you will be able to modify your input files using other tools,
such as file editors or Perl<a name="DOCF20" href="#FOOT20"><sup>20</sup></a> to fit in with the
requirements of R. Generally this is very simple.
</p>
<p>If variables are to be held mainly in data frames, as we strongly
suggest they should be, an entire data frame can be read directly with
the <code>read.table()</code> function. There is also a more primitive input
function, <code>scan()</code>, that can be called directly.
</p>
<p>For more details on importing data into R and also exporting data,
see the <em>R Data Import/Export</em> manual.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#The-read_002etable_0028_0029-function" accesskey="1">The read.table() function</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-scan_0028_0029-function" accesskey="2">The scan() function</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Accessing-builtin-datasets" accesskey="3">Accessing builtin datasets</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Editing-data" accesskey="4">Editing data</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="The-read_002etable_0028_0029-function"></a>
<div class="header">
<p>
Next: <a href="#The-scan_0028_0029-function" accesskey="n" rel="next">The scan() function</a>, Previous: <a href="#Reading-data-from-files" accesskey="p" rel="prev">Reading data from files</a>, Up: <a href="#Reading-data-from-files" accesskey="u" rel="up">Reading data from files</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="The-read_002etable_0028_0029-function-1"></a>
<h3 class="section">7.1 The <code>read.table()</code> function</h3>
<a name="index-read_002etable"></a>
<p>To read an entire data frame directly, the external file will normally
have a special form.
</p>
<ul>
<li> The first line of the file should have a <em>name</em> for each variable
in the data frame.
</li><li> Each additional line of the file has as its first item a <em>row label</em>
and the values for each variable.
</li></ul>
<p>If the file has one fewer item in its first line than in its second, this
arrangement is presumed to be in force. So the first few lines of a file
to be read as a data frame might look as follows.
</p>
<blockquote>
<table summary="" class="cartouche" border="1"><tr><td>
<div class="example">
<pre class="example"><span class="roman">Input file form with names and row labels:</span>
Price Floor Area Rooms Age Cent.heat
01 52.00 111.0 830 5 6.2 no
02 54.75 128.0 710 5 7.5 no
03 57.50 101.0 1000 5 4.2 no
04 57.50 131.0 690 6 8.8 no
05 59.75 93.0 900 5 1.9 yes
...
</pre></div>
</td></tr></table>
</blockquote>
<p>By default numeric items (except row labels) are read as numeric
variables and non-numeric variables, such as <code>Cent.heat</code> in the
example, as factors. This can be changed if necessary.
</p>
<p>The function <code>read.table()</code> can then be used to read the data frame
directly
</p>
<div class="example">
<pre class="example">> HousePrice <- read.table("houses.data")
</pre></div>
<p>Often you will want to omit including the row labels directly and use the
default labels. In this case the file may omit the row label column as in
the following.
</p>
<blockquote>
<table summary="" class="cartouche" border="1"><tr><td>
<div class="example">
<pre class="example"><span class="roman">Input file form without row labels:</span>
Price Floor Area Rooms Age Cent.heat
52.00 111.0 830 5 6.2 no
54.75 128.0 710 5 7.5 no
57.50 101.0 1000 5 4.2 no
57.50 131.0 690 6 8.8 no
59.75 93.0 900 5 1.9 yes
...
</pre></div>
</td></tr></table>
</blockquote>
<p>The data frame may then be read as
</p>
<div class="example">
<pre class="example">> HousePrice <- read.table("houses.data", header=TRUE)
</pre></div>
<p>where the <code>header=TRUE</code> option specifies that the first line is a
line of headings, and hence, by implication from the form of the file,
that no explicit row labels are given.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#The-scan_0028_0029-function" accesskey="1">The scan() function</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="The-scan_0028_0029-function"></a>
<div class="header">
<p>
Next: <a href="#Accessing-builtin-datasets" accesskey="n" rel="next">Accessing builtin datasets</a>, Previous: <a href="#The-read_002etable_0028_0029-function" accesskey="p" rel="prev">The read.table() function</a>, Up: <a href="#Reading-data-from-files" accesskey="u" rel="up">Reading data from files</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="The-scan_0028_0029-function-1"></a>
<h3 class="section">7.2 The <code>scan()</code> function</h3>
<a name="index-scan"></a>
<p>Suppose the data vectors are of equal length and are to be read in
parallel. Further suppose that there are three vectors, the first of
mode character and the remaining two of mode numeric, and the file is
<samp>input.dat</samp>. The first step is to use <code>scan()</code> to read in the
three vectors as a list, as follows
</p>
<div class="example">
<pre class="example">> inp <- scan("input.dat", list("",0,0))
</pre></div>
<p>The second argument is a dummy list structure that establishes the mode
of the three vectors to be read. The result, held in <code>inp</code>, is a
list whose components are the three vectors read in. To separate the
data items into three separate vectors, use assignments like
</p>
<div class="example">
<pre class="example">> label <- inp[[1]]; x <- inp[[2]]; y <- inp[[3]]
</pre></div>
<p>More conveniently, the dummy list can have named components, in which
case the names can be used to access the vectors read in. For example
</p>
<div class="example">
<pre class="example">> inp <- scan("input.dat", list(id="", x=0, y=0))
</pre></div>
<p>If you wish to access the variables separately they may either be
re-assigned to variables in the working frame:
</p>
<div class="example">
<pre class="example">> label <- inp$id; x <- inp$x; y <- inp$y
</pre></div>
<p>or the list may be attached at position 2<!-- /@w --> of the search path
(see <a href="#Attaching-arbitrary-lists">Attaching arbitrary lists</a>).
</p>
<p>If the second argument is a single value and not a list, a single vector
is read in, all components of which must be of the same mode as the
dummy value.
</p>
<div class="example">
<pre class="example">> X <- matrix(scan("light.dat", 0), ncol=5, byrow=TRUE)
</pre></div>
<p>There are more elaborate input facilities available and these are
detailed in the manuals.
</p>
<hr>
<a name="Accessing-builtin-datasets"></a>
<div class="header">
<p>
Next: <a href="#Editing-data" accesskey="n" rel="next">Editing data</a>, Previous: <a href="#The-scan_0028_0029-function" accesskey="p" rel="prev">The scan() function</a>, Up: <a href="#Reading-data-from-files" accesskey="u" rel="up">Reading data from files</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Accessing-builtin-datasets-1"></a>
<h3 class="section">7.3 Accessing builtin datasets</h3>
<a name="index-Accessing-builtin-datasets"></a>
<a name="index-data"></a>
<p>Around 100 datasets are supplied with R (in package <strong>datasets</strong>),
and others are available in packages (including the recommended packages
supplied with R). To see the list of datasets currently available
use
</p>
<div class="example">
<pre class="example">data()
</pre></div>
<p>All the datasets supplied with R are available directly by name.
However, many packages still use the obsolete convention in which
<code>data</code> was also used to load datasets into R, for example
</p>
<div class="example">
<pre class="example">data(infert)
</pre></div>
<p>and this can still be used with the standard packages (as in this
example). In most cases this will load an R object of the same name.
However, in a few cases it loads several objects, so see the on-line
help for the object to see what to expect.
</p>
<a name="Loading-data-from-other-R-packages"></a>
<h4 class="subsection">7.3.1 Loading data from other R packages</h4>
<p>To access data from a particular package, use the <code>package</code>
argument, for example
</p>
<div class="example">
<pre class="example">data(package="rpart")
data(Puromycin, package="datasets")
</pre></div>
<p>If a package has been attached by <code>library</code>, its datasets are
automatically included in the search.
</p>
<p>User-contributed packages can be a rich source of datasets.
</p>
<hr>
<a name="Editing-data"></a>
<div class="header">
<p>
Previous: <a href="#Accessing-builtin-datasets" accesskey="p" rel="prev">Accessing builtin datasets</a>, Up: <a href="#Reading-data-from-files" accesskey="u" rel="up">Reading data from files</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Editing-data-1"></a>
<h3 class="section">7.4 Editing data</h3>
<a name="index-edit"></a>
<p>When invoked on a data frame or matrix, <code>edit</code> brings up a separate
spreadsheet-like environment for editing. This is useful for making
small changes once a data set has been read. The command
</p>
<div class="example">
<pre class="example">> xnew <- edit(xold)
</pre></div>
<p>will allow you to edit your data set <code>xold</code>, and on completion the
changed object is assigned to <code>xnew</code>. If you want to alter the
original dataset <code>xold</code>, the simplest way is to use
<code>fix(xold)</code>, which is equivalent to <code>xold <- edit(xold)</code>.
</p>
<p>Use
</p>
<div class="example">
<pre class="example">> xnew <- edit(data.frame())
</pre></div>
<p>to enter new data via the spreadsheet interface.
</p>
<hr>
<a name="Probability-distributions"></a>
<div class="header">
<p>
Next: <a href="#Loops-and-conditional-execution" accesskey="n" rel="next">Loops and conditional execution</a>, Previous: <a href="#Reading-data-from-files" accesskey="p" rel="prev">Reading data from files</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Probability-distributions-1"></a>
<h2 class="chapter">8 Probability distributions</h2>
<a name="index-Probability-distributions"></a>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#R-as-a-set-of-statistical-tables" accesskey="1">R as a set of statistical tables</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Examining-the-distribution-of-a-set-of-data" accesskey="2">Examining the distribution of a set of data</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#One_002d-and-two_002dsample-tests" accesskey="3">One- and two-sample tests</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="R-as-a-set-of-statistical-tables"></a>
<div class="header">
<p>
Next: <a href="#Examining-the-distribution-of-a-set-of-data" accesskey="n" rel="next">Examining the distribution of a set of data</a>, Previous: <a href="#Probability-distributions" accesskey="p" rel="prev">Probability distributions</a>, Up: <a href="#Probability-distributions" accesskey="u" rel="up">Probability distributions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="R-as-a-set-of-statistical-tables-1"></a>
<h3 class="section">8.1 R as a set of statistical tables</h3>
<p>One convenient use of R is to provide a comprehensive set of
statistical tables. Functions are provided to evaluate the cumulative
distribution function P(X <= x),
the probability density function and the quantile function (given
<em>q</em>, the smallest <em>x</em> such that P(X <= x) > q),
and to simulate from the distribution.
</p>
<blockquote>
<table summary="">
<thead><tr><th>Distribution</th><th>R name</th><th>additional arguments</th></tr></thead>
<tr><td>beta</td><td><code>beta</code></td><td><code>shape1, shape2, ncp</code></td></tr>
<tr><td>binomial</td><td><code>binom</code></td><td><code>size, prob</code></td></tr>
<tr><td>Cauchy</td><td><code>cauchy</code></td><td><code>location, scale</code></td></tr>
<tr><td>chi-squared</td><td><code>chisq</code></td><td><code>df, ncp</code></td></tr>
<tr><td>exponential</td><td><code>exp</code></td><td><code>rate</code></td></tr>
<tr><td>F</td><td><code>f</code></td><td><code>df1, df2, ncp</code></td></tr>
<tr><td>gamma</td><td><code>gamma</code></td><td><code>shape, scale</code></td></tr>
<tr><td>geometric</td><td><code>geom</code></td><td><code>prob</code></td></tr>
<tr><td>hypergeometric</td><td><code>hyper</code></td><td><code>m, n, k</code></td></tr>
<tr><td>log-normal</td><td><code>lnorm</code></td><td><code>meanlog, sdlog</code></td></tr>
<tr><td>logistic</td><td><code>logis</code></td><td><code>location, scale</code></td></tr>
<tr><td>negative binomial</td><td><code>nbinom</code></td><td><code>size, prob</code></td></tr>
<tr><td>normal</td><td><code>norm</code></td><td><code>mean, sd</code></td></tr>
<tr><td>Poisson</td><td><code>pois</code></td><td><code>lambda</code></td></tr>
<tr><td>signed rank</td><td><code>signrank</code></td><td><code>n</code></td></tr>
<tr><td>Student’s t</td><td><code>t</code></td><td><code>df, ncp</code></td></tr>
<tr><td>uniform</td><td><code>unif</code></td><td><code>min, max</code></td></tr>
<tr><td>Weibull</td><td><code>weibull</code></td><td><code>shape, scale</code></td></tr>
<tr><td>Wilcoxon</td><td><code>wilcox</code></td><td><code>m, n</code></td></tr>
</table>
</blockquote>
<p>Prefix the name given here by ‘<samp>d</samp>’ for the density, ‘<samp>p</samp>’ for the
CDF, ‘<samp>q</samp>’ for the quantile function and ‘<samp>r</samp>’ for simulation
(<em>r</em>andom deviates). The first argument is <code>x</code> for
<code>d<var>xxx</var></code>, <code>q</code> for <code>p<var>xxx</var></code>, <code>p</code> for
<code>q<var>xxx</var></code> and <code>n</code> for <code>r<var>xxx</var></code> (except for
<code>rhyper</code>, <code>rsignrank</code> and <code>rwilcox</code>, for which it is
<code>nn</code>). In not quite all cases is the non-centrality parameter
<code>ncp</code> currently available: see the on-line help for details.
</p>
<p>The <code>p<var>xxx</var></code> and <code>q<var>xxx</var></code> functions all have logical
arguments <code>lower.tail</code> and <code>log.p</code> and the <code>d<var>xxx</var></code>
ones have <code>log</code>. This allows, e.g., getting the cumulative (or
“integrated”) <em>hazard</em> function, H(t) = - log(1 - F(t)), by
</p>
<div class="example">
<pre class="example"> - p<var>xxx</var>(t, ..., lower.tail = FALSE, log.p = TRUE)
</pre></div>
<p>or more accurate log-likelihoods (by <code>d<var>xxx</var>(..., log =
TRUE)</code>), directly.
</p>
<p>In addition there are functions <code>ptukey</code> and <code>qtukey</code> for the
distribution of the studentized range of samples from a normal
distribution, and <code>dmultinom</code> and <code>rmultinom</code> for the
multinomial distribution. Further distributions are available in
contributed packages, notably <a href="https://CRAN.R-project.org/package=SuppDists"><strong>SuppDists</strong></a>.
</p>
<p>Here are some examples
</p>
<div class="example">
<pre class="example">> ## <span class="roman">2-tailed p-value for t distribution</span>
> 2*pt(-2.43, df = 13)
> ## <span class="roman">upper 1% point for an F(2, 7) distribution</span>
> qf(0.01, 2, 7, lower.tail = FALSE)
</pre></div>
<p>See the on-line help on <code>RNG</code> for how random-number generation is
done in R.
</p>
<hr>
<a name="Examining-the-distribution-of-a-set-of-data"></a>
<div class="header">
<p>
Next: <a href="#One_002d-and-two_002dsample-tests" accesskey="n" rel="next">One- and two-sample tests</a>, Previous: <a href="#R-as-a-set-of-statistical-tables" accesskey="p" rel="prev">R as a set of statistical tables</a>, Up: <a href="#Probability-distributions" accesskey="u" rel="up">Probability distributions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Examining-the-distribution-of-a-set-of-data-1"></a>
<h3 class="section">8.2 Examining the distribution of a set of data</h3>
<p>Given a (univariate) set of data we can examine its distribution in a
large number of ways. The simplest is to examine the numbers. Two
slightly different summaries are given by <code>summary</code> and
<code>fivenum</code>
<a name="index-summary"></a>
<a name="index-fivenum"></a>
and a display of the numbers by <code>stem</code> (a “stem and leaf” plot).
<a name="index-stem"></a>
</p>
<div class="example">
<pre class="example">> attach(faithful)
> summary(eruptions)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.600 2.163 4.000 3.488 4.454 5.100
> fivenum(eruptions)
[1] 1.6000 2.1585 4.0000 4.4585 5.1000
> stem(eruptions)
The decimal point is 1 digit(s) to the left of the |
16 | 070355555588
18 | 000022233333335577777777888822335777888
20 | 00002223378800035778
22 | 0002335578023578
24 | 00228
26 | 23
28 | 080
30 | 7
32 | 2337
34 | 250077
36 | 0000823577
38 | 2333335582225577
40 | 0000003357788888002233555577778
42 | 03335555778800233333555577778
44 | 02222335557780000000023333357778888
46 | 0000233357700000023578
48 | 00000022335800333
50 | 0370
</pre></div>
<p>A stem-and-leaf plot is like a histogram, and R has a function
<code>hist</code> to plot histograms.
<a name="index-hist"></a>
</p>
<div class="example">
<pre class="example">> hist(eruptions)
## <span class="roman">make the bins smaller, make a plot of density</span>
> hist(eruptions, seq(1.6, 5.2, 0.2), prob=TRUE)
> lines(density(eruptions, bw=0.1))
> rug(eruptions) # <span class="roman">show the actual data points</span>
</pre></div>
<a name="index-density"></a>
<a name="index-Density-estimation"></a>
<p>More elegant density plots can be made by <code>density</code>, and we added a
line produced by <code>density</code> in this example. The bandwidth
<code>bw</code> was chosen by trial-and-error as the default gives too much
smoothing (it usually does for “interesting” densities). (Better
automated methods of bandwidth choice are available, and in this example
<code>bw = "SJ"</code> gives a good result.)
</p>
<img src="images/hist.png" alt="images/hist">
<p>We can plot the empirical cumulative distribution function by using the
function <code>ecdf</code>.
<a name="index-ecdf"></a>
<a name="index-Empirical-CDFs"></a>
</p>
<div class="example">
<pre class="example">> plot(ecdf(eruptions), do.points=FALSE, verticals=TRUE)
</pre></div>
<p>This distribution is obviously far from any standard distribution.
How about the right-hand mode, say eruptions of longer than 3 minutes?
Let us fit a normal distribution and overlay the fitted CDF.
</p>
<div class="example">
<pre class="example">> long <- eruptions[eruptions > 3]
> plot(ecdf(long), do.points=FALSE, verticals=TRUE)
> x <- seq(3, 5.4, 0.01)
> lines(x, pnorm(x, mean=mean(long), sd=sqrt(var(long))), lty=3)
</pre></div>
<img src="images/ecdf.png" alt="images/ecdf">
<p>Quantile-quantile (Q-Q) plots can help us examine this more carefully.
<a name="index-Quantile_002dquantile-plots"></a>
<a name="index-qqnorm"></a>
<a name="index-qqline"></a>
</p>
<div class="example">
<pre class="example">par(pty="s") # arrange for a square figure region
qqnorm(long); qqline(long)
</pre></div>
<p>which shows a reasonable fit but a shorter right tail than one would
expect from a normal distribution. Let us compare this with some
simulated data from a <em>t</em> distribution
</p>
<img src="images/QQ.png" alt="images/QQ">
<div class="example">
<pre class="example">x <- rt(250, df = 5)
qqnorm(x); qqline(x)
</pre></div>
<p>which will usually (if it is a random sample) show longer tails than
expected for a normal. We can make a Q-Q plot against the generating
distribution by
</p>
<div class="example">
<pre class="example">qqplot(qt(ppoints(250), df = 5), x, xlab = "Q-Q plot for t dsn")
qqline(x)
</pre></div>
<p>Finally, we might want a more formal test of agreement with normality
(or not). R provides the Shapiro-Wilk test
<a name="index-Shapiro_002dWilk-test"></a>
<a name="index-shapiro_002etest"></a>
</p>
<div class="example">
<pre class="example">> shapiro.test(long)
Shapiro-Wilk normality test
data: long
W = 0.9793, p-value = 0.01052
</pre></div>
<p>and the Kolmogorov-Smirnov test
<a name="index-Kolmogorov_002dSmirnov-test"></a>
<a name="index-ks_002etest"></a>
</p>
<div class="example">
<pre class="example">> ks.test(long, "pnorm", mean = mean(long), sd = sqrt(var(long)))
One-sample Kolmogorov-Smirnov test
data: long
D = 0.0661, p-value = 0.4284
alternative hypothesis: two.sided
</pre></div>
<p>(Note that the distribution theory is not valid here as we
have estimated the parameters of the normal distribution from the same
sample.)
</p>
<hr>
<a name="One_002d-and-two_002dsample-tests"></a>
<div class="header">
<p>
Previous: <a href="#Examining-the-distribution-of-a-set-of-data" accesskey="p" rel="prev">Examining the distribution of a set of data</a>, Up: <a href="#Probability-distributions" accesskey="u" rel="up">Probability distributions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="One_002d-and-two_002dsample-tests-1"></a>
<h3 class="section">8.3 One- and two-sample tests</h3>
<a name="index-One_002d-and-two_002dsample-tests"></a>
<p>So far we have compared a single sample to a normal distribution. A
much more common operation is to compare aspects of two samples. Note
that in R, all “classical” tests including the ones used below are
in package <strong>stats</strong> which is normally loaded.
</p>
<p>Consider the following sets of data on the latent heat of the fusion of
ice (<em>cal/gm</em>) from Rice (1995, p.490)
</p>
<div class="example">
<pre class="example">Method A: 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97
80.05 80.03 80.02 80.00 80.02
Method B: 80.02 79.94 79.98 79.97 79.97 80.03 79.95 79.97
</pre></div>
<p>Boxplots provide a simple graphical comparison of the two samples.
</p>
<div class="example">
<pre class="example">A <- scan()
79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97
80.05 80.03 80.02 80.00 80.02
B <- scan()
80.02 79.94 79.98 79.97 79.97 80.03 79.95 79.97
boxplot(A, B)
</pre></div>
<a name="index-boxplot"></a>
<a name="index-Box-plots"></a>
<p>which indicates that the first group tends to give higher results than
the second.
</p>
<img src="images/ice.png" alt="images/ice">
<p>To test for the equality of the means of the two examples, we can use
an <em>unpaired</em> <em>t</em>-test by
<a name="index-Student_0027s-t-test"></a>
<a name="index-t_002etest"></a>
</p>
<div class="example">
<pre class="example">> t.test(A, B)
Welch Two Sample t-test
data: A and B
t = 3.2499, df = 12.027, p-value = 0.00694
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.01385526 0.07018320
sample estimates:
mean of x mean of y
80.02077 79.97875
</pre></div>
<p>which does indicate a significant difference, assuming normality. By
default the R function does not assume equality of variances in the
two samples (in contrast to the similar <small>S-PLUS</small> <code>t.test</code>
function). We can use the F test to test for equality in the variances,
provided that the two samples are from normal populations.
</p>
<div class="example">
<pre class="example">> var.test(A, B)
F test to compare two variances
data: A and B
F = 0.5837, num df = 12, denom df = 7, p-value = 0.3938
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.1251097 2.1052687
sample estimates:
ratio of variances
0.5837405
</pre></div>
<a name="index-var_002etest"></a>
<p>which shows no evidence of a significant difference, and so we can use
the classical <em>t</em>-test that assumes equality of the variances.
</p>
<div class="example">
<pre class="example">> t.test(A, B, var.equal=TRUE)
Two Sample t-test
data: A and B
t = 3.4722, df = 19, p-value = 0.002551
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.01669058 0.06734788
sample estimates:
mean of x mean of y
80.02077 79.97875
</pre></div>
<p>All these tests assume normality of the two samples. The two-sample
Wilcoxon (or Mann-Whitney) test only assumes a common continuous
distribution under the null hypothesis.
</p>
<a name="index-Wilcoxon-test"></a>
<a name="index-wilcox_002etest"></a>
<div class="example">
<pre class="example">> wilcox.test(A, B)
Wilcoxon rank sum test with continuity correction
data: A and B
W = 89, p-value = 0.007497
alternative hypothesis: true location shift is not equal to 0
Warning message:
Cannot compute exact p-value with ties in: wilcox.test(A, B)
</pre></div>
<p>Note the warning: there are several ties in each sample, which suggests
strongly that these data are from a discrete distribution (probably due
to rounding).
</p>
<p>There are several ways to compare graphically the two samples. We have
already seen a pair of boxplots. The following
</p>
<div class="example">
<pre class="example">> plot(ecdf(A), do.points=FALSE, verticals=TRUE, xlim=range(A, B))
> plot(ecdf(B), do.points=FALSE, verticals=TRUE, add=TRUE)
</pre></div>
<p>will show the two empirical CDFs, and <code>qqplot</code> will perform a Q-Q
plot of the two samples. The Kolmogorov-Smirnov test is of the maximal
vertical distance between the two ecdf’s, assuming a common continuous
distribution:
</p>
<div class="example">
<pre class="example">> ks.test(A, B)
Two-sample Kolmogorov-Smirnov test
data: A and B
D = 0.5962, p-value = 0.05919
alternative hypothesis: two-sided
Warning message:
cannot compute correct p-values with ties in: ks.test(A, B)
</pre></div>
<hr>
<a name="Loops-and-conditional-execution"></a>
<div class="header">
<p>
Next: <a href="#Writing-your-own-functions" accesskey="n" rel="next">Writing your own functions</a>, Previous: <a href="#Probability-distributions" accesskey="p" rel="prev">Probability distributions</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Grouping_002c-loops-and-conditional-execution"></a>
<h2 class="chapter">9 Grouping, loops and conditional execution</h2>
<a name="index-Loops-and-conditional-execution"></a>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Grouped-expressions" accesskey="1">Grouped expressions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Control-statements" accesskey="2">Control statements</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Grouped-expressions"></a>
<div class="header">
<p>
Next: <a href="#Control-statements" accesskey="n" rel="next">Control statements</a>, Previous: <a href="#Loops-and-conditional-execution" accesskey="p" rel="prev">Loops and conditional execution</a>, Up: <a href="#Loops-and-conditional-execution" accesskey="u" rel="up">Loops and conditional execution</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Grouped-expressions-1"></a>
<h3 class="section">9.1 Grouped expressions</h3>
<a name="index-Grouped-expressions"></a>
<p>R is an expression language in the sense that its only command type
is a function or expression which returns a result. Even an assignment
is an expression whose result is the value assigned, and it may be used
wherever any expression may be used; in particular multiple assignments
are possible.
</p>
<p>Commands may be grouped together in braces, <code>{<var>expr_1</var>;
<var>…</var>; <var>expr_m</var>}</code>, in which case the value of the group
is the result of the last expression in the group evaluated. Since such
a group is also an expression it may, for example, be itself included in
parentheses and used as part of an even larger expression, and so on.
</p>
<hr>
<a name="Control-statements"></a>
<div class="header">
<p>
Previous: <a href="#Grouped-expressions" accesskey="p" rel="prev">Grouped expressions</a>, Up: <a href="#Loops-and-conditional-execution" accesskey="u" rel="up">Loops and conditional execution</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Control-statements-1"></a>
<h3 class="section">9.2 Control statements</h3>
<a name="index-Control-statements"></a>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Conditional-execution" accesskey="1">Conditional execution</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Repetitive-execution" accesskey="2">Repetitive execution</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Conditional-execution"></a>
<div class="header">
<p>
Next: <a href="#Repetitive-execution" accesskey="n" rel="next">Repetitive execution</a>, Previous: <a href="#Control-statements" accesskey="p" rel="prev">Control statements</a>, Up: <a href="#Control-statements" accesskey="u" rel="up">Control statements</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Conditional-execution_003a-if-statements"></a>
<h4 class="subsection">9.2.1 Conditional execution: <code>if</code> statements</h4>
<a name="index-if"></a>
<p>The language has available a conditional construction of the form
</p>
<div class="example">
<pre class="example">> if (<var>expr_1</var>) <var>expr_2</var> else <var>expr_3</var>
</pre></div>
<a name="index-if-1"></a>
<a name="index-else"></a>
<p>where <var>expr_1</var> must evaluate to a single logical value and the
result of the entire expression is then evident.
</p>
<a name="index-_0026_0026"></a>
<a name="index-_007c_007c"></a>
<p>The “short-circuit” operators <code>&&</code> and <code>||</code> are often used
as part of the condition in an <code>if</code> statement. Whereas <code>&</code>
and <code>|</code> apply element-wise to vectors, <code>&&</code> and <code>||</code>
apply to vectors of length one, and only evaluate their second argument
if necessary.
</p>
<a name="index-ifelse"></a>
<p>There is a vectorized version of the <code>if</code>/<code>else</code> construct,
the <code>ifelse</code> function. This has the form <code>ifelse(condition, a,
b)</code> and returns a vector of the same length as <code>condition</code>, with
elements <code>a[i]</code> if <code>condition[i]</code> is true, otherwise
<code>b[i]</code> (where <code>a</code> and <code>b</code> are recycled as necessary).
</p>
<hr>
<a name="Repetitive-execution"></a>
<div class="header">
<p>
Previous: <a href="#Conditional-execution" accesskey="p" rel="prev">Conditional execution</a>, Up: <a href="#Control-statements" accesskey="u" rel="up">Control statements</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Repetitive-execution_003a-for-loops_002c-repeat-and-while"></a>
<h4 class="subsection">9.2.2 Repetitive execution: <code>for</code> loops, <code>repeat</code> and <code>while</code></h4>
<a name="index-for"></a>
<p>There is also a <code>for</code> loop construction which has the form
</p>
<div class="example">
<pre class="example">> for (<code><var>name</var></code> in <var>expr_1</var>) <var>expr_2</var>
</pre></div>
<p>where <code><var>name</var></code> is the loop variable. <var>expr_1</var> is a
vector expression, (often a sequence like <code>1:20</code>), and
<var>expr_2</var> is often a grouped expression with its sub-expressions
written in terms of the dummy <em>name</em>. <var>expr_2</var> is repeatedly
evaluated as <var>name</var> ranges through the values in the vector result
of <var>expr_1</var>.
</p>
<p>As an example, suppose <code>ind</code> is a vector of class indicators and we
wish to produce separate plots of <code>y</code> versus <code>x</code> within
classes. One possibility here is to use <code>coplot()</code>,<a name="DOCF21" href="#FOOT21"><sup>21</sup></a>
which will produce an array of plots corresponding to each level of the
factor. Another way to do this, now putting all plots on the one
display, is as follows:
</p>
<div class="example">
<pre class="example">> xc <- split(x, ind)
> yc <- split(y, ind)
> for (i in 1:length(yc)) {
plot(xc[[i]], yc[[i]])
abline(lsfit(xc[[i]], yc[[i]]))
}
</pre></div>
<a name="index-split"></a>
<p>(Note the function <code>split()</code> which produces a list of vectors
obtained by splitting a larger vector according to the classes specified
by a factor. This is a useful function, mostly used in connection
with boxplots. See the <code>help</code> facility for further details.)
</p>
<blockquote>
<p><strong>Warning</strong>: <code>for()</code> loops are used in R code much less
often than in compiled languages. Code that takes a ‘whole object’ view
is likely to be both clearer and faster in R.
</p></blockquote>
<p>Other looping facilities include the
</p>
<div class="example">
<pre class="example">> repeat <var>expr</var>
</pre></div>
<a name="index-repeat"></a>
<p>statement and the
</p>
<div class="example">
<pre class="example">> while (<var>condition</var>) <var>expr</var>
</pre></div>
<a name="index-while"></a>
<p>statement.
</p>
<p>The <code>break</code> statement can be used to terminate any loop, possibly
abnormally. This is the only way to terminate <code>repeat</code> loops.
<a name="index-break"></a>
</p>
<p>The <code>next</code> statement can be used to discontinue one particular
cycle and skip to the “next”.
<a name="index-next"></a>
</p>
<p>Control statements are most often used in connection with
<em>functions</em> which are discussed in <a href="#Writing-your-own-functions">Writing your own functions</a>, and where more examples will emerge.
</p>
<hr>
<a name="Writing-your-own-functions"></a>
<div class="header">
<p>
Next: <a href="#Statistical-models-in-R" accesskey="n" rel="next">Statistical models in R</a>, Previous: <a href="#Loops-and-conditional-execution" accesskey="p" rel="prev">Loops and conditional execution</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Writing-your-own-functions-1"></a>
<h2 class="chapter">10 Writing your own functions</h2>
<a name="index-Writing-functions"></a>
<p>As we have seen informally along the way, the R language allows the
user to create objects of mode <em>function</em>. These are true R
functions that are stored in a special internal form and may be used in
further expressions and so on. In the process, the language gains
enormously in power, convenience and elegance, and learning to write
useful functions is one of the main ways to make your use of R
comfortable and productive.
</p>
<p>It should be emphasized that most of the functions supplied as part of
the R system, such as <code>mean()</code>, <code>var()</code>,
<code>postscript()</code> and so on, are themselves written in R and thus
do not differ materially from user written functions.
</p>
<p>A function is defined by an assignment of the form
</p>
<div class="example">
<pre class="example">> <var>name</var> <- function(<var>arg_1</var>, <var>arg_2</var>, …) <var>expression</var>
</pre></div>
<a name="index-function"></a>
<p>The <var>expression</var> is an R expression, (usually a grouped
expression), that uses the arguments, <var>arg_i</var>, to calculate a value.
The value of the expression is the value returned for the function.
</p>
<p>A call to the function then usually takes the form
<code><var>name</var>(<var>expr_1</var>, <var>expr_2</var>, …)</code> and may occur
anywhere a function call is legitimate.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Simple-examples" accesskey="1">Simple examples</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Defining-new-binary-operators" accesskey="2">Defining new binary operators</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Named-arguments-and-defaults" accesskey="3">Named arguments and defaults</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-three-dots-argument" accesskey="4">The three dots argument</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Assignment-within-functions" accesskey="5">Assignment within functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#More-advanced-examples" accesskey="6">More advanced examples</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Scope" accesskey="7">Scope</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Customizing-the-environment" accesskey="8">Customizing the environment</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Object-orientation" accesskey="9">Object orientation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Simple-examples"></a>
<div class="header">
<p>
Next: <a href="#Defining-new-binary-operators" accesskey="n" rel="next">Defining new binary operators</a>, Previous: <a href="#Writing-your-own-functions" accesskey="p" rel="prev">Writing your own functions</a>, Up: <a href="#Writing-your-own-functions" accesskey="u" rel="up">Writing your own functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Simple-examples-1"></a>
<h3 class="section">10.1 Simple examples</h3>
<p>As a first example, consider a function to calculate the two sample
<em>t</em>-statistic, showing “all the steps”. This is an artificial
example, of course, since there are other, simpler ways of achieving the
same end.
</p>
<p>The function is defined as follows:
</p>
<div class="example">
<pre class="example">> twosam <- function(y1, y2) {
n1 <- length(y1); n2 <- length(y2)
yb1 <- mean(y1); yb2 <- mean(y2)
s1 <- var(y1); s2 <- var(y2)
s <- ((n1-1)*s1 + (n2-1)*s2)/(n1+n2-2)
tst <- (yb1 - yb2)/sqrt(s*(1/n1 + 1/n2))
tst
}
</pre></div>
<p>With this function defined, you could perform two sample <em>t</em>-tests
using a call such as
</p>
<div class="example">
<pre class="example">> tstat <- twosam(data$male, data$female); tstat
</pre></div>
<p>As a second example, consider a function to emulate directly the
<small>MATLAB</small> backslash command, which returns the coefficients of the
orthogonal projection of the vector <em>y</em> onto the column space of
the matrix, <em>X</em>. (This is ordinarily called the least squares
estimate of the regression coefficients.) This would ordinarily be
done with the <code>qr()</code> function; however this is sometimes a bit
tricky to use directly and it pays to have a simple function such as the
following to use it safely.
</p>
<p>Thus given a <em>n</em> by <em>1</em> vector <em>y</em> and an <em>n</em> by
<em>p</em> matrix <em>X</em> then <em>X \ y</em> is defined as
(X’X)^{-}X’y, where (X’X)^{-}
is a generalized inverse of <em>X'X</em>.
</p>
<div class="example">
<pre class="example">> bslash <- function(X, y) {
X <- qr(X)
qr.coef(X, y)
}
</pre></div>
<p>After this object is created it may be used in statements such as
</p>
<div class="example">
<pre class="example">> regcoeff <- bslash(Xmat, yvar)
</pre></div>
<p>and so on.
</p>
<p>The classical R function <code>lsfit()</code> does this job quite well, and
more<a name="DOCF22" href="#FOOT22"><sup>22</sup></a>. It in turn uses the functions <code>qr()</code> and <code>qr.coef()</code>
in the slightly counterintuitive way above to do this part of the
calculation. Hence there is probably some value in having just this
part isolated in a simple to use function if it is going to be in
frequent use. If so, we may wish to make it a matrix binary operator
for even more convenient use.
</p>
<hr>
<a name="Defining-new-binary-operators"></a>
<div class="header">
<p>
Next: <a href="#Named-arguments-and-defaults" accesskey="n" rel="next">Named arguments and defaults</a>, Previous: <a href="#Simple-examples" accesskey="p" rel="prev">Simple examples</a>, Up: <a href="#Writing-your-own-functions" accesskey="u" rel="up">Writing your own functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Defining-new-binary-operators-1"></a>
<h3 class="section">10.2 Defining new binary operators</h3>
<a name="index-Binary-operators"></a>
<p>Had we given the <code>bslash()</code> function a different name, namely one of
the form
</p>
<div class="example">
<pre class="example">%<var>anything</var>%
</pre></div>
<p>it could have been used as a <em>binary operator</em> in expressions
rather than in function form. Suppose, for example, we choose <code>!</code>
for the internal character. The function definition would then start as
</p>
<div class="example">
<pre class="example">> "%!%" <- function(X, y) { … }
</pre></div>
<p>(Note the use of quote marks.) The function could then be used as
<code>X %!% y</code>. (The backslash symbol itself is not a convenient choice
as it presents special problems in this context.)
</p>
<p>The matrix multiplication operator, <code>%*%</code>, and the outer product
matrix operator <code>%o%</code> are other examples of binary operators
defined in this way.
</p>
<hr>
<a name="Named-arguments-and-defaults"></a>
<div class="header">
<p>
Next: <a href="#The-three-dots-argument" accesskey="n" rel="next">The three dots argument</a>, Previous: <a href="#Defining-new-binary-operators" accesskey="p" rel="prev">Defining new binary operators</a>, Up: <a href="#Writing-your-own-functions" accesskey="u" rel="up">Writing your own functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Named-arguments-and-defaults-1"></a>
<h3 class="section">10.3 Named arguments and defaults</h3>
<a name="index-Named-arguments"></a>
<a name="index-Default-values"></a>
<p>As first noted in <a href="#Generating-regular-sequences">Generating regular sequences</a>, if arguments to
called functions are given in the “<code><var>name</var>=<var>object</var></code>”
form, they may be given in any order. Furthermore the argument sequence
may begin in the unnamed, positional form, and specify named arguments
after the positional arguments.
</p>
<p>Thus if there is a function <code>fun1</code> defined by
</p>
<div class="example">
<pre class="example">> fun1 <- function(data, data.frame, graph, limit) {
<span class="roman">[function body omitted]</span>
}
</pre></div>
<p>then the function may be invoked in several ways, for example
</p>
<div class="example">
<pre class="example">> ans <- fun1(d, df, TRUE, 20)
> ans <- fun1(d, df, graph=TRUE, limit=20)
> ans <- fun1(data=d, limit=20, graph=TRUE, data.frame=df)
</pre></div>
<p>are all equivalent.
</p>
<p>In many cases arguments can be given commonly appropriate default
values, in which case they may be omitted altogether from the call when
the defaults are appropriate. For example, if <code>fun1</code> were defined
as
</p>
<div class="example">
<pre class="example">> fun1 <- function(data, data.frame, graph=TRUE, limit=20) { … }
</pre></div>
<p>it could be called as
</p>
<div class="example">
<pre class="example">> ans <- fun1(d, df)
</pre></div>
<p>which is now equivalent to the three cases above, or as
</p>
<div class="example">
<pre class="example">> ans <- fun1(d, df, limit=10)
</pre></div>
<p>which changes one of the defaults.
</p>
<p>It is important to note that defaults may be arbitrary expressions, even
involving other arguments to the same function; they are not restricted
to be constants as in our simple example here.
</p>
<hr>
<a name="The-three-dots-argument"></a>
<div class="header">
<p>
Next: <a href="#Assignment-within-functions" accesskey="n" rel="next">Assignment within functions</a>, Previous: <a href="#Named-arguments-and-defaults" accesskey="p" rel="prev">Named arguments and defaults</a>, Up: <a href="#Writing-your-own-functions" accesskey="u" rel="up">Writing your own functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="The-_2026-argument"></a>
<h3 class="section">10.4 The ‘<samp>…</samp>’ argument</h3>
<p>Another frequent requirement is to allow one function to pass on
argument settings to another. For example many graphics functions use
the function <code>par()</code> and functions like <code>plot()</code> allow the
user to pass on graphical parameters to <code>par()</code> to control the
graphical output. (See <a href="#The-par_0028_0029-function">The par() function</a>, for more details on the
<code>par()</code> function.) This can be done by including an extra
argument, literally ‘<samp>…</samp>’, of the function, which may then be
passed on. An outline example is given below.
</p>
<div class="example">
<pre class="example">fun1 <- function(data, data.frame, graph=TRUE, limit=20, ...) {
<span class="roman">[omitted statements]</span>
if (graph)
par(pch="*", ...)
<span class="roman">[more omissions]</span>
}
</pre></div>
<p>Less frequently, a function will need to refer to components of
‘<samp>…</samp>’. The expression <code>list(...)</code> evaluates all such
arguments and returns them in a named list, while <code>..1</code>,
<code>..2</code>, etc. evaluate them one at a time, with ‘<samp>..n</samp>’
returning the n’th unmatched argument.
</p>
<hr>
<a name="Assignment-within-functions"></a>
<div class="header">
<p>
Next: <a href="#More-advanced-examples" accesskey="n" rel="next">More advanced examples</a>, Previous: <a href="#The-three-dots-argument" accesskey="p" rel="prev">The three dots argument</a>, Up: <a href="#Writing-your-own-functions" accesskey="u" rel="up">Writing your own functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Assignments-within-functions"></a>
<h3 class="section">10.5 Assignments within functions</h3>
<p>Note that <em>any ordinary assignments done within the function are
local and temporary and are lost after exit from the function</em>. Thus
the assignment <code>X <- qr(X)</code> does not affect the value of the
argument in the calling program.
</p>
<p>To understand completely the rules governing the scope of R assignments
the reader needs to be familiar with the notion of an evaluation
<em>frame</em>. This is a somewhat advanced, though hardly difficult,
topic and is not covered further here.
</p>
<p>If global and permanent assignments are intended within a function, then
either the “superassignment” operator, <code><<-</code> or the function
<code>assign()</code> can be used. See the <code>help</code> document for details.
<small>S-PLUS</small> users should be aware that <code><<-</code> has different semantics
in R. These are discussed further in <a href="#Scope">Scope</a>.
</p>
<hr>
<a name="More-advanced-examples"></a>
<div class="header">
<p>
Next: <a href="#Scope" accesskey="n" rel="next">Scope</a>, Previous: <a href="#Assignment-within-functions" accesskey="p" rel="prev">Assignment within functions</a>, Up: <a href="#Writing-your-own-functions" accesskey="u" rel="up">Writing your own functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="More-advanced-examples-1"></a>
<h3 class="section">10.6 More advanced examples</h3>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Efficiency-factors-in-block-designs" accesskey="1">Efficiency factors in block designs</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Dropping-all-names-in-a-printed-array" accesskey="2">Dropping all names in a printed array</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Recursive-numerical-integration" accesskey="3">Recursive numerical integration</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Efficiency-factors-in-block-designs"></a>
<div class="header">
<p>
Next: <a href="#Dropping-all-names-in-a-printed-array" accesskey="n" rel="next">Dropping all names in a printed array</a>, Previous: <a href="#More-advanced-examples" accesskey="p" rel="prev">More advanced examples</a>, Up: <a href="#More-advanced-examples" accesskey="u" rel="up">More advanced examples</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Efficiency-factors-in-block-designs-1"></a>
<h4 class="subsection">10.6.1 Efficiency factors in block designs</h4>
<p>As a more complete, if a little pedestrian, example of a function,
consider finding the efficiency factors for a block design. (Some
aspects of this problem have already been discussed in <a href="#Index-matrices">Index matrices</a>.)
</p>
<p>A block design is defined by two factors, say <code>blocks</code> (<code>b</code>
levels) and <code>varieties</code> (<code>v</code> levels). If <em>R</em> and
<em>K</em> are the <em>v</em> by <em>v</em> and <em>b</em> by <em>b</em>
<em>replications</em> and <em>block size</em> matrices, respectively, and
<em>N</em> is the <em>b</em> by <em>v</em> incidence matrix, then the
efficiency factors are defined as the eigenvalues of the matrix
E = I_v - R^{-1/2}N’K^{-1}NR^{-1/2} = I_v - A’A, where
A = K^{-1/2}NR^{-1/2}.
One way to write the function is given below.
</p>
<div class="example">
<pre class="example">> bdeff <- function(blocks, varieties) {
blocks <- as.factor(blocks) # <span class="roman">minor safety move</span>
b <- length(levels(blocks))
varieties <- as.factor(varieties) # <span class="roman">minor safety move</span>
v <- length(levels(varieties))
K <- as.vector(table(blocks)) # <span class="roman">remove dim attr</span>
R <- as.vector(table(varieties)) # <span class="roman">remove dim attr</span>
N <- table(blocks, varieties)
A <- 1/sqrt(K) * N * rep(1/sqrt(R), rep(b, v))
sv <- svd(A)
list(eff=1 - sv$d^2, blockcv=sv$u, varietycv=sv$v)
}
</pre></div>
<p>It is numerically slightly better to work with the singular value
decomposition on this occasion rather than the eigenvalue routines.
</p>
<p>The result of the function is a list giving not only the efficiency
factors as the first component, but also the block and variety canonical
contrasts, since sometimes these give additional useful qualitative
information.
</p>
<hr>
<a name="Dropping-all-names-in-a-printed-array"></a>
<div class="header">
<p>
Next: <a href="#Recursive-numerical-integration" accesskey="n" rel="next">Recursive numerical integration</a>, Previous: <a href="#Efficiency-factors-in-block-designs" accesskey="p" rel="prev">Efficiency factors in block designs</a>, Up: <a href="#More-advanced-examples" accesskey="u" rel="up">More advanced examples</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Dropping-all-names-in-a-printed-array-1"></a>
<h4 class="subsection">10.6.2 Dropping all names in a printed array</h4>
<p>For printing purposes with large matrices or arrays, it is often useful
to print them in close block form without the array names or numbers.
Removing the <code>dimnames</code> attribute will not achieve this effect, but
rather the array must be given a <code>dimnames</code> attribute consisting of
empty strings. For example to print a matrix, <code>X</code>
</p>
<div class="example">
<pre class="example">> temp <- X
> dimnames(temp) <- list(rep("", nrow(X)), rep("", ncol(X)))
> temp; rm(temp)
</pre></div>
<p>This can be much more conveniently done using a function,
<code>no.dimnames()</code>, shown below, as a “wrap around” to achieve the
same result. It also illustrates how some effective and useful user
functions can be quite short.
</p>
<div class="example">
<pre class="example">no.dimnames <- function(a) {
## <span class="roman">Remove all dimension names from an array for compact printing.</span>
d <- list()
l <- 0
for(i in dim(a)) {
d[[l <- l + 1]] <- rep("", i)
}
dimnames(a) <- d
a
}
</pre></div>
<p>With this function defined, an array may be printed in close format
using
</p>
<div class="example">
<pre class="example">> no.dimnames(X)
</pre></div>
<p>This is particularly useful for large integer arrays, where patterns are
the real interest rather than the values.
</p>
<hr>
<a name="Recursive-numerical-integration"></a>
<div class="header">
<p>
Previous: <a href="#Dropping-all-names-in-a-printed-array" accesskey="p" rel="prev">Dropping all names in a printed array</a>, Up: <a href="#More-advanced-examples" accesskey="u" rel="up">More advanced examples</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Recursive-numerical-integration-1"></a>
<h4 class="subsection">10.6.3 Recursive numerical integration</h4>
<p>Functions may be recursive, and may themselves define functions within
themselves. Note, however, that such functions, or indeed variables,
are not inherited by called functions in higher evaluation frames as
they would be if they were on the search path.
</p>
<p>The example below shows a naive way of performing one-dimensional
numerical integration. The integrand is evaluated at the end points of
the range and in the middle. If the one-panel trapezium rule answer is
close enough to the two panel, then the latter is returned as the value.
Otherwise the same process is recursively applied to each panel. The
result is an adaptive integration process that concentrates function
evaluations in regions where the integrand is farthest from linear.
There is, however, a heavy overhead, and the function is only
competitive with other algorithms when the integrand is both smooth and
very difficult to evaluate.
</p>
<p>The example is also given partly as a little puzzle in R programming.
</p>
<div class="example">
<pre class="example">area <- function(f, a, b, eps = 1.0e-06, lim = 10) {
fun1 <- function(f, a, b, fa, fb, a0, eps, lim, fun) {
## <span class="roman">function ‘fun1’ is only visible inside ‘area’</span>
d <- (a + b)/2
h <- (b - a)/4
fd <- f(d)
a1 <- h * (fa + fd)
a2 <- h * (fd + fb)
if(abs(a0 - a1 - a2) < eps || lim == 0)
return(a1 + a2)
else {
return(fun(f, a, d, fa, fd, a1, eps, lim - 1, fun) +
fun(f, d, b, fd, fb, a2, eps, lim - 1, fun))
}
}
fa <- f(a)
fb <- f(b)
a0 <- ((fa + fb) * (b - a))/2
fun1(f, a, b, fa, fb, a0, eps, lim, fun1)
}
</pre></div>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Scope" accesskey="1">Scope</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Object-orientation" accesskey="2">Object orientation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Scope"></a>
<div class="header">
<p>
Next: <a href="#Customizing-the-environment" accesskey="n" rel="next">Customizing the environment</a>, Previous: <a href="#More-advanced-examples" accesskey="p" rel="prev">More advanced examples</a>, Up: <a href="#Writing-your-own-functions" accesskey="u" rel="up">Writing your own functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Scope-1"></a>
<h3 class="section">10.7 Scope</h3>
<a name="index-Scope"></a>
<p>The discussion in this section is somewhat more technical than in other
parts of this document. However, it details one of the major differences
between <small>S-PLUS</small> and R.
</p>
<p>The symbols which occur in the body of a function can be divided into
three classes; formal parameters, local variables and free variables.
The formal parameters of a function are those occurring in the argument
list of the function. Their values are determined by the process of
<em>binding</em> the actual function arguments to the formal parameters.
Local variables are those whose values are determined by the evaluation
of expressions in the body of the functions. Variables which are not
formal parameters or local variables are called free variables. Free
variables become local variables if they are assigned to. Consider the
following function definition.
</p>
<div class="example">
<pre class="example">f <- function(x) {
y <- 2*x
print(x)
print(y)
print(z)
}
</pre></div>
<p>In this function, <code>x</code> is a formal parameter, <code>y</code> is a local
variable and <code>z</code> is a free variable.
</p>
<p>In R the free variable bindings are resolved by first looking in the
environment in which the function was created. This is called
<em>lexical scope</em>. First we define a function called <code>cube</code>.
</p>
<div class="example">
<pre class="example">cube <- function(n) {
sq <- function() n*n
n*sq()
}
</pre></div>
<p>The variable <code>n</code> in the function <code>sq</code> is not an argument to that
function. Therefore it is a free variable and the scoping rules must be
used to ascertain the value that is to be associated with it. Under static
scope (<small>S-PLUS</small>) the value is that associated with a global variable named
<code>n</code>. Under lexical scope (R) it is the parameter to the function
<code>cube</code> since that is the active binding for the variable <code>n</code> at
the time the function <code>sq</code> was defined. The difference between
evaluation in R and evaluation in <small>S-PLUS</small> is that <small>S-PLUS</small> looks for a
global variable called <code>n</code> while R first looks for a variable
called <code>n</code> in the environment created when <code>cube</code> was invoked.
</p>
<div class="example">
<pre class="example">## <span class="roman">first evaluation in S</span>
S> cube(2)
Error in sq(): Object "n" not found
Dumped
S> n <- 3
S> cube(2)
[1] 18
## <span class="roman">then the same function evaluated in R</span>
R> cube(2)
[1] 8
</pre></div>
<p>Lexical scope can also be used to give functions <em>mutable state</em>.
In the following example we show how R can be used to mimic a bank
account. A functioning bank account needs to have a balance or total, a
function for making withdrawals, a function for making deposits and a
function for stating the current balance. We achieve this by creating
the three functions within <code>account</code> and then returning a list
containing them. When <code>account</code> is invoked it takes a numerical
argument <code>total</code> and returns a list containing the three functions.
Because these functions are defined in an environment which contains
<code>total</code>, they will have access to its value.
</p>
<p>The special assignment operator, <code><<-</code>,
<a name="index-_003c_003c_002d"></a>
is used to change the value associated with <code>total</code>. This operator
looks back in enclosing environments for an environment that contains
the symbol <code>total</code> and when it finds such an environment it
replaces the value, in that environment, with the value of right hand
side. If the global or top-level environment is reached without finding
the symbol <code>total</code> then that variable is created and assigned to
there. For most users <code><<-</code> creates a global variable and assigns
the value of the right hand side to it<a name="DOCF23" href="#FOOT23"><sup>23</sup></a>. Only when <code><<-</code> has
been used in a function that was returned as the value of another
function will the special behavior described here occur.
</p>
<div class="example">
<pre class="example">open.account <- function(total) {
list(
deposit = function(amount) {
if(amount <= 0)
stop("Deposits must be positive!\n")
total <<- total + amount
cat(amount, "deposited. Your balance is", total, "\n\n")
},
withdraw = function(amount) {
if(amount > total)
stop("You don't have that much money!\n")
total <<- total - amount
cat(amount, "withdrawn. Your balance is", total, "\n\n")
},
balance = function() {
cat("Your balance is", total, "\n\n")
}
)
}
ross <- open.account(100)
robert <- open.account(200)
ross$withdraw(30)
ross$balance()
robert$balance()
ross$deposit(50)
ross$balance()
ross$withdraw(500)
</pre></div>
<hr>
<a name="Customizing-the-environment"></a>
<div class="header">
<p>
Next: <a href="#Object-orientation" accesskey="n" rel="next">Object orientation</a>, Previous: <a href="#Scope" accesskey="p" rel="prev">Scope</a>, Up: <a href="#Writing-your-own-functions" accesskey="u" rel="up">Writing your own functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Customizing-the-environment-1"></a>
<h3 class="section">10.8 Customizing the environment</h3>
<a name="index-Customizing-the-environment"></a>
<p>Users can customize their environment in several different ways. There
is a site initialization file and every directory can have its own
special initialization file. Finally, the special functions
<code>.First</code> and <code>.Last</code> can be used.
</p>
<p>The location of the site initialization file is taken from the value of
the <code>R_PROFILE</code> environment variable. If that variable is unset,
the file <samp>Rprofile.site</samp> in the R home subdirectory <samp>etc</samp> is
used. This file should contain the commands that you want to execute
every time R is started under your system. A second, personal,
profile file named <samp>.Rprofile</samp><a name="DOCF24" href="#FOOT24"><sup>24</sup></a> can be placed in any directory. If R is invoked in that
directory then that file will be sourced. This file gives individual
users control over their workspace and allows for different startup
procedures in different working directories. If no <samp>.Rprofile</samp>
file is found in the startup directory, then R looks for a
<samp>.Rprofile</samp> file in the user’s home directory and uses that (if it
exists). If the environment variable <code>R_PROFILE_USER</code> is set, the
file it points to is used instead of the <samp>.Rprofile</samp> files.
</p>
<p>Any function named <code>.First()</code> in either of the two profile files or
in the <samp>.RData</samp> image has a special status. It is automatically
performed at the beginning of an R session and may be used to
initialize the environment. For example, the definition in the example
below alters the prompt to <code>$</code> and sets up various other useful
things that can then be taken for granted in the rest of the session.
</p>
<p>Thus, the sequence in which files are executed is, <samp>Rprofile.site</samp>,
the user profile, <samp>.RData</samp> and then <code>.First()</code>. A definition
in later files will mask definitions in earlier files.
</p>
<div class="example">
<pre class="example">> .First <- function() {
options(prompt="$ ", continue="+\t") # <span class="roman"><code>$</code> is the prompt</span>
options(digits=5, length=999) # <span class="roman">custom numbers and printout</span>
x11() # <span class="roman">for graphics</span>
par(pch = "+") # <span class="roman">plotting character</span>
source(file.path(Sys.getenv("HOME"), "R", "mystuff.R"))
# <span class="roman">my personal functions</span>
library(MASS) # <span class="roman">attach a package</span>
}
</pre></div>
<a name="index-_002eFirst"></a>
<p>Similarly a function <code>.Last()</code>, if defined, is (normally) executed
at the very end of the session. An example is given below.
</p>
<div class="example">
<pre class="example">> .Last <- function() {
graphics.off() # <span class="roman">a small safety measure.</span>
cat(paste(date(),"\nAdios\n")) # <span class="roman">Is it time for lunch?</span>
}
</pre></div>
<a name="index-_002eLast"></a>
<hr>
<a name="Object-orientation"></a>
<div class="header">
<p>
Previous: <a href="#Customizing-the-environment" accesskey="p" rel="prev">Customizing the environment</a>, Up: <a href="#Writing-your-own-functions" accesskey="u" rel="up">Writing your own functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Classes_002c-generic-functions-and-object-orientation"></a>
<h3 class="section">10.9 Classes, generic functions and object orientation</h3>
<a name="index-Classes-1"></a>
<a name="index-Generic-functions"></a>
<a name="index-Object-orientation"></a>
<p>The class of an object determines how it will be treated by what are
known as <em>generic</em> functions. Put the other way round, a generic
function performs a task or action on its arguments <em>specific to
the class of the argument itself</em>. If the argument lacks any <code>class</code>
attribute, or has a class not catered for specifically by the generic
function in question, there is always a <em>default action</em> provided.
</p>
<p>An example makes things clearer. The class mechanism offers the user
the facility of designing and writing generic functions for special
purposes. Among the other generic functions are <code>plot()</code> for
displaying objects graphically, <code>summary()</code> for summarizing
analyses of various types, and <code>anova()</code> for comparing statistical
models.
</p>
<p>The number of generic functions that can treat a class in a specific way
can be quite large. For example, the functions that can accommodate in
some fashion objects of class <code>"data.frame"</code> include
</p>
<div class="example">
<pre class="example">[ [[<- any as.matrix
[<- mean plot summary
</pre></div>
<a name="index-methods"></a>
<p>A currently complete list can be got by using the <code>methods()</code>
function:
</p>
<div class="example">
<pre class="example">> methods(class="data.frame")
</pre></div>
<p>Conversely the number of classes a generic function can handle can also
be quite large. For example the <code>plot()</code> function has a default
method and variants for objects of classes <code>"data.frame"</code>,
<code>"density"</code>, <code>"factor"</code>, and more. A complete list can be got
again by using the <code>methods()</code> function:
</p>
<div class="example">
<pre class="example">> methods(plot)
</pre></div>
<p>For many generic functions the function body is quite short, for example
</p>
<div class="example">
<pre class="example">> coef
function (object, ...)
UseMethod("coef")
</pre></div>
<p>The presence of <code>UseMethod</code> indicates this is a generic function.
To see what methods are available we can use <code>methods()</code>
</p>
<div class="example">
<pre class="example">> methods(coef)
[1] coef.aov* coef.Arima* coef.default* coef.listof*
[5] coef.nls* coef.summary.nls*
Non-visible functions are asterisked
</pre></div>
<p>In this example there are six methods, none of which can be seen by
typing its name. We can read these by either of
</p>
<a name="index-getAnywhere"></a>
<a name="index-getS3method"></a>
<div class="example">
<pre class="example">> getAnywhere("coef.aov")
A single object matching ‘coef.aov’ was found
It was found in the following places
registered S3 method for coef from namespace stats
namespace:stats
with value
function (object, ...)
{
z <- object$coef
z[!is.na(z)]
}
> getS3method("coef", "aov")
function (object, ...)
{
z <- object$coef
z[!is.na(z)]
}
</pre></div>
<p>A function named <code><var>gen</var>.<var>cl</var></code> will be invoked by the
generic <code><var>gen</var></code> for class <code><var>cl</var></code>, so do not name
functions in this style unless they are intended to be methods.
</p>
<p>The reader is referred to the <em>R Language Definition</em> for a more
complete discussion of this mechanism.
</p>
<hr>
<a name="Statistical-models-in-R"></a>
<div class="header">
<p>
Next: <a href="#Graphics" accesskey="n" rel="next">Graphics</a>, Previous: <a href="#Writing-your-own-functions" accesskey="p" rel="prev">Writing your own functions</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Statistical-models-in-R-1"></a>
<h2 class="chapter">11 Statistical models in R</h2>
<a name="index-Statistical-models"></a>
<p>This section presumes the reader has some familiarity with statistical
methodology, in particular with regression analysis and the analysis of
variance. Later we make some rather more ambitious presumptions, namely
that something is known about generalized linear models and nonlinear
regression.
</p>
<p>The requirements for fitting statistical models are sufficiently well
defined to make it possible to construct general tools that apply in a
broad spectrum of problems.
</p>
<p>R provides an interlocking suite of facilities that make fitting
statistical models very simple. As we mention in the introduction, the
basic output is minimal, and one needs to ask for the details by calling
extractor functions.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Formulae-for-statistical-models" accesskey="1">Formulae for statistical models</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Linear-models" accesskey="2">Linear models</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Generic-functions-for-extracting-model-information" accesskey="3">Generic functions for extracting model information</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Analysis-of-variance-and-model-comparison" accesskey="4">Analysis of variance and model comparison</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Updating-fitted-models" accesskey="5">Updating fitted models</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Generalized-linear-models" accesskey="6">Generalized linear models</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Nonlinear-least-squares-and-maximum-likelihood-models" accesskey="7">Nonlinear least squares and maximum likelihood models</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Some-non_002dstandard-models" accesskey="8">Some non-standard models</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Formulae-for-statistical-models"></a>
<div class="header">
<p>
Next: <a href="#Linear-models" accesskey="n" rel="next">Linear models</a>, Previous: <a href="#Statistical-models-in-R" accesskey="p" rel="prev">Statistical models in R</a>, Up: <a href="#Statistical-models-in-R" accesskey="u" rel="up">Statistical models in R</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Defining-statistical-models_003b-formulae"></a>
<h3 class="section">11.1 Defining statistical models; formulae</h3>
<a name="index-Formulae"></a>
<p>The template for a statistical model is a linear regression model with
independent, homoscedastic errors
</p>
<div class="display">
<pre class="display">y_i = sum_{j=0}^p beta_j x_{ij} + e_i, i = 1, …, n,
</pre></div>
<p>where the e_i are NID(0, sigma^2).
In matrix terms this would be written
</p>
<div class="display">
<pre class="display">y = X beta + e
</pre></div>
<p>where the <em>y</em> is the response vector, <em>X</em> is the <em>model
matrix</em> or <em>design matrix</em> and has columns
<em>x_0, x_1, …, x_p</em>,
the determining variables. Very often <em>x_0</em>
will be a column of ones defining an <em>intercept</em> term.
</p>
<a name="Examples"></a>
<h4 class="subsubheading">Examples</h4>
<p>Before giving a formal specification, a few examples may usefully set
the picture.
</p>
<p>Suppose <code>y</code>, <code>x</code>, <code>x0</code>, <code>x1</code>, <code>x2</code>, … are
numeric variables, <code>X</code> is a matrix and <code>A</code>, <code>B</code>,
<code>C</code>, … are factors. The following formulae on the left
side below specify statistical models as described on the right.
</p>
<dl compact="compact">
<dt><code>y ~ x</code></dt>
<dt><code>y ~ 1 + x</code></dt>
<dd><p>Both imply the same simple linear regression model of <em>y</em> on
<em>x</em>. The first has an implicit intercept term, and the second an
explicit one.
</p>
</dd>
<dt><code>y ~ 0 + x</code></dt>
<dt><code>y ~ -1 + x</code></dt>
<dt><code>y ~ x - 1</code></dt>
<dd><p>Simple linear regression of <em>y</em> on <em>x</em> through the origin
(that is, without an intercept term).
</p>
</dd>
<dt><code>log(y) ~ x1 + x2</code></dt>
<dd><p>Multiple regression of the transformed variable,
log(y),
on <em>x1</em> and <em>x2</em> (with an implicit intercept term).
</p>
</dd>
<dt><code>y ~ poly(x,2)</code></dt>
<dt><code>y ~ 1 + x + I(x^2)</code></dt>
<dd><p>Polynomial regression of <em>y</em> on <em>x</em> of degree 2. The first
form uses orthogonal polynomials, and the second uses explicit powers,
as basis.
</p>
</dd>
<dt><code>y ~ X + poly(x,2)</code></dt>
<dd><p>Multiple regression <em>y</em> with model matrix consisting of the matrix
<em>X</em> as well as polynomial terms in <em>x</em> to degree 2.
</p>
</dd>
<dt><code>y ~ A</code></dt>
<dd><p>Single classification analysis of variance model of <em>y</em>, with
classes determined by <em>A</em>.
</p>
</dd>
<dt><code>y ~ A + x</code></dt>
<dd><p>Single classification analysis of covariance model of <em>y</em>, with
classes determined by <em>A</em>, and with covariate <em>x</em>.
</p>
</dd>
<dt><code>y ~ A*B</code></dt>
<dt><code>y ~ A + B + A:B</code></dt>
<dt><code>y ~ B %in% A</code></dt>
<dt><code>y ~ A/B</code></dt>
<dd><p>Two factor non-additive model of <em>y</em> on <em>A</em> and <em>B</em>. The
first two specify the same crossed classification and the second two
specify the same nested classification. In abstract terms all four
specify the same model subspace.
</p>
</dd>
<dt><code>y ~ (A + B + C)^2</code></dt>
<dt><code>y ~ A*B*C - A:B:C</code></dt>
<dd><p>Three factor experiment but with a model containing main effects and two
factor interactions only. Both formulae specify the same model.
</p>
</dd>
<dt><code>y ~ A * x</code></dt>
<dt><code>y ~ A/x</code></dt>
<dt><code>y ~ A/(1 + x) - 1</code></dt>
<dd><p>Separate simple linear regression models of <em>y</em> on <em>x</em> within
the levels of <em>A</em>, with different codings. The last form produces
explicit estimates of as many different intercepts and slopes as there
are levels in <em>A</em>.
</p>
</dd>
<dt><code>y ~ A*B + Error(C)</code></dt>
<dd><p>An experiment with two treatment factors, <em>A</em> and <em>B</em>, and
error strata determined by factor <em>C</em>. For example a split plot
experiment, with whole plots (and hence also subplots), determined by
factor <em>C</em>.
</p></dd>
</dl>
<a name="index-_007e"></a>
<p>The operator <code>~</code> is used to define a <em>model formula</em> in R.
The form, for an ordinary linear model, is
</p>
<div class="example">
<pre class="example"><var>response</var> ~ <var>op_1</var> <var>term_1</var> <var>op_2</var> <var>term_2</var> <var>op_3</var> <var>term_3</var> <var>…</var>
</pre></div>
<p>where
</p>
<dl compact="compact">
<dt><var>response</var></dt>
<dd><p>is a vector or matrix, (or expression evaluating to a vector or matrix)
defining the response variable(s).
</p></dd>
<dt><var>op_i</var></dt>
<dd><p>is an operator, either <code>+</code> or <code>-</code>, implying the inclusion or
exclusion of a term in the model, (the first is optional).
</p></dd>
<dt><var>term_i</var></dt>
<dd><p>is either
</p><ul>
<li> a vector or matrix expression, or <code>1</code>,
</li><li> a factor, or
</li><li> a <em>formula expression</em> consisting of factors, vectors or matrices
connected by <em>formula operators</em>.
</li></ul>
<p>In all cases each term defines a collection of columns either to be
added to or removed from the model matrix. A <code>1</code> stands for an
intercept column and is by default included in the model matrix unless
explicitly removed.
</p>
</dd>
</dl>
<p>The <em>formula operators</em> are similar in effect to the Wilkinson and
Rogers notation used by such programs as Glim and Genstat. One
inevitable change is that the operator ‘<samp><code>.</code></samp>’ becomes
‘<samp><code>:</code></samp>’ since the period is a valid name character in R.
</p>
<p>The notation is summarized below (based on Chambers & Hastie, 1992,
p.29):
</p>
<dl compact="compact">
<dt><code><var>Y</var> ~ <var>M</var></code></dt>
<dd><p><var>Y</var> is modeled as <var>M</var>.
</p>
</dd>
<dt><code><var>M_1</var> + <var>M_2</var></code></dt>
<dd><p>Include <var>M_1</var> and <var>M_2</var>.
</p>
</dd>
<dt><code><var>M_1</var> - <var>M_2</var></code></dt>
<dd><p>Include <var>M_1</var> leaving out terms of <var>M_2</var>.
</p>
</dd>
<dt><code><var>M_1</var> : <var>M_2</var></code></dt>
<dd><p>The tensor product of <var>M_1</var> and <var>M_2</var>. If both terms are
factors, then the “subclasses” factor.
</p>
</dd>
<dt><code><var>M_1</var> %in% <var>M_2</var></code></dt>
<dd><p>Similar to <code><var>M_1</var>:<var>M_2</var></code>, but with a different coding.
</p>
</dd>
<dt><code><var>M_1</var> * <var>M_2</var></code></dt>
<dd><p><code><var>M_1</var> + <var>M_2</var> + <var>M_1</var>:<var>M_2</var></code>.
</p>
</dd>
<dt><code><var>M_1</var> / <var>M_2</var></code></dt>
<dd><p><code><var>M_1</var> + <var>M_2</var> %in% <var>M_1</var></code>.
</p>
</dd>
<dt><code><var>M</var>^<var>n</var></code></dt>
<dd><p>All terms in <var>M</var> together with “interactions” up to order <var>n</var>
</p>
</dd>
<dt><code>I(<var>M</var>)</code></dt>
<dd><p>Insulate <var>M</var>. Inside <var>M</var> all operators have their normal
arithmetic meaning, and that term appears in the model matrix.
</p></dd>
</dl>
<p>Note that inside the parentheses that usually enclose function arguments
all operators have their normal arithmetic meaning. The function
<code>I()</code> is an identity function used to allow terms in model formulae
to be defined using arithmetic operators.
</p>
<p>Note particularly that the model formulae specify the <em>columns
of the model matrix</em>, the specification of the parameters being
implicit. This is not the case in other contexts, for example in
specifying nonlinear models.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Contrasts" accesskey="1">Contrasts</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Contrasts"></a>
<div class="header">
<p>
Previous: <a href="#Formulae-for-statistical-models" accesskey="p" rel="prev">Formulae for statistical models</a>, Up: <a href="#Formulae-for-statistical-models" accesskey="u" rel="up">Formulae for statistical models</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Contrasts-1"></a>
<h4 class="subsection">11.1.1 Contrasts</h4>
<a name="index-Contrasts"></a>
<p>We need at least some idea how the model formulae specify the columns of
the model matrix. This is easy if we have continuous variables, as each
provides one column of the model matrix (and the intercept will provide
a column of ones if included in the model).
</p>
<a name="index-Factors-1"></a>
<a name="index-Ordered-factors-1"></a>
<p>What about a <em>k</em>-level factor <code>A</code>? The answer differs for
unordered and ordered factors. For <em>unordered</em> factors <em>k -
1</em> columns are generated for the indicators of the second, …,
<em>k</em>th levels of the factor. (Thus the implicit parameterization is
to contrast the response at each level with that at the first.) For
<em>ordered</em> factors the <em>k - 1</em> columns are the orthogonal
polynomials on <em>1, …, k</em>, omitting the constant term.
</p>
<p>Although the answer is already complicated, it is not the whole story.
First, if the intercept is omitted in a model that contains a factor
term, the first such term is encoded into <em>k</em> columns giving the
indicators for all the levels. Second, the whole behavior can be
changed by the <code>options</code> setting for <code>contrasts</code>. The default
setting in R is
</p>
<div class="example">
<pre class="example">options(contrasts = c("contr.treatment", "contr.poly"))
</pre></div>
<p>The main reason for mentioning this is that R and S have
different defaults for unordered factors, S using Helmert
contrasts. So if you need to compare your results to those of a textbook
or paper which used <small>S-PLUS</small>, you will need to set
</p>
<div class="example">
<pre class="example">options(contrasts = c("contr.helmert", "contr.poly"))
</pre></div>
<p>This is a deliberate difference, as treatment contrasts (R’s default)
are thought easier for newcomers to interpret.
</p>
<p>We have still not finished, as the contrast scheme to be used can be set
for each term in the model using the functions <code>contrasts</code> and
<code>C</code>.
<a name="index-contrasts"></a>
<a name="index-C"></a>
</p>
<p>We have not yet considered interaction terms: these generate the
products of the columns introduced for their component terms.
</p>
<p>Although the details are complicated, model formulae in R will
normally generate the models that an expert statistician would expect,
provided that marginality is preserved. Fitting, for example, a model
with an interaction but not the corresponding main effects will in
general lead to surprising results, and is for experts only.
</p>
<hr>
<a name="Linear-models"></a>
<div class="header">
<p>
Next: <a href="#Generic-functions-for-extracting-model-information" accesskey="n" rel="next">Generic functions for extracting model information</a>, Previous: <a href="#Formulae-for-statistical-models" accesskey="p" rel="prev">Formulae for statistical models</a>, Up: <a href="#Statistical-models-in-R" accesskey="u" rel="up">Statistical models in R</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Linear-models-1"></a>
<h3 class="section">11.2 Linear models</h3>
<a name="index-Linear-models"></a>
<p>The basic function for fitting ordinary multiple models is <code>lm()</code>,
and a streamlined version of the call is as follows:
<a name="index-lm"></a>
</p>
<div class="example">
<pre class="example">> <var>fitted.model</var> <- lm(<var>formula</var>, data = <var>data.frame</var>)
</pre></div>
<p>For example
</p>
<div class="example">
<pre class="example">> fm2 <- lm(y ~ x1 + x2, data = production)
</pre></div>
<p>would fit a multiple regression model of <em>y</em> on <em>x1</em> and
<em>x2</em> (with implicit intercept term).
</p>
<p>The important (but technically optional) parameter <code>data =
production</code> specifies that any variables needed to construct the model
should come first from the <code>production</code> <em>data frame</em>.
<em>This is the case regardless of whether data frame
<code>production</code> has been attached on the search path or not</em>.
</p>
<hr>
<a name="Generic-functions-for-extracting-model-information"></a>
<div class="header">
<p>
Next: <a href="#Analysis-of-variance-and-model-comparison" accesskey="n" rel="next">Analysis of variance and model comparison</a>, Previous: <a href="#Linear-models" accesskey="p" rel="prev">Linear models</a>, Up: <a href="#Statistical-models-in-R" accesskey="u" rel="up">Statistical models in R</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Generic-functions-for-extracting-model-information-1"></a>
<h3 class="section">11.3 Generic functions for extracting model information</h3>
<p>The value of <code>lm()</code> is a fitted model object; technically a list of
results of class <code>"lm"</code>. Information about the fitted model can
then be displayed, extracted, plotted and so on by using generic
functions that orient themselves to objects of class <code>"lm"</code>. These
include
</p>
<div class="example">
<pre class="example">add1 deviance formula predict step
alias drop1 kappa print summary
anova effects labels proj vcov
coef family plot residuals
</pre></div>
<p>A brief description of the most commonly used ones is given below.
</p>
<dl compact="compact">
<dd><a name="index-anova"></a>
</dd>
<dt><code>anova(<var>object_1</var>, <var>object_2</var>)</code></dt>
<dd><p>Compare a submodel with an outer model and produce an analysis of
variance table.
</p>
<a name="index-coefficients"></a>
<a name="index-coef"></a>
</dd>
<dt><code>coef(<var>object</var>)</code></dt>
<dd><p>Extract the regression coefficient (matrix).
</p>
<p>Long form: <code>coefficients(<var>object</var>)</code>.
</p>
<a name="index-deviance"></a>
</dd>
<dt><code>deviance(<var>object</var>)</code></dt>
<dd><p>Residual sum of squares, weighted if appropriate.
</p>
<a name="index-formula"></a>
</dd>
<dt><code>formula(<var>object</var>)</code></dt>
<dd><p>Extract the model formula.
</p>
<a name="index-plot"></a>
</dd>
<dt><code>plot(<var>object</var>)</code></dt>
<dd><p>Produce four plots, showing residuals, fitted values and some
diagnostics.
</p>
<a name="index-predict"></a>
</dd>
<dt><code>predict(<var>object</var>, newdata=<var>data.frame</var>)</code></dt>
<dd><p>The data frame supplied must have variables specified with the same
labels as the original. The value is a vector or matrix of predicted
values corresponding to the determining variable values in
<var>data.frame</var>.
</p>
<a name="index-print"></a>
</dd>
<dt><code>print(<var>object</var>)</code></dt>
<dd><p>Print a concise version of the object. Most often used implicitly.
</p>
<a name="index-residuals"></a>
<a name="index-resid"></a>
</dd>
<dt><code>residuals(<var>object</var>)</code></dt>
<dd><p>Extract the (matrix of) residuals, weighted as appropriate.
</p>
<p>Short form: <code>resid(<var>object</var>)</code>.
</p>
<a name="index-step"></a>
</dd>
<dt><code>step(<var>object</var>)</code></dt>
<dd><p>Select a suitable model by adding or dropping terms and preserving
hierarchies. The model with the smallest value of AIC (Akaike’s An
Information Criterion) discovered in the stepwise search is returned.
</p>
<a name="index-summary-1"></a>
</dd>
<dt><code>summary(<var>object</var>)</code></dt>
<dd><p>Print a comprehensive summary of the results of the regression analysis.
</p>
<a name="index-vcov"></a>
</dd>
<dt><code>vcov(<var>object</var>)</code></dt>
<dd><p>Returns the variance-covariance matrix of the main parameters of a
fitted model object.
</p></dd>
</dl>
<hr>
<a name="Analysis-of-variance-and-model-comparison"></a>
<div class="header">
<p>
Next: <a href="#Updating-fitted-models" accesskey="n" rel="next">Updating fitted models</a>, Previous: <a href="#Generic-functions-for-extracting-model-information" accesskey="p" rel="prev">Generic functions for extracting model information</a>, Up: <a href="#Statistical-models-in-R" accesskey="u" rel="up">Statistical models in R</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Analysis-of-variance-and-model-comparison-1"></a>
<h3 class="section">11.4 Analysis of variance and model comparison</h3>
<a name="index-Analysis-of-variance"></a>
<p>The model fitting function <code>aov(<var>formula</var>,
data=<var>data.frame</var>)</code>
<a name="index-aov"></a>
operates at the simplest level in a very similar way to the function
<code>lm()</code>, and most of the generic functions listed in the table in
<a href="#Generic-functions-for-extracting-model-information">Generic functions for extracting model information</a> apply.
</p>
<p>It should be noted that in addition <code>aov()</code> allows an analysis of
models with multiple error strata such as split plot experiments, or
balanced incomplete block designs with recovery of inter-block
information. The model formula
</p>
<div class="example">
<pre class="example"><var>response</var> ~ <var>mean.formula</var> + Error(<var>strata.formula</var>)
</pre></div>
<a name="index-Error"></a>
<p>specifies a multi-stratum experiment with error strata defined by the
<var>strata.formula</var>. In the simplest case, <var>strata.formula</var> is
simply a factor, when it defines a two strata experiment, namely between
and within the levels of the factor.
</p>
<p>For example, with all determining variables factors, a model formula such
as that in:
</p>
<div class="example">
<pre class="example">> fm <- aov(yield ~ v + n*p*k + Error(farms/blocks), data=farm.data)
</pre></div>
<p>would typically be used to describe an experiment with mean model
<code>v + n*p*k</code> and three error strata, namely “between farms”,
“within farms, between blocks” and “within blocks”.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#ANOVA-tables" accesskey="1">ANOVA tables</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="ANOVA-tables"></a>
<div class="header">
<p>
Previous: <a href="#Analysis-of-variance-and-model-comparison" accesskey="p" rel="prev">Analysis of variance and model comparison</a>, Up: <a href="#Analysis-of-variance-and-model-comparison" accesskey="u" rel="up">Analysis of variance and model comparison</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ANOVA-tables-1"></a>
<h4 class="subsection">11.4.1 ANOVA tables</h4>
<p>Note also that the analysis of variance table (or tables) are for a
sequence of fitted models. The sums of squares shown are the decrease
in the residual sums of squares resulting from an inclusion of
<em>that term</em> in the model at <em>that place</em> in the sequence.
Hence only for orthogonal experiments will the order of inclusion be
inconsequential.
</p>
<p>For multistratum experiments the procedure is first to project the
response onto the error strata, again in sequence, and to fit the mean
model to each projection. For further details, see Chambers & Hastie
(1992).
</p>
<p>A more flexible alternative to the default full ANOVA table is to
compare two or more models directly using the <code>anova()</code> function.
<a name="index-anova-1"></a>
</p>
<div class="example">
<pre class="example">> anova(<var>fitted.model.1</var>, <var>fitted.model.2</var>, …)
</pre></div>
<p>The display is then an ANOVA table showing the differences between the
fitted models when fitted in sequence. The fitted models being compared
would usually be an hierarchical sequence, of course. This does not
give different information to the default, but rather makes it easier to
comprehend and control.
</p>
<hr>
<a name="Updating-fitted-models"></a>
<div class="header">
<p>
Next: <a href="#Generalized-linear-models" accesskey="n" rel="next">Generalized linear models</a>, Previous: <a href="#Analysis-of-variance-and-model-comparison" accesskey="p" rel="prev">Analysis of variance and model comparison</a>, Up: <a href="#Statistical-models-in-R" accesskey="u" rel="up">Statistical models in R</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Updating-fitted-models-1"></a>
<h3 class="section">11.5 Updating fitted models</h3>
<a name="index-Updating-fitted-models"></a>
<p>The <code>update()</code> function is largely a convenience function that
allows a model to be fitted that differs from one previously fitted
usually by just a few additional or removed terms. Its form is
<a name="index-update"></a>
</p>
<div class="example">
<pre class="example">> <var>new.model</var> <- update(<var>old.model</var>, <var>new.formula</var>)
</pre></div>
<p>In the <var>new.formula</var> the special name consisting of a period,
‘<samp><code>.</code></samp>’,
<a name="index-_002e"></a>
only, can be used to stand for “the corresponding part of the old model
formula”. For example,
</p>
<div class="example">
<pre class="example">> fm05 <- lm(y ~ x1 + x2 + x3 + x4 + x5, data = production)
> fm6 <- update(fm05, . ~ . + x6)
> smf6 <- update(fm6, sqrt(.) ~ .)
</pre></div>
<p>would fit a five variate multiple regression with variables (presumably)
from the data frame <code>production</code>, fit an additional model including
a sixth regressor variable, and fit a variant on the model where the
response had a square root transform applied.
</p>
<p>Note especially that if the <code>data=</code> argument is specified on the
original call to the model fitting function, this information is passed on
through the fitted model object to <code>update()</code> and its allies.
</p>
<p>The name ‘<samp>.</samp>’ can also be used in other contexts, but with slightly
different meaning. For example
</p>
<div class="example">
<pre class="example">> fmfull <- lm(y ~ . , data = production)
</pre></div>
<p>would fit a model with response <code>y</code> and regressor variables
<em>all other variables in the data frame <code>production</code></em>.
</p>
<p>Other functions for exploring incremental sequences of models are
<code>add1()</code>, <code>drop1()</code> and <code>step()</code>.
<a name="index-add1"></a>
<a name="index-drop1"></a>
<a name="index-step-1"></a>
The names of these give a good clue to their purpose, but for full
details see the on-line help.
</p>
<hr>
<a name="Generalized-linear-models"></a>
<div class="header">
<p>
Next: <a href="#Nonlinear-least-squares-and-maximum-likelihood-models" accesskey="n" rel="next">Nonlinear least squares and maximum likelihood models</a>, Previous: <a href="#Updating-fitted-models" accesskey="p" rel="prev">Updating fitted models</a>, Up: <a href="#Statistical-models-in-R" accesskey="u" rel="up">Statistical models in R</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Generalized-linear-models-1"></a>
<h3 class="section">11.6 Generalized linear models</h3>
<a name="index-Generalized-linear-models"></a>
<p>Generalized linear modeling is a development of linear models to
accommodate both non-normal response distributions and transformations
to linearity in a clean and straightforward way. A generalized linear
model may be described in terms of the following sequence of
assumptions:
</p>
<ul>
<li> There is a response, <em>y</em>, of interest and stimulus variables
x_1, x_2, …,
whose values influence the distribution of the response.
</li><li> The stimulus variables influence the distribution of <em>y</em> through
<em>a single linear function, only</em>. This linear function is called
the <em>linear predictor</em>, and is usually written
<div class="display">
<pre class="display">eta = beta_1 x_1 + beta_2 x_2 + … + beta_p x_p,
</pre></div>
<p>hence x_i has no influence on the distribution of <em>y</em> if and only if
beta_i is zero.
</p>
</li><li> The distribution of <em>y</em> is of the form
<div class="display">
<pre class="display">f_Y(y; mu, phi)
= exp((A/phi) * (y lambda(mu) - gamma(lambda(mu))) + tau(y, phi))
</pre></div>
<p>where phi is a <em>scale parameter</em> (possibly known), and is constant
for all observations, <em>A</em> represents a prior weight, assumed known
but possibly varying with the observations, and $\mu$ is the mean of
<em>y</em>.
So it is assumed that the distribution of <em>y</em> is determined by its
mean and possibly a scale parameter as well.
</p>
</li><li> The mean, mu, is a smooth invertible function of the linear predictor:
<div class="display">
<pre class="display">mu = m(eta), eta = m^{-1}(mu) = ell(mu)
</pre></div>
<p>and this inverse function, ell(), is called the <em>link function</em>.
</p>
</li></ul>
<p>These assumptions are loose enough to encompass a wide class of models
useful in statistical practice, but tight enough to allow the
development of a unified methodology of estimation and inference, at
least approximately. The reader is referred to any of the current
reference works on the subject for full details, such as McCullagh &
Nelder (1989) or Dobson (1990).
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Families" accesskey="1">Families</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-glm_0028_0029-function" accesskey="2">The glm() function</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Families"></a>
<div class="header">
<p>
Next: <a href="#The-glm_0028_0029-function" accesskey="n" rel="next">The glm() function</a>, Previous: <a href="#Generalized-linear-models" accesskey="p" rel="prev">Generalized linear models</a>, Up: <a href="#Generalized-linear-models" accesskey="u" rel="up">Generalized linear models</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Families-1"></a>
<h4 class="subsection">11.6.1 Families</h4>
<a name="index-Families"></a>
<p>The class of generalized linear models handled by facilities supplied in
R includes <em>gaussian</em>, <em>binomial</em>, <em>poisson</em>,
<em>inverse gaussian</em> and <em>gamma</em> response distributions and also
<em>quasi-likelihood</em> models where the response distribution is not
explicitly specified. In the latter case the <em>variance function</em>
must be specified as a function of the mean, but in other cases this
function is implied by the response distribution.
</p>
<p>Each response distribution admits a variety of link functions to connect
the mean with the linear predictor. Those automatically available are
shown in the following table:
</p>
<blockquote>
<table summary="">
<thead><tr><th width="25%">Family name</th><th width="55%">Link functions</th></tr></thead>
<tr><td width="25%"><code>binomial</code></td><td width="55%"><code>logit</code>, <code>probit</code>, <code>log</code>, <code>cloglog</code></td></tr>
<tr><td width="25%"><code>gaussian</code></td><td width="55%"><code>identity</code>, <code>log</code>, <code>inverse</code></td></tr>
<tr><td width="25%"><code>Gamma</code></td><td width="55%"><code>identity</code>, <code>inverse</code>, <code>log</code></td></tr>
<tr><td width="25%"><code>inverse.gaussian</code></td><td width="55%"><code>1/mu^2</code>, <code>identity</code>, <code>inverse</code>, <code>log</code></td></tr>
<tr><td width="25%"><code>poisson</code></td><td width="55%"><code>identity</code>, <code>log</code>, <code>sqrt</code></td></tr>
<tr><td width="25%"><code>quasi</code></td><td width="55%"><code>logit</code>, <code>probit</code>, <code>cloglog</code>,
<code>identity</code>, <code>inverse</code>, <code>log</code>, <code>1/mu^2</code>, <code>sqrt</code></td></tr>
</table>
</blockquote>
<p>The combination of a response distribution, a link function and various
other pieces of information that are needed to carry out the modeling
exercise is called the <em>family</em> of the generalized linear model.
</p>
<hr>
<a name="The-glm_0028_0029-function"></a>
<div class="header">
<p>
Previous: <a href="#Families" accesskey="p" rel="prev">Families</a>, Up: <a href="#Generalized-linear-models" accesskey="u" rel="up">Generalized linear models</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="The-glm_0028_0029-function-1"></a>
<h4 class="subsection">11.6.2 The <code>glm()</code> function</h4>
<a name="index-glm"></a>
<p>Since the distribution of the response depends on the stimulus variables
through a single linear function <em>only</em>, the same mechanism as was
used for linear models can still be used to specify the linear part of a
generalized model. The family has to be specified in a different way.
</p>
<p>The R function to fit a generalized linear model is <code>glm()</code>
which uses the form
</p>
<div class="example">
<pre class="example">> <var>fitted.model</var> <- glm(<var>formula</var>, family=<var>family.generator</var>, data=<var>data.frame</var>)
</pre></div>
<p>The only new feature is the <var>family.generator</var>, which is the
instrument by which the family is described. It is the name of a
function that generates a list of functions and expressions that
together define and control the model and estimation process. Although
this may seem a little complicated at first sight, its use is quite
simple.
</p>
<p>The names of the standard, supplied family generators are given under
“Family Name” in the table in <a href="#Families">Families</a>. Where there is a choice
of links, the name of the link may also be supplied with the family
name, in parentheses as a parameter. In the case of the <code>quasi</code>
family, the variance function may also be specified in this way.
</p>
<p>Some examples make the process clear.
</p>
<a name="The-gaussian-family"></a>
<h4 class="subsubheading">The <code>gaussian</code> family</h4>
<p>A call such as
</p>
<div class="example">
<pre class="example">> fm <- glm(y ~ x1 + x2, family = gaussian, data = sales)
</pre></div>
<p>achieves the same result as
</p>
<div class="example">
<pre class="example">> fm <- lm(y ~ x1+x2, data=sales)
</pre></div>
<p>but much less efficiently. Note how the gaussian family is not
automatically provided with a choice of links, so no parameter is
allowed. If a problem requires a gaussian family with a nonstandard
link, this can usually be achieved through the <code>quasi</code> family, as
we shall see later.
</p>
<a name="The-binomial-family"></a>
<h4 class="subsubheading">The <code>binomial</code> family</h4>
<p>Consider a small, artificial example, from Silvey (1970).
</p>
<p>On the Aegean island of Kalythos the male inhabitants suffer from a
congenital eye disease, the effects of which become more marked with
increasing age. Samples of islander males of various ages were tested
for blindness and the results recorded. The data is shown below:
</p>
<table summary="">
<tr><td>Age:</td><td>20</td><td>35</td><td>45</td><td>55</td><td>70</td></tr>
<tr><td>No. tested:</td><td>50</td><td>50</td><td>50</td><td>50</td><td>50</td></tr>
<tr><td>No. blind:</td><td> 6<!-- /@w --></td><td>17</td><td>26</td><td>37</td><td>44</td></tr>
</table>
<p>The problem we consider is to fit both logistic and probit models to
this data, and to estimate for each model the LD50, that is the age at
which the chance of blindness for a male inhabitant is 50%.
</p>
<p>If <em>y</em> is the number of blind at age <em>x</em> and <em>n</em> the
number tested, both models have the form
y ~ B(n, F(beta_0 + beta_1 x))
where for the probit case,
F(z) = Phi(z)
is the standard normal distribution function, and in the logit case
(the default),
F(z) = e^z/(1+e^z).
In both cases the LD50 is
LD50 = - beta_0/beta_1
that is, the point at which the argument of the distribution function is
zero.
</p>
<p>The first step is to set the data up as a data frame
</p>
<div class="example">
<pre class="example">> kalythos <- data.frame(x = c(20,35,45,55,70), n = rep(50,5),
y = c(6,17,26,37,44))
</pre></div>
<p>To fit a binomial model using <code>glm()</code> there are three possibilities
for the response:
</p>
<ul>
<li> If the response is a <em>vector</em> it is assumed to hold <em>binary</em>
data, and so must be a <em>0/1</em> vector.
</li><li> If the response is a <em>two-column matrix</em> it is assumed that the
first column holds the number of successes for the trial and the second
holds the number of failures.
</li><li> If the response is a <em>factor</em>, its first level is taken as failure
(0) and all other levels as ‘success’ (1).
</li></ul>
<p>Here we need the second of these conventions, so we add a matrix to our
data frame:
</p>
<div class="example">
<pre class="example">> kalythos$Ymat <- cbind(kalythos$y, kalythos$n - kalythos$y)
</pre></div>
<p>To fit the models we use
</p>
<div class="example">
<pre class="example">> fmp <- glm(Ymat ~ x, family = binomial(link=probit), data = kalythos)
> fml <- glm(Ymat ~ x, family = binomial, data = kalythos)
</pre></div>
<p>Since the logit link is the default the parameter may be omitted on the
second call. To see the results of each fit we could use
</p>
<div class="example">
<pre class="example">> summary(fmp)
> summary(fml)
</pre></div>
<p>Both models fit (all too) well. To find the LD50 estimate we can use a
simple function:
</p>
<div class="example">
<pre class="example">> ld50 <- function(b) -b[1]/b[2]
> ldp <- ld50(coef(fmp)); ldl <- ld50(coef(fml)); c(ldp, ldl)
</pre></div>
<p>The actual estimates from this data are 43.663 years and 43.601 years
respectively.
</p>
<a name="Poisson-models"></a>
<h4 class="subsubheading">Poisson models</h4>
<p>With the Poisson family the default link is the <code>log</code>, and in
practice the major use of this family is to fit surrogate Poisson
log-linear models to frequency data, whose actual distribution is often
multinomial. This is a large and important subject we will not discuss
further here. It even forms a major part of the use of non-gaussian
generalized models overall.
</p>
<p>Occasionally genuinely Poisson data arises in practice and in the past
it was often analyzed as gaussian data after either a log or a
square-root transformation. As a graceful alternative to the latter, a
Poisson generalized linear model may be fitted as in the following
example:
</p>
<div class="example">
<pre class="example">> fmod <- glm(y ~ A + B + x, family = poisson(link=sqrt),
data = worm.counts)
</pre></div>
<a name="Quasi_002dlikelihood-models"></a>
<h4 class="subsubheading">Quasi-likelihood models</h4>
<p>For all families the variance of the response will depend on the mean
and will have the scale parameter as a multiplier. The form of
dependence of the variance on the mean is a characteristic of the
response distribution; for example for the poisson distribution
Var(y) = mu.
</p>
<p>For quasi-likelihood estimation and inference the precise response
distribution is not specified, but rather only a link function and the
form of the variance function as it depends on the mean. Since
quasi-likelihood estimation uses formally identical techniques to those
for the gaussian distribution, this family provides a way of fitting
gaussian models with non-standard link functions or variance functions,
incidentally.
</p>
<p>For example, consider fitting the non-linear regression
y = theta_1 z_1 / (z_2 - theta_2) + e
which may be written alternatively as
y = 1 / (beta_1 x_1 + beta_2 x_2) + e
where
x_1 = z_2/z_1, x_2 = -1/z_1, beta_1 = 1/theta_1, and beta_2 =
theta_2/theta_1.
Supposing a suitable data frame to be set up we could fit this
non-linear regression as
</p>
<div class="example">
<pre class="example">> nlfit <- glm(y ~ x1 + x2 - 1,
family = quasi(link=inverse, variance=constant),
data = biochem)
</pre></div>
<p>The reader is referred to the manual and the help document for further
information, as needed.
</p>
<hr>
<a name="Nonlinear-least-squares-and-maximum-likelihood-models"></a>
<div class="header">
<p>
Next: <a href="#Some-non_002dstandard-models" accesskey="n" rel="next">Some non-standard models</a>, Previous: <a href="#Generalized-linear-models" accesskey="p" rel="prev">Generalized linear models</a>, Up: <a href="#Statistical-models-in-R" accesskey="u" rel="up">Statistical models in R</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Nonlinear-least-squares-and-maximum-likelihood-models-1"></a>
<h3 class="section">11.7 Nonlinear least squares and maximum likelihood models</h3>
<a name="index-Nonlinear-least-squares"></a>
<p>Certain forms of nonlinear model can be fitted by Generalized Linear
Models (<code>glm()</code>). But in the majority of cases we have to approach
the nonlinear curve fitting problem as one of nonlinear optimization.
R’s nonlinear optimization routines are <code>optim()</code>, <code>nlm()</code>
and <code>nlminb()</code>,
<a name="index-nlm"></a>
<a name="index-optim"></a>
<a name="index-nlminb"></a>
which provide the functionality (and more) of <small>S-PLUS</small>’s <code>ms()</code> and
<code>nlminb()</code>. We seek the parameter values that minimize some index
of lack-of-fit, and they do this by trying out various parameter values
iteratively. Unlike linear regression for example, there is no
guarantee that the procedure will converge on satisfactory estimates.
All the methods require initial guesses about what parameter values to
try, and convergence may depend critically upon the quality of the
starting values.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Least-squares" accesskey="1">Least squares</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Maximum-likelihood" accesskey="2">Maximum likelihood</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Least-squares"></a>
<div class="header">
<p>
Next: <a href="#Maximum-likelihood" accesskey="n" rel="next">Maximum likelihood</a>, Previous: <a href="#Nonlinear-least-squares-and-maximum-likelihood-models" accesskey="p" rel="prev">Nonlinear least squares and maximum likelihood models</a>, Up: <a href="#Nonlinear-least-squares-and-maximum-likelihood-models" accesskey="u" rel="up">Nonlinear least squares and maximum likelihood models</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Least-squares-1"></a>
<h4 class="subsection">11.7.1 Least squares</h4>
<p>One way to fit a nonlinear model is by minimizing the sum of the squared
errors (SSE) or residuals. This method makes sense if the observed
errors could have plausibly arisen from a normal distribution.
</p>
<p>Here is an example from Bates & Watts (1988), page 51. The data are:
</p>
<div class="example">
<pre class="example">> x <- c(0.02, 0.02, 0.06, 0.06, 0.11, 0.11, 0.22, 0.22, 0.56, 0.56,
1.10, 1.10)
> y <- c(76, 47, 97, 107, 123, 139, 159, 152, 191, 201, 207, 200)
</pre></div>
<p>The fit criterion to be minimized is:
</p>
<div class="example">
<pre class="example">> fn <- function(p) sum((y - (p[1] * x)/(p[2] + x))^2)
</pre></div>
<p>In order to do the fit we need initial estimates of the parameters. One
way to find sensible starting values is to plot the data, guess some
parameter values, and superimpose the model curve using those values.
</p>
<div class="example">
<pre class="example">> plot(x, y)
> xfit <- seq(.02, 1.1, .05)
> yfit <- 200 * xfit/(0.1 + xfit)
> lines(spline(xfit, yfit))
</pre></div>
<p>We could do better, but these starting values of 200 and 0.1 seem
adequate. Now do the fit:
</p>
<div class="example">
<pre class="example">> out <- nlm(fn, p = c(200, 0.1), hessian = TRUE)
</pre></div>
<a name="index-nlm-1"></a>
<p>After the fitting, <code>out$minimum</code> is the SSE, and
<code>out$estimate</code> are the least squares estimates of the parameters.
To obtain the approximate standard errors (SE) of the estimates we do:
</p>
<div class="example">
<pre class="example">> sqrt(diag(2*out$minimum/(length(y) - 2) * solve(out$hessian)))
</pre></div>
<p>The <code>2</code> which is subtracted in the line above represents the number
of parameters. A 95% confidence interval would be the parameter
estimate +/- 1.96 SE. We can superimpose the least squares
fit on a new plot:
</p>
<div class="example">
<pre class="example">> plot(x, y)
> xfit <- seq(.02, 1.1, .05)
> yfit <- 212.68384222 * xfit/(0.06412146 + xfit)
> lines(spline(xfit, yfit))
</pre></div>
<p>The standard package <strong>stats</strong> provides much more extensive facilities
for fitting non-linear models by least squares. The model we have just
fitted is the Michaelis-Menten model, so we can use
</p>
<div class="example">
<pre class="example">> df <- data.frame(x=x, y=y)
> fit <- nls(y ~ SSmicmen(x, Vm, K), df)
> fit
Nonlinear regression model
model: y ~ SSmicmen(x, Vm, K)
data: df
Vm K
212.68370711 0.06412123
residual sum-of-squares: 1195.449
> summary(fit)
Formula: y ~ SSmicmen(x, Vm, K)
Parameters:
Estimate Std. Error t value Pr(>|t|)
Vm 2.127e+02 6.947e+00 30.615 3.24e-11
K 6.412e-02 8.281e-03 7.743 1.57e-05
Residual standard error: 10.93 on 10 degrees of freedom
Correlation of Parameter Estimates:
Vm
K 0.7651
</pre></div>
<hr>
<a name="Maximum-likelihood"></a>
<div class="header">
<p>
Previous: <a href="#Least-squares" accesskey="p" rel="prev">Least squares</a>, Up: <a href="#Nonlinear-least-squares-and-maximum-likelihood-models" accesskey="u" rel="up">Nonlinear least squares and maximum likelihood models</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Maximum-likelihood-1"></a>
<h4 class="subsection">11.7.2 Maximum likelihood</h4>
<a name="index-Maximum-likelihood"></a>
<p>Maximum likelihood is a method of nonlinear model fitting that applies
even if the errors are not normal. The method finds the parameter values
which maximize the log likelihood, or equivalently which minimize the
negative log-likelihood. Here is an example from Dobson (1990), pp.
108–111. This example fits a logistic model to dose-response data,
which clearly could also be fit by <code>glm()</code>. The data are:
</p>
<div class="example">
<pre class="example">> x <- c(1.6907, 1.7242, 1.7552, 1.7842, 1.8113,
1.8369, 1.8610, 1.8839)
> y <- c( 6, 13, 18, 28, 52, 53, 61, 60)
> n <- c(59, 60, 62, 56, 63, 59, 62, 60)
</pre></div>
<p>The negative log-likelihood to minimize is:
</p>
<div class="example">
<pre class="example">> fn <- function(p)
sum( - (y*(p[1]+p[2]*x) - n*log(1+exp(p[1]+p[2]*x))
+ log(choose(n, y)) ))
</pre></div>
<p>We pick sensible starting values and do the fit:
</p>
<div class="example">
<pre class="example">> out <- nlm(fn, p = c(-50,20), hessian = TRUE)
</pre></div>
<a name="index-nlm-2"></a>
<p>After the fitting, <code>out$minimum</code> is the negative log-likelihood,
and <code>out$estimate</code> are the maximum likelihood estimates of the
parameters. To obtain the approximate SEs of the estimates we do:
</p>
<div class="example">
<pre class="example">> sqrt(diag(solve(out$hessian)))
</pre></div>
<p>A 95% confidence interval would be the parameter estimate +/-
1.96 SE.
</p>
<hr>
<a name="Some-non_002dstandard-models"></a>
<div class="header">
<p>
Previous: <a href="#Nonlinear-least-squares-and-maximum-likelihood-models" accesskey="p" rel="prev">Nonlinear least squares and maximum likelihood models</a>, Up: <a href="#Statistical-models-in-R" accesskey="u" rel="up">Statistical models in R</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Some-non_002dstandard-models-1"></a>
<h3 class="section">11.8 Some non-standard models</h3>
<p>We conclude this chapter with just a brief mention of some of the other
facilities available in R for special regression and data analysis
problems.
</p>
<ul>
<li> <a name="index-Mixed-models"></a>
<strong>Mixed models.</strong> The recommended <a href="https://CRAN.R-project.org/package=nlme"><strong>nlme</strong></a> package provides
functions <code>lme()</code> and <code>nlme()</code>
<a name="index-lme"></a>
<a name="index-nlme"></a>
for linear and non-linear mixed-effects models, that is linear and
non-linear regressions in which some of the coefficients correspond to
random effects. These functions make heavy use of formulae to specify
the models.
</li><li> <a name="index-Local-approximating-regressions"></a>
<strong>Local approximating regressions.</strong> The <code>loess()</code>
<a name="index-loess"></a>
function fits a nonparametric regression by using a locally weighted
regression. Such regressions are useful for highlighting a trend in
messy data or for data reduction to give some insight into a large data
set.
<p>Function <code>loess</code> is in the standard package <strong>stats</strong>, together
with code for projection pursuit regression.
<a name="index-loess-1"></a>
</p>
</li><li> <a name="index-Robust-regression"></a>
<strong>Robust regression.</strong> There are several functions available for
fitting regression models in a way resistant to the influence of extreme
outliers in the data. Function <code>lqs</code>
<a name="index-lqs"></a>
in the recommended package <a href="https://CRAN.R-project.org/package=MASS"><strong>MASS</strong></a> provides state-of-art algorithms
for highly-resistant fits. Less resistant but statistically more
efficient methods are available in packages, for example function
<code>rlm</code>
<a name="index-rlm"></a>
in package <a href="https://CRAN.R-project.org/package=MASS"><strong>MASS</strong></a>.
</li><li> <a name="index-Additive-models"></a>
<strong>Additive models.</strong> This technique aims to construct a regression
function from smooth additive functions of the determining variables,
usually one for each determining variable. Functions <code>avas</code> and
<code>ace</code>
<a name="index-avas"></a>
<a name="index-ace"></a>
in package <a href="https://CRAN.R-project.org/package=acepack"><strong>acepack</strong></a> and functions <code>bruto</code> and <code>mars</code>
<a name="index-bruto"></a>
<a name="index-mars"></a>
in package <a href="https://CRAN.R-project.org/package=mda"><strong>mda</strong></a> provide some examples of these techniques in
user-contributed packages to R. An extension is <strong>Generalized
Additive Models</strong>, implemented in user-contributed packages <a href="https://CRAN.R-project.org/package=gam"><strong>gam</strong></a> and
<a href="https://CRAN.R-project.org/package=mgcv"><strong>mgcv</strong></a>.
</li><li> <a name="index-Tree_002dbased-models"></a>
<strong>Tree-based models.</strong> Rather than seek an explicit global linear
model for prediction or interpretation, tree-based models seek to
bifurcate the data, recursively, at critical points of the determining
variables in order to partition the data ultimately into groups that are
as homogeneous as possible within, and as heterogeneous as possible
between. The results often lead to insights that other data analysis
methods tend not to yield.
<p>Models are again specified in the ordinary linear model form. The model
fitting function is <code>tree()</code>,
<a name="index-tree"></a>
but many other generic functions such as <code>plot()</code> and <code>text()</code>
are well adapted to displaying the results of a tree-based model fit in
a graphical way.
</p>
<p>Tree models are available in R <em>via</em> the user-contributed
packages <a href="https://CRAN.R-project.org/package=rpart"><strong>rpart</strong></a> and <a href="https://CRAN.R-project.org/package=tree"><strong>tree</strong></a>.
</p>
</li></ul>
<hr>
<a name="Graphics"></a>
<div class="header">
<p>
Next: <a href="#Packages" accesskey="n" rel="next">Packages</a>, Previous: <a href="#Statistical-models-in-R" accesskey="p" rel="prev">Statistical models in R</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Graphical-procedures"></a>
<h2 class="chapter">12 Graphical procedures</h2>
<p>Graphical facilities are an important and extremely versatile component
of the R environment. It is possible to use the facilities to
display a wide variety of statistical graphs and also to build entirely
new types of graph.
</p>
<p>The graphics facilities can be used in both interactive and batch modes,
but in most cases, interactive use is more productive. Interactive use
is also easy because at startup time R initiates a graphics
<em>device driver</em> which opens a special <em>graphics window</em> for
the display of interactive graphics. Although this is done
automatically, it may useful to know that the command used is
<code>X11()</code> under UNIX, <code>windows()</code> under Windows and
<code>quartz()</code> under macOS. A new device can always be opened by
<code>dev.new()</code>.
</p>
<p>Once the device driver is running, R plotting commands can be used to
produce a variety of graphical displays and to create entirely new kinds
of display.
</p>
<p>Plotting commands are divided into three basic groups:
</p>
<ul>
<li> <strong>High-level</strong> plotting functions create a new plot on the graphics
device, possibly with axes, labels, titles and so on.
</li><li> <strong>Low-level</strong> plotting functions add more information to an
existing plot, such as extra points, lines and labels.
</li><li> <strong>Interactive</strong> graphics functions allow you interactively add
information to, or extract information from, an existing plot, using a
pointing device such as a mouse.
</li></ul>
<p>In addition, R maintains a list of <em>graphical parameters</em> which
can be manipulated to customize your plots.
</p>
<p>This manual only describes what are known as ‘base’ graphics. A
separate graphics sub-system in package <strong>grid</strong> coexists with base –
it is more powerful but harder to use. There is a recommended package
<a href="https://CRAN.R-project.org/package=lattice"><strong>lattice</strong></a> which builds on <strong>grid</strong> and provides ways to produce
multi-panel plots akin to those in the <em>Trellis</em> system in S.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#High_002dlevel-plotting-commands" accesskey="1">High-level plotting commands</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Low_002dlevel-plotting-commands" accesskey="2">Low-level plotting commands</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Interacting-with-graphics" accesskey="3">Interacting with graphics</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Using-graphics-parameters" accesskey="4">Using graphics parameters</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Graphics-parameters" accesskey="5">Graphics parameters</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Device-drivers" accesskey="6">Device drivers</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Dynamic-graphics" accesskey="7">Dynamic graphics</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="High_002dlevel-plotting-commands"></a>
<div class="header">
<p>
Next: <a href="#Low_002dlevel-plotting-commands" accesskey="n" rel="next">Low-level plotting commands</a>, Previous: <a href="#Graphics" accesskey="p" rel="prev">Graphics</a>, Up: <a href="#Graphics" accesskey="u" rel="up">Graphics</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="High_002dlevel-plotting-commands-1"></a>
<h3 class="section">12.1 High-level plotting commands</h3>
<p>High-level plotting functions are designed to generate a complete plot
of the data passed as arguments to the function. Where appropriate,
axes, labels and titles are automatically generated (unless you request
otherwise.) High-level plotting commands always start a new plot,
erasing the current plot if necessary.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#The-plot_0028_0029-function" accesskey="1">The plot() function</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Displaying-multivariate-data" accesskey="2">Displaying multivariate data</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Display-graphics" accesskey="3">Display graphics</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Arguments-to-high_002dlevel-plotting-functions" accesskey="4">Arguments to high-level plotting functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="The-plot_0028_0029-function"></a>
<div class="header">
<p>
Next: <a href="#Displaying-multivariate-data" accesskey="n" rel="next">Displaying multivariate data</a>, Previous: <a href="#High_002dlevel-plotting-commands" accesskey="p" rel="prev">High-level plotting commands</a>, Up: <a href="#High_002dlevel-plotting-commands" accesskey="u" rel="up">High-level plotting commands</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="The-plot_0028_0029-function-1"></a>
<h4 class="subsection">12.1.1 The <code>plot()</code> function</h4>
<a name="index-plot-1"></a>
<p>One of the most frequently used plotting functions in R is the
<code>plot()</code> function. This is a <em>generic</em> function: the type of
plot produced is dependent on the type or <em>class</em> of the first
argument.
</p>
<dl compact="compact">
<dt><code>plot(<var>x</var>, <var>y</var>)</code></dt>
<dt><code>plot(<var>xy</var>)</code></dt>
<dd><p>If <var>x</var> and <var>y</var> are vectors, <code>plot(<var>x</var>, <var>y</var>)</code>
produces a scatterplot of <var>y</var> against <var>x</var>. The same effect can
be produced by supplying one argument (second form) as either a list
containing two elements <var>x</var> and <var>y</var> or a two-column matrix.
</p>
</dd>
<dt><code>plot(<var>x</var>)</code></dt>
<dd><p>If <var>x</var> is a time series, this produces a time-series plot. If
<var>x</var> is a numeric vector, it produces a plot of the values in the
vector against their index in the vector. If <var>x</var> is a complex
vector, it produces a plot of imaginary versus real parts of the vector
elements.
</p>
</dd>
<dt><code>plot(<var>f</var>)</code></dt>
<dt><code>plot(<var>f</var>, <var>y</var>)</code></dt>
<dd><p><var>f</var> is a factor object, <var>y</var> is a numeric vector. The first form
generates a bar plot of <var>f</var>; the second form produces boxplots of
<var>y</var> for each level of <var>f</var>.
</p>
</dd>
<dt><code>plot(<var>df</var>)</code></dt>
<dt><code>plot(~ <var>expr</var>)</code></dt>
<dt><code>plot(<var>y</var> ~ <var>expr</var>)</code></dt>
<dd><p><var>df</var> is a data frame, <var>y</var> is any object, <var>expr</var> is a list
of object names separated by ‘<code>+</code>’ (e.g., <code>a + b + c</code>). The
first two forms produce distributional plots of the variables in a data
frame (first form) or of a number of named objects (second form). The
third form plots <var>y</var> against every object named in <var>expr</var>.
</p></dd>
</dl>
<hr>
<a name="Displaying-multivariate-data"></a>
<div class="header">
<p>
Next: <a href="#Display-graphics" accesskey="n" rel="next">Display graphics</a>, Previous: <a href="#The-plot_0028_0029-function" accesskey="p" rel="prev">The plot() function</a>, Up: <a href="#High_002dlevel-plotting-commands" accesskey="u" rel="up">High-level plotting commands</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Displaying-multivariate-data-1"></a>
<h4 class="subsection">12.1.2 Displaying multivariate data</h4>
<p>R provides two very useful functions for representing multivariate
data. If <code>X</code> is a numeric matrix or data frame, the command
</p>
<div class="example">
<pre class="example">> pairs(X)
</pre></div>
<a name="index-pairs"></a>
<p>produces a pairwise scatterplot matrix of the variables defined by the
columns of <code>X</code>, that is, every column of <code>X</code> is plotted
against every other column of <code>X</code> and the resulting <em>n(n-1)</em>
plots are arranged in a matrix with plot scales constant over the rows
and columns of the matrix.
</p>
<p>When three or four variables are involved a <em>coplot</em> may be more
enlightening. If <code>a</code> and <code>b</code> are numeric vectors and <code>c</code>
is a numeric vector or factor object (all of the same length), then
the command
</p>
<div class="example">
<pre class="example">> coplot(a ~ b | c)
</pre></div>
<a name="index-coplot"></a>
<p>produces a number of scatterplots of <code>a</code> against <code>b</code> for given
values of <code>c</code>. If <code>c</code> is a factor, this simply means that
<code>a</code> is plotted against <code>b</code> for every level of <code>c</code>. When
<code>c</code> is numeric, it is divided into a number of <em>conditioning
intervals</em> and for each interval <code>a</code> is plotted against <code>b</code>
for values of <code>c</code> within the interval. The number and position of
intervals can be controlled with <code>given.values=</code> argument to
<code>coplot()</code>—the function <code>co.intervals()</code> is useful for
selecting intervals. You can also use two <em>given</em> variables with a
command like
</p>
<div class="example">
<pre class="example">> coplot(a ~ b | c + d)
</pre></div>
<p>which produces scatterplots of <code>a</code> against <code>b</code> for every joint
conditioning interval of <code>c</code> and <code>d</code>.
</p>
<p>The <code>coplot()</code> and <code>pairs()</code> function both take an argument
<code>panel=</code> which can be used to customize the type of plot which
appears in each panel. The default is <code>points()</code> to produce a
scatterplot but by supplying some other low-level graphics function of
two vectors <code>x</code> and <code>y</code> as the value of <code>panel=</code> you can
produce any type of plot you wish. An example panel function useful for
coplots is <code>panel.smooth()</code>.
</p>
<hr>
<a name="Display-graphics"></a>
<div class="header">
<p>
Next: <a href="#Arguments-to-high_002dlevel-plotting-functions" accesskey="n" rel="next">Arguments to high-level plotting functions</a>, Previous: <a href="#Displaying-multivariate-data" accesskey="p" rel="prev">Displaying multivariate data</a>, Up: <a href="#High_002dlevel-plotting-commands" accesskey="u" rel="up">High-level plotting commands</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Display-graphics-1"></a>
<h4 class="subsection">12.1.3 Display graphics</h4>
<p>Other high-level graphics functions produce different types of plots.
Some examples are:
</p>
<dl compact="compact">
<dt><code>qqnorm(x)</code></dt>
<dt><code>qqline(x)</code></dt>
<dt><code>qqplot(x, y)</code></dt>
<dd><a name="index-qqnorm-1"></a>
<a name="index-qqline-1"></a>
<a name="index-qqplot"></a>
<p>Distribution-comparison plots. The first form plots the numeric vector
<code>x</code> against the expected Normal order scores (a normal scores plot)
and the second adds a straight line to such a plot by drawing a line
through the distribution and data quartiles. The third form plots the
quantiles of <code>x</code> against those of <code>y</code> to compare their
respective distributions.
</p>
</dd>
<dt><code>hist(x)</code></dt>
<dt><code>hist(x, nclass=<var>n</var>)</code></dt>
<dt><code>hist(x, breaks=<var>b</var>, …)</code></dt>
<dd><a name="index-hist-1"></a>
<p>Produces a histogram of the numeric vector <code>x</code>. A sensible number
of classes is usually chosen, but a recommendation can be given with the
<code>nclass=</code> argument. Alternatively, the breakpoints can be
specified exactly with the <code>breaks=</code> argument. If the
<code>probability=TRUE</code> argument is given, the bars represent relative
frequencies divided by bin width instead of counts.
</p>
</dd>
<dt><code>dotchart(x, …)</code></dt>
<dd><a name="index-dotchart"></a>
<p>Constructs a dotchart of the data in <code>x</code>. In a dotchart the
<em>y</em>-axis gives a labelling of the data in <code>x</code> and the
<em>x</em>-axis gives its value. For example it allows easy visual
selection of all data entries with values lying in specified ranges.
</p>
</dd>
<dt><code>image(x, y, z, …)</code></dt>
<dt><code>contour(x, y, z, …)</code></dt>
<dt><code>persp(x, y, z, …)</code></dt>
<dd><a name="index-image"></a>
<a name="index-contour"></a>
<a name="index-persp"></a>
<p>Plots of three variables. The <code>image</code> plot draws a grid of rectangles
using different colours to represent the value of <code>z</code>, the <code>contour</code>
plot draws contour lines to represent the value of <code>z</code>, and the
<code>persp</code> plot draws a 3D surface.
</p></dd>
</dl>
<hr>
<a name="Arguments-to-high_002dlevel-plotting-functions"></a>
<div class="header">
<p>
Previous: <a href="#Display-graphics" accesskey="p" rel="prev">Display graphics</a>, Up: <a href="#High_002dlevel-plotting-commands" accesskey="u" rel="up">High-level plotting commands</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Arguments-to-high_002dlevel-plotting-functions-1"></a>
<h4 class="subsection">12.1.4 Arguments to high-level plotting functions</h4>
<p>There are a number of arguments which may be passed to high-level
graphics functions, as follows:
</p>
<dl compact="compact">
<dt><code>add=TRUE</code></dt>
<dd><p>Forces the function to act as a low-level graphics function,
superimposing the plot on the current plot (some functions only).
</p>
</dd>
<dt><code>axes=FALSE</code></dt>
<dd><p>Suppresses generation of axes—useful for adding your own custom axes
with the <code>axis()</code> function. The default, <code>axes=TRUE</code>, means
include axes.
</p>
</dd>
<dt><code>log="x"</code></dt>
<dt><code>log="y"</code></dt>
<dt><code>log="xy"</code></dt>
<dd><p>Causes the <em>x</em>, <em>y</em> or both axes to be logarithmic. This will
work for many, but not all, types of plot.
</p>
</dd>
<dt><code>type=</code></dt>
<dd><p>The <code>type=</code> argument controls the type of plot produced, as
follows:
</p>
<dl compact="compact">
<dt><code>type="p"</code></dt>
<dd><p>Plot individual points (the default)
</p></dd>
<dt><code>type="l"</code></dt>
<dd><p>Plot lines
</p></dd>
<dt><code>type="b"</code></dt>
<dd><p>Plot points connected by lines (<em>both</em>)
</p></dd>
<dt><code>type="o"</code></dt>
<dd><p>Plot points overlaid by lines
</p></dd>
<dt><code>type="h"</code></dt>
<dd><p>Plot vertical lines from points to the zero axis (<em>high-density</em>)
</p></dd>
<dt><code>type="s"</code></dt>
<dt><code>type="S"</code></dt>
<dd><p>Step-function plots. In the first form, the top of the vertical defines
the point; in the second, the bottom.
</p></dd>
<dt><code>type="n"</code></dt>
<dd><p>No plotting at all. However axes are still drawn (by default) and the
coordinate system is set up according to the data. Ideal for creating
plots with subsequent low-level graphics functions.
</p></dd>
</dl>
</dd>
<dt><code>xlab=<var>string</var></code></dt>
<dt><code>ylab=<var>string</var></code></dt>
<dd><p>Axis labels for the <em>x</em> and <em>y</em> axes. Use these arguments to
change the default labels, usually the names of the objects used in the
call to the high-level plotting function.
</p>
</dd>
<dt><code>main=<var>string</var></code></dt>
<dd><p>Figure title, placed at the top of the plot in a large font.
</p>
</dd>
<dt><code>sub=<var>string</var></code></dt>
<dd><p>Sub-title, placed just below the <em>x</em>-axis in a smaller font.
</p></dd>
</dl>
<hr>
<a name="Low_002dlevel-plotting-commands"></a>
<div class="header">
<p>
Next: <a href="#Interacting-with-graphics" accesskey="n" rel="next">Interacting with graphics</a>, Previous: <a href="#High_002dlevel-plotting-commands" accesskey="p" rel="prev">High-level plotting commands</a>, Up: <a href="#Graphics" accesskey="u" rel="up">Graphics</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Low_002dlevel-plotting-commands-1"></a>
<h3 class="section">12.2 Low-level plotting commands</h3>
<p>Sometimes the high-level plotting functions don’t produce exactly the
kind of plot you desire. In this case, low-level plotting commands can
be used to add extra information (such as points, lines or text) to the
current plot.
</p>
<p>Some of the more useful low-level plotting functions are:
</p>
<dl compact="compact">
<dt><code>points(x, y)</code></dt>
<dt><code>lines(x, y)</code></dt>
<dd><a name="index-points"></a>
<a name="index-lines"></a>
<p>Adds points or connected lines to the current plot. <code>plot()</code>’s
<code>type=</code> argument can also be passed to these functions (and
defaults to <code>"p"</code> for <code>points()</code> and <code>"l"</code> for
<code>lines()</code>.)
</p>
</dd>
<dt><code>text(x, y, labels, …)</code></dt>
<dd><a name="index-text"></a>
<p>Add text to a plot at points given by <code>x, y</code>. Normally
<code>labels</code> is an integer or character vector in which case
<code>labels[i]</code> is plotted at point <code>(x[i], y[i])</code>. The default
is <code>1:length(x)</code>.
</p>
<p><strong>Note</strong>: This function is often used in the sequence
</p>
<div class="example">
<pre class="example">> plot(x, y, type="n"); text(x, y, names)
</pre></div>
<p>The graphics parameter <code>type="n"</code> suppresses the points but sets up
the axes, and the <code>text()</code> function supplies special characters, as
specified by the character vector <code>names</code> for the points.
</p>
</dd>
<dt><code>abline(a, b)</code></dt>
<dt><code>abline(h=<var>y</var>)</code></dt>
<dt><code>abline(v=<var>x</var>)</code></dt>
<dt><code>abline(<var>lm.obj</var>)</code></dt>
<dd><a name="index-abline"></a>
<p>Adds a line of slope <code>b</code> and intercept <code>a</code> to the current
plot. <code>h=<var>y</var></code> may be used to specify <em>y</em>-coordinates for
the heights of horizontal lines to go across a plot, and
<code>v=<var>x</var></code> similarly for the <em>x</em>-coordinates for vertical
lines. Also <var>lm.obj</var> may be list with a <code>coefficients</code>
component of length 2 (such as the result of model-fitting functions,)
which are taken as an intercept and slope, in that order.
</p>
</dd>
<dt><code>polygon(x, y, …)</code></dt>
<dd><a name="index-polygon"></a>
<p>Draws a polygon defined by the ordered vertices in (<code>x</code>, <code>y</code>)
and (optionally) shade it in with hatch lines, or fill it if the
graphics device allows the filling of figures.
</p>
</dd>
<dt><code>legend(x, y, legend, …)</code></dt>
<dd><a name="index-legend"></a>
<p>Adds a legend to the current plot at the specified position. Plotting
characters, line styles, colors etc., are identified with the labels in
the character vector <code>legend</code>. At least one other argument <var>v</var>
(a vector the same length as <code>legend</code>) with the corresponding
values of the plotting unit must also be given, as follows:
</p>
<dl compact="compact">
<dt><code>legend( , fill=<var>v</var>)</code></dt>
<dd><p>Colors for filled boxes
</p></dd>
<dt><code>legend( , col=<var>v</var>)</code></dt>
<dd><p>Colors in which points or lines will be drawn
</p></dd>
<dt><code>legend( , lty=<var>v</var>)</code></dt>
<dd><p>Line styles
</p></dd>
<dt><code>legend( , lwd=<var>v</var>)</code></dt>
<dd><p>Line widths
</p></dd>
<dt><code>legend( , pch=<var>v</var>)</code></dt>
<dd><p>Plotting characters (character vector)
</p></dd>
</dl>
</dd>
<dt><code>title(main, sub)</code></dt>
<dd><a name="index-title"></a>
<p>Adds a title <code>main</code> to the top of the current plot in a large font
and (optionally) a sub-title <code>sub</code> at the bottom in a smaller font.
</p>
</dd>
<dt><code>axis(side, …)</code></dt>
<dd><a name="index-axis"></a>
<p>Adds an axis to the current plot on the side given by the first argument
(1 to 4, counting clockwise from the bottom.) Other arguments control
the positioning of the axis within or beside the plot, and tick
positions and labels. Useful for adding custom axes after calling
<code>plot()</code> with the <code>axes=FALSE</code> argument.
</p></dd>
</dl>
<p>Low-level plotting functions usually require some positioning
information (e.g., <em>x</em> and <em>y</em> coordinates) to determine where
to place the new plot elements. Coordinates are given in terms of
<em>user coordinates</em> which are defined by the previous high-level
graphics command and are chosen based on the supplied data.
</p>
<p>Where <code>x</code> and <code>y</code> arguments are required, it is also
sufficient to supply a single argument being a list with elements named
<code>x</code> and <code>y</code>. Similarly a matrix with two columns is also
valid input. In this way functions such as <code>locator()</code> (see below)
may be used to specify positions on a plot interactively.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Mathematical-annotation" accesskey="1">Mathematical annotation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Hershey-vector-fonts" accesskey="2">Hershey vector fonts</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Mathematical-annotation"></a>
<div class="header">
<p>
Next: <a href="#Hershey-vector-fonts" accesskey="n" rel="next">Hershey vector fonts</a>, Previous: <a href="#Low_002dlevel-plotting-commands" accesskey="p" rel="prev">Low-level plotting commands</a>, Up: <a href="#Low_002dlevel-plotting-commands" accesskey="u" rel="up">Low-level plotting commands</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Mathematical-annotation-1"></a>
<h4 class="subsection">12.2.1 Mathematical annotation</h4>
<p>In some cases, it is useful to add mathematical symbols and formulae to a
plot. This can be achieved in R by specifying an <em>expression</em> rather
than a character string in any one of <code>text</code>, <code>mtext</code>, <code>axis</code>,
or <code>title</code>. For example, the following code draws the formula for
the Binomial probability function:
</p>
<div class="example">
<pre class="example">> text(x, y, expression(paste(bgroup("(", atop(n, x), ")"), p^x, q^{n-x})))
</pre></div>
<p>More information, including a full listing of the features available can
obtained from within R using the commands:
</p>
<div class="example">
<pre class="example">> help(plotmath)
> example(plotmath)
> demo(plotmath)
</pre></div>
<hr>
<a name="Hershey-vector-fonts"></a>
<div class="header">
<p>
Previous: <a href="#Mathematical-annotation" accesskey="p" rel="prev">Mathematical annotation</a>, Up: <a href="#Low_002dlevel-plotting-commands" accesskey="u" rel="up">Low-level plotting commands</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Hershey-vector-fonts-1"></a>
<h4 class="subsection">12.2.2 Hershey vector fonts</h4>
<p>It is possible to specify Hershey vector fonts for rendering text when using
the <code>text</code> and <code>contour</code> functions. There are three reasons for
using the Hershey fonts:
</p><ul>
<li> Hershey fonts can produce better
output, especially on a computer screen, for rotated and/or small text.
</li><li> Hershey fonts
provide certain symbols that may not be available
in the standard fonts. In particular, there are zodiac signs, cartographic
symbols and astronomical symbols.
</li><li> Hershey fonts provide cyrillic and japanese (Kana and Kanji) characters.
</li></ul>
<p>More information, including tables of Hershey characters can be obtained from
within R using the commands:
</p>
<div class="example">
<pre class="example">> help(Hershey)
> demo(Hershey)
> help(Japanese)
> demo(Japanese)
</pre></div>
<hr>
<a name="Interacting-with-graphics"></a>
<div class="header">
<p>
Next: <a href="#Using-graphics-parameters" accesskey="n" rel="next">Using graphics parameters</a>, Previous: <a href="#Low_002dlevel-plotting-commands" accesskey="p" rel="prev">Low-level plotting commands</a>, Up: <a href="#Graphics" accesskey="u" rel="up">Graphics</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Interacting-with-graphics-1"></a>
<h3 class="section">12.3 Interacting with graphics</h3>
<p>R also provides functions which allow users to extract or add
information to a plot using a mouse. The simplest of these is the
<code>locator()</code> function:
</p>
<dl compact="compact">
<dt><code>locator(n, type)</code></dt>
<dd><a name="index-locator"></a>
<p>Waits for the user to select locations on the current plot using the
left mouse button. This continues until <code>n</code> (default 512) points
have been selected, or another mouse button is pressed. The
<code>type</code> argument allows for plotting at the selected points and has
the same effect as for high-level graphics commands; the default is no
plotting. <code>locator()</code> returns the locations of the points selected
as a list with two components <code>x</code> and <code>y</code>.
</p></dd>
</dl>
<p><code>locator()</code> is usually called with no arguments. It is
particularly useful for interactively selecting positions for graphic
elements such as legends or labels when it is difficult to calculate in
advance where the graphic should be placed. For example, to place some
informative text near an outlying point, the command
</p>
<div class="example">
<pre class="example">> text(locator(1), "Outlier", adj=0)
</pre></div>
<p>may be useful. (<code>locator()</code> will be ignored if the current device,
such as <code>postscript</code> does not support interactive pointing.)
</p>
<dl compact="compact">
<dt><code>identify(x, y, labels)</code></dt>
<dd><a name="index-identify"></a>
<p>Allow the user to highlight any of the points defined by <code>x</code> and
<code>y</code> (using the left mouse button) by plotting the corresponding
component of <code>labels</code> nearby (or the index number of the point if
<code>labels</code> is absent). Returns the indices of the selected points
when another button is pressed.
</p></dd>
</dl>
<p>Sometimes we want to identify particular <em>points</em> on a plot, rather
than their positions. For example, we may wish the user to select some
observation of interest from a graphical display and then manipulate
that observation in some way. Given a number of <em>(x, y)</em>
coordinates in two numeric vectors <code>x</code> and <code>y</code>, we could use
the <code>identify()</code> function as follows:
</p>
<div class="example">
<pre class="example">> plot(x, y)
> identify(x, y)
</pre></div>
<p>The <code>identify()</code> functions performs no plotting itself, but simply
allows the user to move the mouse pointer and click the left mouse
button near a point. If there is a point near the mouse pointer it will
be marked with its index number (that is, its position in the
<code>x</code>/<code>y</code> vectors) plotted nearby. Alternatively, you could use
some informative string (such as a case name) as a highlight by using
the <code>labels</code> argument to <code>identify()</code>, or disable marking
altogether with the <code>plot = FALSE</code> argument. When the process is
terminated (see above), <code>identify()</code> returns the indices of the
selected points; you can use these indices to extract the selected
points from the original vectors <code>x</code> and <code>y</code>.
</p>
<hr>
<a name="Using-graphics-parameters"></a>
<div class="header">
<p>
Next: <a href="#Graphics-parameters" accesskey="n" rel="next">Graphics parameters</a>, Previous: <a href="#Interacting-with-graphics" accesskey="p" rel="prev">Interacting with graphics</a>, Up: <a href="#Graphics" accesskey="u" rel="up">Graphics</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Using-graphics-parameters-1"></a>
<h3 class="section">12.4 Using graphics parameters</h3>
<p>When creating graphics, particularly for presentation or publication
purposes, R’s defaults do not always produce exactly that which is
required. You can, however, customize almost every aspect of the
display using <em>graphics parameters</em>. R maintains a list of a
large number of graphics parameters which control things such as line
style, colors, figure arrangement and text justification among many
others. Every graphics parameter has a name (such as ‘<code>col</code>’,
which controls colors,) and a value (a color number, for example.)
</p>
<p>A separate list of graphics parameters is maintained for each active
device, and each device has a default set of parameters when
initialized. Graphics parameters can be set in two ways: either
permanently, affecting all graphics functions which access the current
device; or temporarily, affecting only a single graphics function call.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#The-par_0028_0029-function" accesskey="1">The par() function</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Arguments-to-graphics-functions" accesskey="2">Arguments to graphics functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="The-par_0028_0029-function"></a>
<div class="header">
<p>
Next: <a href="#Arguments-to-graphics-functions" accesskey="n" rel="next">Arguments to graphics functions</a>, Previous: <a href="#Using-graphics-parameters" accesskey="p" rel="prev">Using graphics parameters</a>, Up: <a href="#Using-graphics-parameters" accesskey="u" rel="up">Using graphics parameters</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Permanent-changes_003a-The-par_0028_0029-function"></a>
<h4 class="subsection">12.4.1 Permanent changes: The <code>par()</code> function</h4>
<a name="index-par"></a>
<a name="index-Graphics-parameters"></a>
<p>The <code>par()</code> function is used to access and modify the list of
graphics parameters for the current graphics device.
</p>
<dl compact="compact">
<dt><code>par()</code></dt>
<dd><p>Without arguments, returns a list of all graphics parameters and their
values for the current device.
</p></dd>
<dt><code>par(c("col", "lty"))</code></dt>
<dd><p>With a character vector argument, returns only the named graphics
parameters (again, as a list.)
</p></dd>
<dt><code>par(col=4, lty=2)</code></dt>
<dd><p>With named arguments (or a single list argument), sets the values of
the named graphics parameters, and returns the original values of the
parameters as a list.
</p></dd>
</dl>
<p>Setting graphics parameters with the <code>par()</code> function changes the
value of the parameters <em>permanently</em>, in the sense that all future
calls to graphics functions (on the current device) will be affected by
the new value. You can think of setting graphics parameters in this way
as setting “default” values for the parameters, which will be used by
all graphics functions unless an alternative value is given.
</p>
<p>Note that calls to <code>par()</code> <em>always</em> affect the global values
of graphics parameters, even when <code>par()</code> is called from within a
function. This is often undesirable behavior—usually we want to set
some graphics parameters, do some plotting, and then restore the
original values so as not to affect the user’s R session. You can
restore the initial values by saving the result of <code>par()</code> when
making changes, and restoring the initial values when plotting is
complete.
</p>
<div class="example">
<pre class="example">> oldpar <- par(col=4, lty=2)
<span class="roman">… plotting commands …</span>
> par(oldpar)
</pre></div>
<p>To save and restore <em>all</em> settable<a name="DOCF25" href="#FOOT25"><sup>25</sup></a> graphical parameters use
</p>
<div class="example">
<pre class="example">> oldpar <- par(no.readonly=TRUE)
<span class="roman">… plotting commands …</span>
> par(oldpar)
</pre></div>
<hr>
<a name="Arguments-to-graphics-functions"></a>
<div class="header">
<p>
Previous: <a href="#The-par_0028_0029-function" accesskey="p" rel="prev">The par() function</a>, Up: <a href="#Using-graphics-parameters" accesskey="u" rel="up">Using graphics parameters</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Temporary-changes_003a-Arguments-to-graphics-functions"></a>
<h4 class="subsection">12.4.2 Temporary changes: Arguments to graphics functions</h4>
<p>Graphics parameters may also be passed to (almost) any graphics function
as named arguments. This has the same effect as passing the arguments
to the <code>par()</code> function, except that the changes only last for the
duration of the function call. For example:
</p>
<div class="example">
<pre class="example">> plot(x, y, pch="+")
</pre></div>
<p>produces a scatterplot using a plus sign as the plotting character,
without changing the default plotting character for future plots.
</p>
<p>Unfortunately, this is not implemented entirely consistently and it is
sometimes necessary to set and reset graphics parameters using
<code>par()</code>.
</p>
<hr>
<a name="Graphics-parameters"></a>
<div class="header">
<p>
Next: <a href="#Device-drivers" accesskey="n" rel="next">Device drivers</a>, Previous: <a href="#Using-graphics-parameters" accesskey="p" rel="prev">Using graphics parameters</a>, Up: <a href="#Graphics" accesskey="u" rel="up">Graphics</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Graphics-parameters-list"></a>
<h3 class="section">12.5 Graphics parameters list</h3>
<p>The following sections detail many of the commonly-used graphical
parameters. The R help documentation for the <code>par()</code> function
provides a more concise summary; this is provided as a somewhat more
detailed alternative.
</p>
<p>Graphics parameters will be presented in the following form:
</p>
<dl compact="compact">
<dt><code><var>name</var>=<var>value</var></code></dt>
<dd><p>A description of the parameter’s effect. <var>name</var> is the name of the
parameter, that is, the argument name to use in calls to <code>par()</code> or
a graphics function. <var>value</var> is a typical value you might use when
setting the parameter.
</p></dd>
</dl>
<p>Note that <code>axes</code> is <strong>not</strong> a graphics parameter but an
argument to a few <code>plot</code> methods: see <code>xaxt</code> and <code>yaxt</code>.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Graphical-elements" accesskey="1">Graphical elements</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Axes-and-tick-marks" accesskey="2">Axes and tick marks</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Figure-margins" accesskey="3">Figure margins</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Multiple-figure-environment" accesskey="4">Multiple figure environment</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Graphical-elements"></a>
<div class="header">
<p>
Next: <a href="#Axes-and-tick-marks" accesskey="n" rel="next">Axes and tick marks</a>, Previous: <a href="#Graphics-parameters" accesskey="p" rel="prev">Graphics parameters</a>, Up: <a href="#Graphics-parameters" accesskey="u" rel="up">Graphics parameters</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Graphical-elements-1"></a>
<h4 class="subsection">12.5.1 Graphical elements</h4>
<p>R plots are made up of points, lines, text and polygons (filled
regions.) Graphical parameters exist which control how these
<em>graphical elements</em> are drawn, as follows:
</p>
<dl compact="compact">
<dt><code>pch="+"</code></dt>
<dd><p>Character to be used for plotting points. The default varies with
graphics drivers, but it is usually
a circle.
Plotted points tend to appear slightly above or below the appropriate
position unless you use <code>"."</code> as the plotting character, which
produces centered points.
</p>
</dd>
<dt><code>pch=4</code></dt>
<dd><p>When <code>pch</code> is given as an integer between 0 and 25 inclusive, a
specialized plotting symbol is produced. To see what the symbols are,
use the command
</p>
<div class="example">
<pre class="example">> legend(locator(1), as.character(0:25), pch = 0:25)
</pre></div>
<p>Those from 21 to 25 may appear to duplicate earlier symbols, but can be
coloured in different ways: see the help on <code>points</code> and its
examples.
</p>
<p>In addition, <code>pch</code> can be a character or a number in the range
<code>32:255</code> representing a character in the current font.
</p>
</dd>
<dt><code>lty=2</code></dt>
<dd><p>Line types. Alternative line styles are not supported on all graphics
devices (and vary on those that do) but line type 1 is always a solid
line, line type 0 is always invisible, and line types 2 and onwards are
dotted or dashed lines, or some combination of both.
</p>
</dd>
<dt><code>lwd=2</code></dt>
<dd><p>Line widths. Desired width of lines, in multiples of the “standard”
line width. Affects axis lines as well as lines drawn with
<code>lines()</code>, etc. Not all devices support this, and some have
restrictions on the widths that can be used.
</p>
</dd>
<dt><code>col=2</code></dt>
<dd><p>Colors to be used for points, lines, text, filled regions and images.
A number from the current palette (see <code>?palette</code>) or a named colour.
</p>
</dd>
<dt><code>col.axis</code></dt>
<dt><code>col.lab</code></dt>
<dt><code>col.main</code></dt>
<dt><code>col.sub</code></dt>
<dd><p>The color to be used for axis annotation, <em>x</em> and <em>y</em> labels,
main and sub-titles, respectively.
</p>
</dd>
<dt><code>font=2</code></dt>
<dd><p>An integer which specifies which font to use for text. If possible,
device drivers arrange so that <code>1</code> corresponds to plain text,
<code>2</code> to bold face, <code>3</code> to italic, <code>4</code> to bold italic
and <code>5</code> to a symbol font (which include Greek letters).
</p>
</dd>
<dt><code>font.axis</code></dt>
<dt><code>font.lab</code></dt>
<dt><code>font.main</code></dt>
<dt><code>font.sub</code></dt>
<dd><p>The font to be used for axis annotation, <em>x</em> and <em>y</em> labels,
main and sub-titles, respectively.
</p>
</dd>
<dt><code>adj=-0.1</code></dt>
<dd><p>Justification of text relative to the plotting position. <code>0</code> means
left justify, <code>1</code> means right justify and <code>0.5</code> means to
center horizontally about the plotting position. The actual value is
the proportion of text that appears to the left of the plotting
position, so a value of <code>-0.1</code> leaves a gap of 10% of the text width
between the text and the plotting position.
</p>
</dd>
<dt><code>cex=1.5</code></dt>
<dd><p>Character expansion. The value is the desired size of text characters
(including plotting characters) relative to the default text size.
</p>
</dd>
<dt><code>cex.axis</code></dt>
<dt><code>cex.lab</code></dt>
<dt><code>cex.main</code></dt>
<dt><code>cex.sub</code></dt>
<dd><p>The character expansion to be used for axis annotation, <em>x</em> and
<em>y</em> labels, main and sub-titles, respectively.
</p></dd>
</dl>
<hr>
<a name="Axes-and-tick-marks"></a>
<div class="header">
<p>
Next: <a href="#Figure-margins" accesskey="n" rel="next">Figure margins</a>, Previous: <a href="#Graphical-elements" accesskey="p" rel="prev">Graphical elements</a>, Up: <a href="#Graphics-parameters" accesskey="u" rel="up">Graphics parameters</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Axes-and-tick-marks-1"></a>
<h4 class="subsection">12.5.2 Axes and tick marks</h4>
<p>Many of R’s high-level plots have axes, and you can construct axes
yourself with the low-level <code>axis()</code> graphics function. Axes have
three main components: the <em>axis line</em> (line style controlled by the
<code>lty</code> graphics parameter), the <em>tick marks</em> (which mark off unit
divisions along the axis line) and the <em>tick labels</em> (which mark the
units.) These components can be customized with the following graphics
parameters.
</p>
<dl compact="compact">
<dt><code>lab=c(5, 7, 12)</code></dt>
<dd><p>The first two numbers are the desired number of tick intervals on the
<em>x</em> and <em>y</em> axes respectively. The third number is the
desired length of axis labels, in characters (including the decimal
point.) Choosing a too-small value for this parameter may result in all
tick labels being rounded to the same number!
</p>
</dd>
<dt><code>las=1</code></dt>
<dd><p>Orientation of axis labels. <code>0</code> means always parallel to axis,
<code>1</code> means always horizontal, and <code>2</code> means always
perpendicular to the axis.
</p>
</dd>
<dt><code>mgp=c(3, 1, 0)</code></dt>
<dd><p>Positions of axis components. The first component is the distance from
the axis label to the axis position, in text lines. The second
component is the distance to the tick labels, and the final component is
the distance from the axis position to the axis line (usually zero).
Positive numbers measure outside the plot region, negative numbers
inside.
</p>
</dd>
<dt><code>tck=0.01</code></dt>
<dd><p>Length of tick marks, as a fraction of the size of the plotting region.
When <code>tck</code> is small (less than 0.5) the tick marks on the <em>x</em>
and <em>y</em> axes are forced to be the same size. A value of 1 gives
grid lines. Negative values give tick marks outside the plotting
region. Use <code>tck=0.01</code> and <code>mgp=c(1,-1.5,0)</code> for internal
tick marks.
</p>
</dd>
<dt><code>xaxs="r"</code></dt>
<dt><code>yaxs="i"</code></dt>
<dd><p>Axis styles for the <em>x</em> and <em>y</em> axes, respectively. With
styles <code>"i"</code> (internal) and <code>"r"</code> (the default) tick marks
always fall within the range of the data, however style <code>"r"</code>
leaves a small amount of space at the edges. (S has other styles
not implemented in R.)
</p>
</dd>
</dl>
<hr>
<a name="Figure-margins"></a>
<div class="header">
<p>
Next: <a href="#Multiple-figure-environment" accesskey="n" rel="next">Multiple figure environment</a>, Previous: <a href="#Axes-and-tick-marks" accesskey="p" rel="prev">Axes and tick marks</a>, Up: <a href="#Graphics-parameters" accesskey="u" rel="up">Graphics parameters</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Figure-margins-1"></a>
<h4 class="subsection">12.5.3 Figure margins</h4>
<p>A single plot in R is known as a <code>figure</code> and comprises a
<em>plot region</em> surrounded by margins (possibly containing axis
labels, titles, etc.) and (usually) bounded by the axes themselves.
</p>
<p>A typical figure is
</p>
<img src="images/fig11.png" alt="images/fig11">
<p>Graphics parameters controlling figure layout include:
</p>
<dl compact="compact">
<dt><code>mai=c(1, 0.5, 0.5, 0)</code></dt>
<dd><p>Widths of the bottom, left, top and right margins, respectively,
measured in inches.
</p>
</dd>
<dt><code>mar=c(4, 2, 2, 1)</code></dt>
<dd><p>Similar to <code>mai</code>, except the measurement unit is text lines.
</p></dd>
</dl>
<p><code>mar</code> and <code>mai</code> are equivalent in the sense that setting one
changes the value of the other. The default values chosen for this
parameter are often too large; the right-hand margin is rarely needed,
and neither is the top margin if no title is being used. The bottom and
left margins must be large enough to accommodate the axis and tick
labels. Furthermore, the default is chosen without regard to the size
of the device surface: for example, using the <code>postscript()</code> driver
with the <code>height=4</code> argument will result in a plot which is about
50% margin unless <code>mar</code> or <code>mai</code> are set explicitly. When
multiple figures are in use (see below) the margins are reduced, however
this may not be enough when many figures share the same page.
</p>
<hr>
<a name="Multiple-figure-environment"></a>
<div class="header">
<p>
Previous: <a href="#Figure-margins" accesskey="p" rel="prev">Figure margins</a>, Up: <a href="#Graphics-parameters" accesskey="u" rel="up">Graphics parameters</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Multiple-figure-environment-1"></a>
<h4 class="subsection">12.5.4 Multiple figure environment</h4>
<p>R allows you to create an <em>n</em> by <em>m</em> array of figures on a
single page. Each figure has its own margins, and the array of figures
is optionally surrounded by an <em>outer margin</em>, as shown in the
following figure.
</p>
<img src="images/fig12.png" alt="images/fig12">
<p>The graphical parameters relating to multiple figures are as follows:
</p>
<dl compact="compact">
<dt><code>mfcol=c(3, 2)</code></dt>
<dt><code>mfrow=c(2, 4)</code></dt>
<dd><p>Set the size of a multiple figure array. The first value is the number of
rows; the second is the number of columns. The only difference between
these two parameters is that setting <code>mfcol</code> causes figures to be
filled by column; <code>mfrow</code> fills by rows.
</p>
<p>The layout in the Figure could have been created by setting
<code>mfrow=c(3,2)</code>; the figure shows the page after four plots have
been drawn.
</p>
<p>Setting either of these can reduce the base size of symbols and text
(controlled by <code>par("cex")</code> and the pointsize of the device). In a
layout with exactly two rows and columns the base size is reduced by a
factor of 0.83: if there are three or more of either rows or columns,
the reduction factor is 0.66.
</p>
</dd>
<dt><code>mfg=c(2, 2, 3, 2)</code></dt>
<dd><p>Position of the current figure in a multiple figure environment. The first
two numbers are the row and column of the current figure; the last two
are the number of rows and columns in the multiple figure array. Set
this parameter to jump between figures in the array. You can even use
different values for the last two numbers than the <em>true</em> values
for unequally-sized figures on the same page.
</p>
</dd>
<dt><code>fig=c(4, 9, 1, 4)/10</code></dt>
<dd><p>Position of the current figure on the page. Values are the positions of
the left, right, bottom and top edges respectively, as a percentage of
the page measured from the bottom left corner. The example value would
be for a figure in the bottom right of the page. Set this parameter for
arbitrary positioning of figures within a page. If you want to add a
figure to a current page, use <code>new=TRUE</code> as well (unlike S).
</p>
</dd>
<dt><code>oma=c(2, 0, 3, 0)</code></dt>
<dt><code>omi=c(0, 0, 0.8, 0)</code></dt>
<dd><p>Size of outer margins. Like <code>mar</code> and <code>mai</code>, the first
measures in text lines and the second in inches, starting with the
bottom margin and working clockwise.
</p>
</dd>
</dl>
<p>Outer margins are particularly useful for page-wise titles, etc. Text
can be added to the outer margins with the <code>mtext()</code> function with
argument <code>outer=TRUE</code>. There are no outer margins by default,
however, so you must create them explicitly using <code>oma</code> or
<code>omi</code>.
</p>
<p>More complicated arrangements of multiple figures can be produced by the
<code>split.screen()</code> and <code>layout()</code> functions, as well as by the
<strong>grid</strong> and <a href="https://CRAN.R-project.org/package=lattice"><strong>lattice</strong></a> packages.
</p>
<hr>
<a name="Device-drivers"></a>
<div class="header">
<p>
Next: <a href="#Dynamic-graphics" accesskey="n" rel="next">Dynamic graphics</a>, Previous: <a href="#Graphics-parameters" accesskey="p" rel="prev">Graphics parameters</a>, Up: <a href="#Graphics" accesskey="u" rel="up">Graphics</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Device-drivers-1"></a>
<h3 class="section">12.6 Device drivers</h3>
<a name="index-Graphics-device-drivers"></a>
<p>R can generate graphics (of varying levels of quality) on almost any
type of display or printing device. Before this can begin, however,
R needs to be informed what type of device it is dealing with. This
is done by starting a <em>device driver</em>. The purpose of a device
driver is to convert graphical instructions from R (“draw a line,”
for example) into a form that the particular device can understand.
</p>
<p>Device drivers are started by calling a device driver function. There
is one such function for every device driver: type <code>help(Devices)</code>
for a list of them all. For example, issuing the command
</p>
<div class="example">
<pre class="example">> postscript()
</pre></div>
<p>causes all future graphics output to be sent to the printer in
PostScript format. Some commonly-used device drivers are:
</p>
<dl compact="compact">
<dt><code>X11()</code></dt>
<dd><a name="index-X11"></a>
<p>For use with the X11 window system on Unix-alikes
</p></dd>
<dt><code>windows()</code></dt>
<dd><a name="index-windows"></a>
<p>For use on Windows
</p></dd>
<dt><code>quartz()</code></dt>
<dd><a name="index-quartz"></a>
<p>For use on macOS
</p></dd>
<dt><code>postscript()</code></dt>
<dd><a name="index-postscript"></a>
<p>For printing on PostScript printers, or creating PostScript graphics
files.
</p></dd>
<dt><code>pdf()</code></dt>
<dd><a name="index-pdf"></a>
<p>Produces a PDF file, which can also be included into PDF files.
</p></dd>
<dt><code>png()</code></dt>
<dd><a name="index-png"></a>
<p>Produces a bitmap PNG file. (Not always available: see its help page.)
</p></dd>
<dt><code>jpeg()</code></dt>
<dd><a name="index-jpeg"></a>
<p>Produces a bitmap JPEG file, best used for <code>image</code> plots.
(Not always available: see its help page.)
</p></dd>
</dl>
<p>When you have finished with a device, be sure to terminate the device
driver by issuing the command
</p>
<div class="example">
<pre class="example">> dev.off()
</pre></div>
<p>This ensures that the device finishes cleanly; for example in the case
of hardcopy devices this ensures that every page is completed and has
been sent to the printer. (This will happen automatically at the normal
end of a session.)
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#PostScript-diagrams-for-typeset-documents" accesskey="1">PostScript diagrams for typeset documents</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Multiple-graphics-devices" accesskey="2">Multiple graphics devices</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="PostScript-diagrams-for-typeset-documents"></a>
<div class="header">
<p>
Next: <a href="#Multiple-graphics-devices" accesskey="n" rel="next">Multiple graphics devices</a>, Previous: <a href="#Device-drivers" accesskey="p" rel="prev">Device drivers</a>, Up: <a href="#Device-drivers" accesskey="u" rel="up">Device drivers</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="PostScript-diagrams-for-typeset-documents-1"></a>
<h4 class="subsection">12.6.1 PostScript diagrams for typeset documents</h4>
<p>By passing the <code>file</code> argument to the <code>postscript()</code> device
driver function, you may store the graphics in PostScript format in a
file of your choice. The plot will be in landscape orientation unless
the <code>horizontal=FALSE</code> argument is given, and you can control the
size of the graphic with the <code>width</code> and <code>height</code> arguments
(the plot will be scaled as appropriate to fit these dimensions.) For
example, the command
</p>
<div class="example">
<pre class="example">> postscript("file.ps", horizontal=FALSE, height=5, pointsize=10)
</pre></div>
<p>will produce a file containing PostScript code for a figure five inches
high, perhaps for inclusion in a document. It is important to note that
if the file named in the command already exists, it will be overwritten.
This is the case even if the file was only created earlier in the same
R session.
</p>
<p>Many usages of PostScript output will be to incorporate the figure in
another document. This works best when <em>encapsulated</em> PostScript
is produced: R always produces conformant output, but only marks the
output as such when the <code>onefile=FALSE</code> argument is supplied. This
unusual notation stems from S-compatibility: it really means that
the output will be a single page (which is part of the EPSF
specification). Thus to produce a plot for inclusion use something like
</p>
<div class="example">
<pre class="example">> postscript("plot1.eps", horizontal=FALSE, onefile=FALSE,
height=8, width=6, pointsize=10)
</pre></div>
<hr>
<a name="Multiple-graphics-devices"></a>
<div class="header">
<p>
Previous: <a href="#PostScript-diagrams-for-typeset-documents" accesskey="p" rel="prev">PostScript diagrams for typeset documents</a>, Up: <a href="#Device-drivers" accesskey="u" rel="up">Device drivers</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Multiple-graphics-devices-1"></a>
<h4 class="subsection">12.6.2 Multiple graphics devices</h4>
<p>In advanced use of R it is often useful to have several graphics
devices in use at the same time. Of course only one graphics device can
accept graphics commands at any one time, and this is known as the
<em>current device</em>. When multiple devices are open, they form a
numbered sequence with names giving the kind of device at any position.
</p>
<p>The main commands used for operating with multiple devices, and their
meanings are as follows:
</p>
<dl compact="compact">
<dt><code>X11()</code></dt>
<dd><p>[UNIX]
</p></dd>
<dt><code>windows()</code></dt>
<dt><code>win.printer()</code></dt>
<dt><code>win.metafile()</code></dt>
<dd><p>[Windows]
</p></dd>
<dt><code>quartz()</code></dt>
<dd><p>[macOS]
</p></dd>
<dt><code>postscript()</code></dt>
<dt><code>pdf()</code></dt>
<dt><code>png()</code></dt>
<dt><code>jpeg()</code></dt>
<dt><code>tiff()</code></dt>
<dt><code>bitmap()</code></dt>
<dt><code>…</code></dt>
<dd><p>Each new call to a device driver function opens a new graphics device,
thus extending by one the device list. This device becomes the current
device, to which graphics output will be sent.
</p>
</dd>
<dt><code>dev.list()</code></dt>
<dd><a name="index-dev_002elist"></a>
<p>Returns the number and name of all active devices. The device at
position 1 on the list is always the <em>null device</em> which does not
accept graphics commands at all.
</p>
</dd>
<dt><code>dev.next()</code></dt>
<dt><code>dev.prev()</code></dt>
<dd><a name="index-dev_002enext"></a>
<a name="index-dev_002eprev"></a>
<p>Returns the number and name of the graphics device next to, or previous
to the current device, respectively.
</p>
</dd>
<dt><code>dev.set(which=<var>k</var>)</code></dt>
<dd><a name="index-dev_002eset"></a>
<p>Can be used to change the current graphics device to the one at position
<var>k</var> of the device list. Returns the number and label of the device.
</p>
</dd>
<dt><code>dev.off(<var>k</var>)</code></dt>
<dd><a name="index-dev_002eoff"></a>
<p>Terminate the graphics device at point <var>k</var> of the device list. For
some devices, such as <code>postscript</code> devices, this will either print
the file immediately or correctly complete the file for later printing,
depending on how the device was initiated.
</p>
</dd>
<dt><code>dev.copy(device, …, which=<var>k</var>)</code></dt>
<dt><code>dev.print(device, …, which=<var>k</var>)</code></dt>
<dd><p>Make a copy of the device <var>k</var>. Here <code>device</code> is a device
function, such as <code>postscript</code>, with extra arguments, if needed,
specified by ‘<samp>…</samp>’. <code>dev.print</code> is similar, but the
copied device is immediately closed, so that end actions, such as
printing hardcopies, are immediately performed.
</p>
</dd>
<dt><code>graphics.off()</code></dt>
<dd><p>Terminate all graphics devices on the list, except the null device.
</p></dd>
</dl>
<hr>
<a name="Dynamic-graphics"></a>
<div class="header">
<p>
Previous: <a href="#Device-drivers" accesskey="p" rel="prev">Device drivers</a>, Up: <a href="#Graphics" accesskey="u" rel="up">Graphics</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Dynamic-graphics-1"></a>
<h3 class="section">12.7 Dynamic graphics</h3>
<a name="index-Dynamic-graphics"></a>
<p>R does not have builtin capabilities for dynamic or
interactive graphics, e.g. rotating point clouds or to “brushing”
(interactively highlighting) points. However, extensive dynamic graphics
facilities are available in the system GGobi by Swayne, Cook and Buja
available from
</p>
<blockquote>
<p><a href="http://www.ggobi.org/">http://www.ggobi.org/</a>
</p></blockquote>
<p>and these can be accessed from R via the package <a href="https://CRAN.R-project.org/package=rggobi"><strong>rggobi</strong></a>, described at
<a href="http://www.ggobi.org/rggobi">http://www.ggobi.org/rggobi</a>.
</p>
<p>Also, package <a href="https://CRAN.R-project.org/package=rgl"><strong>rgl</strong></a> provides ways to interact with 3D plots, for example
of surfaces.
</p>
<hr>
<a name="Packages"></a>
<div class="header">
<p>
Next: <a href="#OS-facilities" accesskey="n" rel="next">OS facilities</a>, Previous: <a href="#Graphics" accesskey="p" rel="prev">Graphics</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Packages-1"></a>
<h2 class="chapter">13 Packages</h2>
<a name="index-Packages-1"></a>
<p>All R functions and datasets are stored in <em>packages</em>. Only
when a package is loaded are its contents available. This is done both
for efficiency (the full list would take more memory and would take
longer to search than a subset), and to aid package developers, who are
protected from name clashes with other code. The process of developing
packages is described in <a href="http://cran.r-project.org/doc/manuals/R-exts.html#Creating-R-packages">Creating R
packages</a> in <cite>Writing R Extensions</cite>. Here, we will describe them
from a user’s point of view.
</p>
<p>To see which packages are installed at your site, issue the command
</p>
<div class="example">
<pre class="example">> library()
</pre></div>
<p>with no arguments. To load a particular package (e.g., the <a href="https://CRAN.R-project.org/package=boot"><strong>boot</strong></a>
package containing functions from Davison & Hinkley (1997)), use a
command like
</p>
<div class="example">
<pre class="example">> library(boot)
</pre></div>
<p>Users connected to the Internet can use the <code>install.packages()</code>
and <code>update.packages()</code> functions (available through the
<code>Packages</code> menu in the Windows and macOS GUIs, see <a href="http://cran.r-project.org/doc/manuals/R-admin.html#Installing-packages">Installing
packages</a> in <cite>R Installation and Administration</cite>) to install
and update packages.
</p>
<p>To see which packages are currently loaded, use
</p>
<div class="example">
<pre class="example">> search()
</pre></div>
<p>to display the search list. Some packages may be loaded but not
available on the search list (see <a href="#Namespaces">Namespaces</a>): these will be
included in the list given by
</p>
<div class="example">
<pre class="example">> loadedNamespaces()
</pre></div>
<p>To see a list of all available help topics in an installed package,
use
</p>
<div class="example">
<pre class="example">> help.start()
</pre></div>
<p>to start the <acronym>HTML</acronym> help system, and then navigate to the package
listing in the <code>Reference</code> section.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Standard-packages" accesskey="1">Standard packages</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Contributed-packages-and-CRAN" accesskey="2">Contributed packages and CRAN</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Namespaces" accesskey="3">Namespaces</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Standard-packages"></a>
<div class="header">
<p>
Next: <a href="#Contributed-packages-and-CRAN" accesskey="n" rel="next">Contributed packages and CRAN</a>, Previous: <a href="#Packages" accesskey="p" rel="prev">Packages</a>, Up: <a href="#Packages" accesskey="u" rel="up">Packages</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Standard-packages-1"></a>
<h3 class="section">13.1 Standard packages</h3>
<p>The standard (or <em>base</em>) packages are considered part of the R
source code. They contain the basic functions that allow R to work,
and the datasets and standard statistical and graphical functions that
are described in this manual. They should be automatically available in
any R installation. See <a href="R-FAQ.html#Which-add_002don-packages-exist-for-R_003f">R
packages</a> in <cite>R FAQ</cite>, for a complete list.
</p>
<hr>
<a name="Contributed-packages-and-CRAN"></a>
<div class="header">
<p>
Next: <a href="#Namespaces" accesskey="n" rel="next">Namespaces</a>, Previous: <a href="#Standard-packages" accesskey="p" rel="prev">Standard packages</a>, Up: <a href="#Packages" accesskey="u" rel="up">Packages</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Contributed-packages-and-CRAN-1"></a>
<h3 class="section">13.2 Contributed packages and <acronym>CRAN</acronym></h3>
<a name="index-CRAN"></a>
<p>There are thousands of contributed packages for R, written by many
different authors. Some of these packages implement specialized
statistical methods, others give access to data or hardware, and others
are designed to complement textbooks. Some (the <em>recommended</em>
packages) are distributed with every binary distribution of R. Most
are available for download from <acronym>CRAN</acronym>
(<a href="https://CRAN.R-project.org/">https://CRAN.R-project.org/</a> and its mirrors) and other
repositories such as Bioconductor (<a href="https://www.bioconductor.org/">https://www.bioconductor.org/</a>).
and Omegahat (<a href="http://www.omegahat.net/">http://www.omegahat.net/</a>). The <em>R FAQ</em>
contains a list of CRAN packages current at the time of release, but the
collection of available packages changes very frequently.
</p>
<hr>
<a name="Namespaces"></a>
<div class="header">
<p>
Previous: <a href="#Contributed-packages-and-CRAN" accesskey="p" rel="prev">Contributed packages and CRAN</a>, Up: <a href="#Packages" accesskey="u" rel="up">Packages</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Namespaces-1"></a>
<h3 class="section">13.3 Namespaces</h3>
<a name="index-Namespace"></a>
<a name="index-_003a_003a"></a>
<a name="index-_003a_003a_003a"></a>
<p>Packages have <em>namespaces</em>, which do three things: they allow the
package writer to hide functions and data that are meant only for
internal use, they prevent functions from breaking when a user (or other
package writer) picks a name that clashes with one in the package, and
they provide a way to refer to an object within a particular package.
</p>
<p>For example, <code>t()</code> is the transpose function in R, but users
might define their own function named <code>t</code>. Namespaces prevent
the user’s definition from taking precedence, and breaking every
function that tries to transpose a matrix.
</p>
<p>There are two operators that work with namespaces. The double-colon
operator <code>::</code> selects definitions from a particular namespace.
In the example above, the transpose function will always be available
as <code>base::t</code>, because it is defined in the <code>base</code> package.
Only functions that are exported from the package can be retrieved in
this way.
</p>
<p>The triple-colon operator <code>:::</code> may be seen in a few places in R
code: it acts like the double-colon operator but also allows access to
hidden objects. Users are more likely to use the <code>getAnywhere()</code>
function, which searches multiple packages.
</p>
<p>Packages are often inter-dependent, and loading one may cause others to
be automatically loaded. The colon operators described above will also
cause automatic loading of the associated package. When packages with
namespaces are loaded automatically they are not added to the search
list.
</p>
<hr>
<a name="OS-facilities"></a>
<div class="header">
<p>
Next: <a href="#A-sample-session" accesskey="n" rel="next">A sample session</a>, Previous: <a href="#Packages" accesskey="p" rel="prev">Packages</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="OS-facilities-1"></a>
<h2 class="chapter">14 OS facilities</h2>
<p>R has quite extensive facilities to access the OS under which it is
running: this allows it to be used as a scripting language and that
ability is much used by R itself, for example to install packages.
</p>
<p>Because R’s own scripts need to work across all platforms,
considerable effort has gone into make the scripting facilities as
platform-independent as is feasible.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Files-and-directories" accesskey="1">Files and directories</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Filepaths" accesskey="2">Filepaths</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#System-commands" accesskey="3">System commands</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Compression-and-Archives" accesskey="4">Compression and Archives</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Files-and-directories"></a>
<div class="header">
<p>
Next: <a href="#Filepaths" accesskey="n" rel="next">Filepaths</a>, Previous: <a href="#OS-facilities" accesskey="p" rel="prev">OS facilities</a>, Up: <a href="#OS-facilities" accesskey="u" rel="up">OS facilities</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Files-and-directories-1"></a>
<h3 class="section">14.1 Files and directories</h3>
<p>There are many functions to manipulate files and directories. Here are
pointers to some of the more commonly used ones.
</p>
<p>To create an (empty) file or directory, use <code>file.create</code> or
<code>dir.create</code>. (These are the analogues of the POSIX utilities
<code>touch</code> and <code>mkdir</code>.) For temporary files and
directories in the R session directory see <code>tempfile</code>.
</p>
<p>Files can be removed by either <code>file.remove</code> or <code>unlink</code>: the
latter can remove directory trees.
</p>
<p>For directory listings use <code>list.files</code> (also available as
<code>dir</code>) or <code>list.dirs</code>. These can select files using a regular
expression: to select by wildcards use <code>Sys.glob</code>.
</p>
<p>Many types of information on a filepath (including for example if it is
a file or directory) can be found by <code>file.info</code>.
</p>
<p>There are several ways to find out if a file ‘exists’ (a file can
exist on the filesystem and not be visible to the current user).
There are functions <code>file.exists</code>, <code>file.access</code> and
<code>file_test</code> with various versions of this test: <code>file_test</code> is
a version of the POSIX <code>test</code> command for those familiar with
shell scripting.
</p>
<p>Function <code>file.copy</code> is the R analogue of the POSIX command
<code>cp</code>.
</p>
<p>Choosing files can be done interactively by <code>file.choose</code>: the
Windows port has the more versatile functions <code>choose.files</code> and
<code>choose.dir</code> and there are similar functions in the <strong>tcltk</strong>
package: <code>tk_choose.files</code> and <code>tk_choose.dir</code>.
</p>
<p>Functions <code>file.show</code> and <code>file.edit</code> will display and edit
one or more files in a way appropriate to the R port, using the
facilities of a console (such as RGui on Windows or R.app on macOS) if
one is in use.
</p>
<p>There is some support for <em>links</em> in the filesystem: see functions
<code>file.link</code> and <code>Sys.readlink</code>.
</p>
<hr>
<a name="Filepaths"></a>
<div class="header">
<p>
Next: <a href="#System-commands" accesskey="n" rel="next">System commands</a>, Previous: <a href="#Files-and-directories" accesskey="p" rel="prev">Files and directories</a>, Up: <a href="#OS-facilities" accesskey="u" rel="up">OS facilities</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Filepaths-1"></a>
<h3 class="section">14.2 Filepaths</h3>
<p>With a few exceptions, R relies on the underlying OS functions to
manipulate filepaths. Some aspects of this are allowed to depend on the
OS, and do, even down to the version of the OS. There are POSIX
standards for how OSes should interpret filepaths and many R users
assume POSIX compliance: but Windows does not claim to be compliant and
other OSes may be less than completely compliant.
</p>
<p>The following are some issues which have been encountered with filepaths.
</p>
<ul>
<li> POSIX filesystems are case-sensitive, so <samp>foo.png</samp> and
<samp>Foo.PNG</samp> are different files. However, the defaults on Windows
and macOS are to be case-insensitive, and FAT filesystems (commonly used
on removable storage) are not normally case-sensitive (and all filepaths
may be mapped to lower case).
</li><li> Almost all the Windows’ OS services support the use of slash or
backslash as the filepath separator, and R converts the known
exceptions to the form required by Windows.
</li><li> The behaviour of filepaths with a trailing slash is OS-dependent. Such
paths are not valid on Windows and should not be expected to work.
POSIX-2008 requires such paths to match only directories, but earlier
versions allowed them to also match files. So they are best avoided.
</li><li> Multiple slashes in filepaths such as <samp>/abc//def</samp> are valid on
POSIX filesystems and treated as if there was only one slash. They are
<em>usually</em> accepted by Windows’ OS functions. However, leading
double slashes may have a different meaning.
</li><li> Windows’ UNC filepaths (such as <samp>\\server\dir1\dir2\file</samp> and
<samp>\\?\UNC\server\dir1\dir2\file</samp>) are not supported, but they may
work in some R functions. POSIX filesystems are allowed to treat a
leading double slash specially.
</li><li> Windows allows filepaths containing drives and relative to the current
directory on a drive, e.g. <samp>d:foo/bar</samp> refers to
<samp>d:/a/b/c/foo/bar</samp> if the current directory <em>on drive
<samp>d:</samp></em> is <samp>/a/b/c</samp>. It is intended that these work, but the
use of absolute paths is safer.
</li></ul>
<p>Functions <code>basename</code> and <code>dirname</code> select parts of a file
path: the recommended way to assemble a file path from components is
<code>file.path</code>. Function <code>pathexpand</code> does ‘tilde expansion’,
substituting values for home directories (the current user’s, and
perhaps those of other users).
</p>
<p>On filesystems with links, a single file can be referred to by many
filepaths. Function <code>normalizePath</code> will find a canonical
filepath.
</p>
<p>Windows has the concepts of short (‘8.3’) and long file names:
<code>normalizePath</code> will return an absolute path using long file names
and <code>shortPathName</code> will return a version using short names. The
latter does not contain spaces and uses backslash as the separator, so
is sometimes useful for exporting names from R.
</p>
<p>File <em>permissions</em> are a related topic. R has support for the
POSIX concepts of read/write/execute permission for owner/group/all but
this may be only partially supported on the filesystem, so for example
on Windows only read-only files (for the account running the R
session) are recognized. Access Control Lists (ACLs) are employed on
several filesystems, but do not have an agreed standard and R has no
facilities to control them. Use <code>Sys.chmod</code> to change permissions.
</p>
<hr>
<a name="System-commands"></a>
<div class="header">
<p>
Next: <a href="#Compression-and-Archives" accesskey="n" rel="next">Compression and Archives</a>, Previous: <a href="#Filepaths" accesskey="p" rel="prev">Filepaths</a>, Up: <a href="#OS-facilities" accesskey="u" rel="up">OS facilities</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="System-commands-1"></a>
<h3 class="section">14.3 System commands</h3>
<p>Functions <code>system</code> and <code>system2</code> are used to invoke a system
command and optionally collect its output. <code>system2</code> is a little
more general but its main advantage is that it is easier to write
cross-platform code using it.
</p>
<p><code>system</code> behaves differently on Windows from other OSes (because
the API C call of that name does). Elsewhere it invokes a shell to run
the command: the Windows port of R has a function <code>shell</code> to do
that.
</p>
<p>To find out if the OS includes a command, use <code>Sys.which</code>, which
attempts to do this in a cross-platform way (unfortunately it is not a
standard OS service).
</p>
<p>Function <code>shQuote</code> will quote filepaths as needed for commands in
the current OS.
</p>
<hr>
<a name="Compression-and-Archives"></a>
<div class="header">
<p>
Previous: <a href="#System-commands" accesskey="p" rel="prev">System commands</a>, Up: <a href="#OS-facilities" accesskey="u" rel="up">OS facilities</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Compression-and-Archives-1"></a>
<h3 class="section">14.4 Compression and Archives</h3>
<p>Recent versions of R have extensive facilities to read and write
compressed files, often transparently. Reading of files in R is to a
vey large extent done by <em>connections</em>, and the <code>file</code>
function which is used to open a connection to a file (or a URL) and is
able to identify the compression used from the ‘magic’ header of the
file.
</p>
<p>The type of compression which has been supported for longest is
<code>gzip</code> compression, and that remains a good general compromise.
Files compressed by the earlier Unix <code>compress</code> utility can also
be read, but these are becoming rare. Two other forms of compression,
those of the <code>bzip2</code> and <code>xz</code> utilities are also
available. These generally achieve higher rates of compression
(depending on the file, much higher) at the expense of slower
decompression and much slower compression.
</p>
<p>There is some confusion between <code>xz</code> and <code>lzma</code>
compression (see <a href="https://en.wikipedia.org/wiki/Xz">https://en.wikipedia.org/wiki/Xz</a> and
<a href="https://en.wikipedia.org/wiki/LZMA">https://en.wikipedia.org/wiki/LZMA</a>): R can read files
compressed by most versions of either.
</p>
<p>File archives are single files which contain a collection of files, the
most common ones being ‘tarballs’ and zip files as used to distribute
R packages. R can list and unpack both (see functions <code>untar</code>
and <code>unzip</code>) and create both (for <code>zip</code> with the help of an
external program).
</p>
<hr>
<a name="A-sample-session"></a>
<div class="header">
<p>
Next: <a href="#Invoking-R" accesskey="n" rel="next">Invoking R</a>, Previous: <a href="#OS-facilities" accesskey="p" rel="prev">OS facilities</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="A-sample-session-1"></a>
<h2 class="appendix">Appendix A A sample session</h2>
<p>The following session is intended to introduce to you some features of
the R environment by using them. Many features of the system will be
unfamiliar and puzzling at first, but this puzzlement will soon
disappear.
</p>
<dl compact="compact">
<dt><code>Start R appropriately for your platform (see <a href="#Invoking-R">Invoking R</a>).</code></dt>
<dd>
<p>The R program begins, with a banner.
</p>
<p>(Within R code, the prompt on the left hand side will not be shown to
avoid confusion.)
</p>
</dd>
<dt><code>help.start()</code></dt>
<dd><p>Start the <acronym>HTML</acronym> interface to on-line help (using a web browser
available at your machine). You should briefly explore the features of
this facility with the mouse.
</p>
<p>Iconify the help window and move on to the next part.
</p>
</dd>
<dt><code>x <- rnorm(50)</code></dt>
<dt><code>y <- rnorm(x)</code></dt>
<dd><p>Generate two pseudo-random normal vectors of <em>x</em>- and
<em>y</em>-coordinates.
</p>
</dd>
<dt><code>plot(x, y)</code></dt>
<dd><p>Plot the points in the plane. A graphics window will appear automatically.
</p>
</dd>
<dt><code>ls()</code></dt>
<dd><p>See which R objects are now in the R workspace.
</p>
</dd>
<dt><code>rm(x, y)</code></dt>
<dd><p>Remove objects no longer needed. (Clean up).
</p>
</dd>
<dt><code>x <- 1:20</code></dt>
<dd><p>Make <em>x = (1, 2, …, 20)</em>.
</p>
</dd>
<dt><code>w <- 1 + sqrt(x)/2</code></dt>
<dd><p>A ‘weight’ vector of standard deviations.
</p>
</dd>
<dt><code>dummy <- data.frame(x=x, y= x + rnorm(x)*w)</code></dt>
<dt><code>dummy</code></dt>
<dd><p>Make a <em>data frame</em> of two columns, <em>x</em> and <em>y</em>, and look
at it.
</p>
</dd>
<dt><code>fm <- lm(y ~ x, data=dummy)</code></dt>
<dt><code>summary(fm)</code></dt>
<dd><p>Fit a simple linear regression and look at the
analysis. With <code>y</code> to the left of the tilde,
we are modelling <em>y</em> dependent on <em>x</em>.
</p>
</dd>
<dt><code>fm1 <- lm(y ~ x, data=dummy, weight=1/w^2)</code></dt>
<dt><code>summary(fm1)</code></dt>
<dd><p>Since we know the standard deviations, we can do a weighted regression.
</p>
</dd>
<dt><code>attach(dummy)</code></dt>
<dd><p>Make the columns in the data frame visible as variables.
</p>
</dd>
<dt><code>lrf <- lowess(x, y)</code></dt>
<dd><p>Make a nonparametric local regression function.
</p>
</dd>
<dt><code>plot(x, y)</code></dt>
<dd><p>Standard point plot.
</p>
</dd>
<dt><code>lines(x, lrf$y)</code></dt>
<dd><p>Add in the local regression.
</p>
</dd>
<dt><code>abline(0, 1, lty=3)</code></dt>
<dd><p>The true regression line: (intercept 0, slope 1).
</p>
</dd>
<dt><code>abline(coef(fm))</code></dt>
<dd><p>Unweighted regression line.
</p>
</dd>
<dt><code>abline(coef(fm1), col = "red")</code></dt>
<dd><p>Weighted regression line.
</p>
</dd>
<dt><code>detach()</code></dt>
<dd><p>Remove data frame from the search path.
</p>
</dd>
<dt><code>plot(fitted(fm), resid(fm),</code></dt>
<dt><code> xlab="Fitted values"<!-- /@w -->,</code></dt>
<dt><code> ylab="Residuals"<!-- /@w -->,</code></dt>
<dt><code> main="Residuals vs Fitted")<!-- /@w --></code></dt>
<dd><p>A standard regression diagnostic plot to check for heteroscedasticity.
Can you see it?
</p>
</dd>
<dt><code>qqnorm(resid(fm), main="Residuals Rankit Plot")</code></dt>
<dd><p>A normal scores plot to check for skewness, kurtosis and outliers. (Not
very useful here.)
</p>
</dd>
<dt><code>rm(fm, fm1, lrf, x, dummy)</code></dt>
<dd><p>Clean up again.
</p></dd>
</dl>
<p>The next section will look at data from the classical experiment of
Michelson to measure the speed of light. This dataset is available in
the <code>morley</code> object, but we will read it to illustrate the
<code>read.table</code> function.
</p>
<dl compact="compact">
<dt><code>filepath <- system.file("data", "morley.tab" , package="datasets")</code></dt>
<dt><code>filepath</code></dt>
<dd><p>Get the path to the data file.
</p>
</dd>
<dt><code>file.show(filepath)</code></dt>
<dd><p>Optional. Look at the file.
</p>
</dd>
<dt><code>mm <- read.table(filepath)</code></dt>
<dt><code>mm</code></dt>
<dd><p>Read in the Michelson data as a data frame, and look at it.
There are five experiments (column <code>Expt</code>) and each has 20 runs
(column <code>Run</code>) and <code>sl</code> is the recorded speed of light,
suitably coded.
</p>
</dd>
<dt><code>mm$Expt <- factor(mm$Expt)</code></dt>
<dt><code>mm$Run <- factor(mm$Run)</code></dt>
<dd><p>Change <code>Expt</code> and <code>Run</code> into factors.
</p>
</dd>
<dt><code>attach(mm)</code></dt>
<dd><p>Make the data frame visible at position 3 (the default).
</p>
</dd>
<dt><code>plot(Expt, Speed, main="Speed of Light Data", xlab="Experiment No.")</code></dt>
<dd><p>Compare the five experiments with simple boxplots.
</p>
</dd>
<dt><code>fm <- aov(Speed ~ Run + Expt, data=mm)</code></dt>
<dt><code>summary(fm)</code></dt>
<dd><p>Analyze as a randomized block, with ‘runs’ and ‘experiments’ as factors.
</p>
</dd>
<dt><code>fm0 <- update(fm, . ~ . - Run)</code></dt>
<dt><code>anova(fm0, fm)</code></dt>
<dd><p>Fit the sub-model omitting ‘runs’, and compare using a formal analysis
of variance.
</p>
</dd>
<dt><code>detach()</code></dt>
<dt><code>rm(fm, fm0)</code></dt>
<dd><p>Clean up before moving on.
</p>
</dd>
</dl>
<p>We now look at some more graphical features: contour and image plots.
</p>
<dl compact="compact">
<dt><code>x <- seq(-pi, pi, len=50)</code></dt>
<dt><code>y <- x</code></dt>
<dd><p><em>x</em> is a vector of 50 equally spaced values in
the interval [-pi\, pi].
<em>y</em> is the same.
</p>
</dd>
<dt><code>f <- outer(x, y, function(x, y) cos(y)/(1 + x^2))</code></dt>
<dd><p><em>f</em> is a square matrix, with rows and columns indexed by <em>x</em>
and <em>y</em> respectively, of values of the function
cos(y)/(1 + x^2).
</p>
</dd>
<dt><code>oldpar <- par(no.readonly = TRUE)</code></dt>
<dt><code>par(pty="s")</code></dt>
<dd><p>Save the plotting parameters and set the plotting region to “square”.
</p>
</dd>
<dt><code>contour(x, y, f)</code></dt>
<dt><code>contour(x, y, f, nlevels=15, add=TRUE)</code></dt>
<dd><p>Make a contour map of <em>f</em>; add in more lines for more detail.
</p>
</dd>
<dt><code>fa <- (f-t(f))/2</code></dt>
<dd><p><code>fa</code> is the “asymmetric part” of <em>f</em>. (<code>t()</code> is
transpose).
</p>
</dd>
<dt><code>contour(x, y, fa, nlevels=15)</code></dt>
<dd><p>Make a contour plot, …
</p>
</dd>
<dt><code>par(oldpar)</code></dt>
<dd><p>… and restore the old graphics parameters.
</p>
</dd>
<dt><code>image(x, y, f)</code></dt>
<dt><code>image(x, y, fa)</code></dt>
<dd><p>Make some high density image plots, (of which you can get
hardcopies if you wish), …
</p>
</dd>
<dt><code>objects(); rm(x, y, f, fa)</code></dt>
<dd><p>… and clean up before moving on.
</p></dd>
</dl>
<p>R can do complex arithmetic, also.
</p>
<dl compact="compact">
<dt><code>th <- seq(-pi, pi, len=100)</code></dt>
<dt><code>z <- exp(1i*th)</code></dt>
<dd><p><code>1i</code> is used for the complex number <em>i</em>.
</p>
</dd>
<dt><code>par(pty="s")</code></dt>
<dt><code>plot(z, type="l")</code></dt>
<dd><p>Plotting complex arguments means plot imaginary versus real parts. This
should be a circle.
</p>
</dd>
<dt><code>w <- rnorm(100) + rnorm(100)*1i</code></dt>
<dd><p>Suppose we want to sample points within the unit circle. One method
would be to take complex numbers with standard normal real and imaginary
parts …
</p>
</dd>
<dt><code>w <- ifelse(Mod(w) > 1, 1/w, w)</code></dt>
<dd><p>… and to map any outside the circle onto their reciprocal.
</p>
</dd>
<dt><code>plot(w, xlim=c(-1,1), ylim=c(-1,1), pch="+",xlab="x", ylab="y")</code></dt>
<dt><code>lines(z)</code></dt>
<dd><p>All points are inside the unit circle, but the distribution is not
uniform.
</p>
</dd>
<dt><code>w <- sqrt(runif(100))*exp(2*pi*runif(100)*1i)</code></dt>
<dt><code>plot(w, xlim=c(-1,1), ylim=c(-1,1), pch="+", xlab="x", ylab="y")</code></dt>
<dt><code>lines(z)</code></dt>
<dd><p>The second method uses the uniform distribution. The points should now
look more evenly spaced over the disc.
</p>
</dd>
<dt><code>rm(th, w, z)</code></dt>
<dd><p>Clean up again.
</p>
</dd>
<dt><code>q()</code></dt>
<dd><p>Quit the R program. You will be asked if you want to save the R
workspace, and for an exploratory session like this, you probably do not
want to save it.
</p></dd>
</dl>
<hr>
<a name="Invoking-R"></a>
<div class="header">
<p>
Next: <a href="#The-command_002dline-editor" accesskey="n" rel="next">The command-line editor</a>, Previous: <a href="#A-sample-session" accesskey="p" rel="prev">A sample session</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Invoking-R-1"></a>
<h2 class="appendix">Appendix B Invoking R</h2>
<p>Users of R on Windows or macOS should read the OS-specific section
first, but command-line use is also supported.
</p>
<table summary="" class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Invoking-R-from-the-command-line" accesskey="1">Invoking R from the command line</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Invoking-R-under-Windows" accesskey="2">Invoking R under Windows</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Invoking-R-under-macOS" accesskey="3">Invoking R under macOS</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Scripting-with-R" accesskey="4">Scripting with R</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Invoking-R-from-the-command-line"></a>
<div class="header">
<p>
Next: <a href="#Invoking-R-under-Windows" accesskey="n" rel="next">Invoking R under Windows</a>, Previous: <a href="#Invoking-R" accesskey="p" rel="prev">Invoking R</a>, Up: <a href="#Invoking-R" accesskey="u" rel="up">Invoking R</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Invoking-R-from-the-command-line-1"></a>
<h3 class="appendixsec">B.1 Invoking R from the command line</h3>
<p>When working at a command line on UNIX or Windows, the command ‘<samp>R</samp>’
can be used both for starting the main R program in the form
</p>
<div class="display">
<pre class="display"><code>R</code> [<var>options</var>] [<code><</code><var>infile</var>] [<code>></code><var>outfile</var>],
</pre></div>
<p>or, via the <code>R CMD</code> interface, as a wrapper to various R tools
(e.g., for processing files in R documentation format or manipulating
add-on packages) which are not intended to be called “directly”.
</p>
<p>At the Windows command-line, <code>Rterm.exe</code> is preferred to
<code>R</code>.
</p>
<p>You need to ensure that either the environment variable <code>TMPDIR</code> is
unset or it points to a valid place to create temporary files and
directories.
</p>
<p>Most options control what happens at the beginning and at the end of an
R session. The startup mechanism is as follows (see also the on-line
help for topic ‘<samp>Startup</samp>’ for more information, and the section below
for some Windows-specific details).
</p>
<ul>
<li> Unless <samp>--no-environ</samp> was given, R searches for user and site
files to process for setting environment variables. The name of the
site file is the one pointed to by the environment variable
<code>R_ENVIRON</code>; if this is unset, <samp><var>R_HOME</var>/etc/Renviron.site</samp>
is used (if it exists). The user file is the one pointed to by the
environment variable <code>R_ENVIRON_USER</code> if this is set; otherwise,
files <samp>.Renviron</samp> in the current or in the user’s home directory
(in that order) are searched for. These files should contain lines of
the form ‘<samp><var>name</var>=<var>value</var></samp>’. (See <code>help("Startup")</code> for
a precise description.) Variables you might want to set include
<code>R_PAPERSIZE</code> (the default paper size), <code>R_PRINTCMD</code> (the
default print command) and <code>R_LIBS</code> (specifies the list of R
library trees searched for add-on packages).
</li><li> Then R searches for the site-wide startup profile unless the command
line option <samp>--no-site-file</samp> was given. The name of this file is
taken from the value of the <code>R_PROFILE</code> environment variable. If
that variable is unset, the default
<samp><var>R_HOME</var>/etc/Rprofile.site</samp> is used if this exists.
</li><li> Then, unless <samp>--no-init-file</samp> was given, R searches for a user
profile and sources it. The name of this file is taken from the
environment variable <code>R_PROFILE_USER</code>; if unset, a file called
<samp>.Rprofile</samp> in the current directory or in the user’s home
directory (in that order) is searched for.
</li><li> It also loads a saved workspace from file <samp>.RData</samp> in the current
directory if there is one (unless <samp>--no-restore</samp> or
<samp>--no-restore-data</samp> was specified).
</li><li> Finally, if a function <code>.First()</code> exists, it is executed. This
function (as well as <code>.Last()</code> which is executed at the end of the
R session) can be defined in the appropriate startup profiles, or
reside in <samp>.RData</samp>.
</li></ul>
<p>In addition, there are options for controlling the memory available to
the R process (see the on-line help for topic ‘<samp>Memory</samp>’ for more
information). Users will not normally need to use these unless they
are trying to limit the amount of memory used by R.
</p>
<p>R accepts the following command-line options.
</p>
<dl compact="compact">
<dt><samp>--help</samp></dt>
<dt><samp>-h</samp></dt>
<dd><p>Print short help message to standard output and exit successfully.
</p>
</dd>
<dt><samp>--version</samp></dt>
<dd><p>Print version information to standard output and exit successfully.
</p>
</dd>
<dt><samp>--encoding=<var>enc</var></samp></dt>
<dd><p>Specify the encoding to be assumed for input from the console or
<code>stdin</code>. This needs to be an encoding known to <code>iconv</code>: see
its help page. (<code>--encoding <var>enc</var></code> is also accepted.) The
input is re-encoded to the locale R is running in and needs to be
representable in the latter’s encoding (so e.g. you cannot re-encode
Greek text in a French locale unless that locale uses the UTF-8
encoding).
</p>
</dd>
<dt><samp>RHOME</samp></dt>
<dd><p>Print the path to the R “home directory” to standard output and
exit successfully. Apart from the front-end shell script and the man
page, R installation puts everything (executables, packages, etc.)
into this directory.
</p>
</dd>
<dt><samp>--save</samp></dt>
<dt><samp>--no-save</samp></dt>
<dd><p>Control whether data sets should be saved or not at the end of the R
session. If neither is given in an interactive session, the user is
asked for the desired behavior when ending the session with <kbd>q()</kbd>;
in non-interactive use one of these must be specified or implied by some
other option (see below).
</p>
</dd>
<dt><samp>--no-environ</samp></dt>
<dd><p>Do not read any user file to set environment variables.
</p>
</dd>
<dt><samp>--no-site-file</samp></dt>
<dd><p>Do not read the site-wide profile at startup.
</p>
</dd>
<dt><samp>--no-init-file</samp></dt>
<dd><p>Do not read the user’s profile at startup.
</p>
</dd>
<dt><samp>--restore</samp></dt>
<dt><samp>--no-restore</samp></dt>
<dt><samp>--no-restore-data</samp></dt>
<dd><p>Control whether saved images (file <samp>.RData</samp> in the directory where
R was started) should be restored at startup or not. The default is
to restore. (<samp>--no-restore</samp> implies all the specific
<samp>--no-restore-*</samp> options.)
</p>
</dd>
<dt><samp>--no-restore-history</samp></dt>
<dd><p>Control whether the history file (normally file <samp>.Rhistory</samp> in the
directory where R was started, but can be set by the environment
variable <code>R_HISTFILE</code>) should be restored at startup or not. The
default is to restore.
</p>
</dd>
<dt><samp>--no-Rconsole</samp></dt>
<dd><p>(Windows only) Prevent loading the <samp>Rconsole</samp> file at startup.
</p>
</dd>
<dt><samp>--vanilla</samp></dt>
<dd><p>Combine <samp>--no-save</samp>, <samp>--no-environ</samp>,
<samp>--no-site-file</samp>, <samp>--no-init-file</samp> and
<samp>--no-restore</samp>. Under Windows, this also includes
<samp>--no-Rconsole</samp>.
</p>
</dd>
<dt><samp>-f <var>file</var></samp></dt>
<dt><samp>--file=<var>file</var></samp></dt>
<dd><p>(not <code>Rgui.exe</code>) Take input from <var>file</var>: ‘<samp>-</samp>’ means
<code>stdin</code>. Implies <samp>--no-save</samp> unless <samp>--save</samp> has
been set. On a Unix-alike, shell metacharacters should be avoided in
<var>file</var> (but spaces are allowed).
</p>
</dd>
<dt><samp>-e <var>expression</var></samp></dt>
<dd><p>(not <code>Rgui.exe</code>) Use <var>expression</var> as an input line. One or
more <samp>-e</samp> options can be used, but not together with <samp>-f</samp>
or <samp>--file</samp>. Implies <samp>--no-save</samp> unless <samp>--save</samp>
has been set. (There is a limit of 10,000 bytes on the total length of
expressions used in this way. Expressions containing spaces or shell
metacharacters will need to be quoted.)
</p>
</dd>
<dt><samp>--no-readline</samp></dt>
<dd><p>(UNIX only) Turn off command-line editing via <strong>readline</strong>. This
is useful when running R from within Emacs using the <acronym>ESS</acronym>
(“Emacs Speaks Statistics”) package. See <a href="#The-command_002dline-editor">The command-line editor</a>,
for more information. Command-line editing is enabled for default
interactive use (see <samp>--interactive</samp>). This option also affects
tilde-expansion: see the help for <code>path.expand</code>.
</p>
</dd>
<dt><samp>--min-vsize=<var>N</var></samp></dt>
<dt><samp>--min-nsize=<var>N</var></samp></dt>
<dd><p>For expert use only: set the initial trigger sizes for garbage
collection of vector heap (in bytes) and <em>cons cells</em> (number)
respectively. Suffix ‘<samp>M</samp>’ specifies megabytes or millions of cells
respectively. The defaults are 6Mb and 350k respectively and can also
be set by environment variables <code>R_NSIZE</code> and <code>R_VSIZE</code>.
</p>
</dd>
<dt><samp>--max-ppsize=<var>N</var></samp></dt>
<dd><p>Specify the maximum size of the pointer protection stack as <var>N</var>
locations. This defaults to 10000, but can be increased to allow
large and complicated calculations to be done. Currently the maximum
value accepted is 100000.
</p>
</dd>
<dt><samp>--max-mem-size=<var>N</var></samp></dt>
<dd><p>(Windows only) Specify a limit for the amount of memory to be used both
for R objects and working areas. This is set by default to the
smaller of the amount of physical RAM in the machine and for 32-bit
R, 1.5Gb<a name="DOCF26" href="#FOOT26"><sup>26</sup></a>, and must be between 32Mb and the
maximum allowed on that version of Windows.
</p>
</dd>
<dt><samp>--quiet</samp></dt>
<dt><samp>--silent</samp></dt>
<dt><samp>-q</samp></dt>
<dd><p>Do not print out the initial copyright and welcome messages.
</p>
</dd>
<dt><samp>--slave</samp></dt>
<dd><p>Make R run as quietly as possible. This option is intended to
support programs which use R to compute results for them. It implies
<samp>--quiet</samp> and <samp>--no-save</samp>.
</p>
</dd>
<dt><samp>--interactive</samp></dt>
<dd><p>(UNIX only) Assert that R really is being run interactively even if
input has been redirected: use if input is from a FIFO or pipe and fed
from an interactive program. (The default is to deduce that R is
being run interactively if and only if <samp>stdin</samp> is connected to a
terminal or <code>pty</code>.) Using <samp>-e</samp>, <samp>-f</samp> or
<samp>--file</samp> asserts non-interactive use even if
<samp>--interactive</samp> is given.
</p>
<p>Note that this does not turn on command-line editing.
</p>
</dd>
<dt><samp>--ess</samp></dt>
<dd><p>(Windows only) Set <code>Rterm</code> up for use by <code>R-inferior-mode</code> in
<acronym>ESS</acronym>, including asserting interactive use (without the
command-line editor) and no buffering of <samp>stdout</samp>.
</p>
</dd>
<dt><samp>--verbose</samp></dt>
<dd><p>Print more information about progress, and in particular set R’s
option <code>verbose</code> to <code>TRUE</code>. R code uses this option to
control the printing of diagnostic messages.
</p>
</dd>
<dt><samp>--debugger=<var>name</var></samp></dt>
<dt><samp>-d <var>name</var></samp></dt>
<dd><p>(UNIX only) Run R through debugger <var>name</var>. For most debuggers
(the exceptions are <code>valgrind</code> and recent versions of
<code>gdb</code>), further command line options are disregarded, and should
instead be given when starting the R executable from inside the
debugger.
</p>
</dd>
<dt><samp>--gui=<var>type</var></samp></dt>
<dt><samp>-g <var>type</var></samp></dt>
<dd><p>(UNIX only) Use <var>type</var> as graphical user interface (note that this
also includes interactive graphics). Currently, possible values for
<var>type</var> are ‘<samp>X11</samp>’ (the default) and, provided that ‘<samp>Tcl/Tk</samp>’
support is available, ‘<samp>Tk</samp>’. (For back-compatibility, ‘<samp>x11</samp>’ and
‘<samp>tk</samp>’ are accepted.)
</p>
</dd>
<dt><samp>--arch=<var>name</var></samp></dt>
<dd><p>(UNIX only) Run the specified sub-architecture.
</p>
</dd>
<dt><samp>--args</samp></dt>
<dd><p>This flag does nothing except cause the rest of the command line to be
skipped: this can be useful to retrieve values from it with
<code>commandArgs(TRUE)</code>.
</p></dd>
</dl>
<p>Note that input and output can be redirected in the usual way (using
‘<samp><</samp>’ and ‘<samp>></samp>’), but the line length limit of 4095 bytes still
applies. Warning and error messages are sent to the error channel
(<code>stderr</code>).
</p>
<p>The command <code>R CMD</code> allows the invocation of various tools which
are useful in conjunction with R, but not intended to be called
“directly”. The general form is
</p>
<div class="example">
<pre class="example">R CMD <var>command</var> <var>args</var>
</pre></div>
<p>where <var>command</var> is the name of the tool and <var>args</var> the arguments
passed on to it.
</p>
<p>Currently, the following tools are available.
</p>
<dl compact="compact">
<dt><code>BATCH</code></dt>
<dd><p>Run R in batch mode. Runs <code>R --restore --save</code> with possibly
further options (see <code>?BATCH</code>).
</p></dd>
<dt><code>COMPILE</code></dt>
<dd><p>(UNIX only) Compile C, C++, Fortran … files for use with R.
</p></dd>
<dt><code>SHLIB</code></dt>
<dd><p>Build shared library for dynamic loading.
</p></dd>
<dt><code>INSTALL</code></dt>
<dd><p>Install add-on packages.
</p></dd>
<dt><code>REMOVE</code></dt>
<dd><p>Remove add-on packages.
</p></dd>
<dt><code>build</code></dt>
<dd><p>Build (that is, package) add-on packages.
</p></dd>
<dt><code>check</code></dt>
<dd><p>Check add-on packages.
</p></dd>
<dt><code>LINK</code></dt>
<dd><p>(UNIX only) Front-end for creating executable programs.
</p></dd>
<dt><code>Rprof</code></dt>
<dd><p>Post-process R profiling files.
</p></dd>
<dt><code>Rdconv</code></dt>
<dt><code>Rd2txt</code></dt>
<dd><p>Convert Rd format to various other formats, including <acronym>HTML</acronym>, LaTeX,
plain text, and extracting the examples. <code>Rd2txt</code> can be used as
shorthand for <code>Rd2conv -t txt</code>.
</p></dd>
<dt><code>Rd2pdf</code></dt>
<dd><p>Convert Rd format to PDF.
</p></dd>
<dt><code>Stangle</code></dt>
<dd><p>Extract S/R code from Sweave or other vignette documentation
</p></dd>
<dt><code>Sweave</code></dt>
<dd><p>Process Sweave or other vignette documentation
</p></dd>
<dt><code>Rdiff</code></dt>
<dd><p>Diff R output ignoring headers etc
</p></dd>
<dt><code>config</code></dt>
<dd><p>Obtain configuration information
</p></dd>
<dt><code>javareconf</code></dt>
<dd><p>(Unix only) Update the Java configuration variables
</p></dd>
<dt><code>rtags</code></dt>
<dd><p>(Unix only) Create Emacs-style tag files from C, R, and Rd files
</p></dd>
<dt><code>open</code></dt>
<dd><p>(Windows only) Open a file via Windows’ file associations
</p></dd>
<dt><code>texify</code></dt>
<dd><p>(Windows only) Process (La)TeX files with R’s style files
</p></dd>
</dl>
<p>Use
</p>
<div class="example">
<pre class="example">R CMD <var>command</var> --help
</pre></div>
<p>to obtain usage information for each of the tools accessible via the
<code>R CMD</code> interface.
</p>
<p>In addition, you can use options <samp>--arch=</samp>,
<samp>--no-environ</samp>, <samp>--no-init-file</samp>, <samp>--no-site-file</samp>
and <samp>--vanilla</samp> between <code>R</code> and <code>CMD</code>: these
affect any R processes run by the tools. (Here <samp>--vanilla</samp> is
equivalent to <samp>--no-environ --no-site-file --no-init-file</samp>.)
However, note that <code>R CMD</code> does not of itself use any R
startup files (in particular, neither user nor site <samp>Renviron</samp>
files), and all of the R processes run by these tools (except
<code>BATCH</code>) use <samp>--no-restore</samp>. Most use <samp>--vanilla</samp>
and so invoke no R startup files: the current exceptions are
<code>INSTALL</code>, <code>REMOVE</code>, <code>Sweave</code> and
<code>SHLIB</code> (which uses <samp>--no-site-file --no-init-file</samp>).
</p>
<div class="example">
<pre class="example">R CMD <var>cmd</var> <var>args</var>
</pre></div>
<p>for any other executable <code><var>cmd</var></code> on the path or given by an
absolute filepath: this is useful to have the same environment as R
or the specific commands run under, for example to run <code>ldd</code> or
<code>pdflatex</code>. Under Windows <var>cmd</var> can be an executable or a
batch file, or if it has extension <code>.sh</code> or <code>.pl</code> the
appropriate interpreter (if available) is called to run it.
</p>
<hr>
<a name="Invoking-R-under-Windows"></a>
<div class="header">
<p>
Next: <a href="#Invoking-R-under-macOS" accesskey="n" rel="next">Invoking R under macOS</a>, Previous: <a href="#Invoking-R-from-the-command-line" accesskey="p" rel="prev">Invoking R from the command line</a>, Up: <a href="#Invoking-R" accesskey="u" rel="up">Invoking R</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Invoking-R-under-Windows-1"></a>
<h3 class="appendixsec">B.2 Invoking R under Windows</h3>
<p>There are two ways to run R under Windows. Within a terminal window
(e.g. <code>cmd.exe</code> or a more capable shell), the methods described in
the previous section may be used, invoking by <code>R.exe</code> or more
directly by <code>Rterm.exe</code>. For interactive use, there is a
console-based GUI (<code>Rgui.exe</code>).
</p>
<p>The startup procedure under Windows is very similar to that under
UNIX, but references to the ‘home directory’ need to be clarified, as
this is not always defined on Windows. If the environment variable
<code>R_USER</code> is defined, that gives the home directory. Next, if the
environment variable <code>HOME</code> is defined, that gives the home
directory. After those two user-controllable settings, R tries to
find system defined home directories. It first tries to use the
Windows "personal" directory (typically <code>My Documents</code> in
recent versions of Windows). If that fails, and
environment variables <code>HOMEDRIVE</code> and <code>HOMEPATH</code> are defined
(and they normally are) these define the home directory. Failing all
those, the home directory is taken to be the starting directory.
</p>
<p>You need to ensure that either the environment variables <code>TMPDIR</code>,
<code>TMP</code> and <code>TEMP</code> are either unset or one of them points to a
valid place to create temporary files and directories.
</p>
<p>Environment variables can be supplied as ‘<samp><var>name</var>=<var>value</var></samp>’
pairs on the command line.
</p>
<p>If there is an argument ending <samp>.RData</samp> (in any case) it is
interpreted as the path to the workspace to be restored: it implies
<samp>--restore</samp> and sets the working directory to the parent of the
named file. (This mechanism is used for drag-and-drop and file
association with <code>RGui.exe</code>, but also works for <code>Rterm.exe</code>.
If the named file does not exist it sets the working directory
if the parent directory exists.)
</p>
<p>The following additional command-line options are available when
invoking <code>RGui.exe</code>.
</p>
<dl compact="compact">
<dt><samp>--mdi</samp></dt>
<dt><samp>--sdi</samp></dt>
<dt><samp>--no-mdi</samp></dt>
<dd><p>Control whether <code>Rgui</code> will operate as an MDI program
(with multiple child windows within one main window) or an SDI application
(with multiple top-level windows for the console, graphics and pager). The
command-line setting overrides the setting in the user’s <samp>Rconsole</samp> file.
</p>
</dd>
<dt><samp>--debug</samp></dt>
<dd><p>Enable the “Break to debugger” menu item in <code>Rgui</code>, and trigger
a break to the debugger during command line processing.
</p></dd>
</dl>
<p>Under Windows with <code>R CMD</code> you may also specify your own
<samp>.bat</samp>, <samp>.exe</samp>, <samp>.sh</samp> or <samp>.pl</samp> file. It will be run
under the appropriate interpreter (Perl for <samp>.pl</samp>) with several
environment variables set appropriately, including <code>R_HOME</code>,
<code>R_OSTYPE</code>, <code>PATH</code>, <code>BSTINPUTS</code> and <code>TEXINPUTS</code>. For
example, if you already have <samp>latex.exe</samp> on your path, then
</p>
<div class="example">
<pre class="example">R CMD latex.exe mydoc
</pre></div>
<p>will run LaTeX on <samp>mydoc.tex</samp>, with the path to R’s
<samp>share/texmf</samp> macros appended to <code>TEXINPUTS</code>. (Unfortunately,
this does not help with the MiKTeX build of LaTeX, but
<code>R CMD texify mydoc</code> will work in that case.)
</p>
<hr>
<a name="Invoking-R-under-macOS"></a>
<div class="header">
<p>
Next: <a href="#Scripting-with-R" accesskey="n" rel="next">Scripting with R</a>, Previous: <a href="#Invoking-R-under-Windows" accesskey="p" rel="prev">Invoking R under Windows</a>, Up: <a href="#Invoking-R" accesskey="u" rel="up">Invoking R</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Invoking-R-under-macOS-1"></a>
<h3 class="appendixsec">B.3 Invoking R under macOS</h3>
<p>There are two ways to run R under macOS. Within a <code>Terminal.app</code>
window by invoking <code>R</code>, the methods described in the first
subsection apply. There is also console-based GUI (<code>R.app</code>) that by
default is installed in the <code>Applications</code> folder on your
system. It is a standard double-clickable macOS application.
</p>
<p>The startup procedure under macOS is very similar to that under UNIX, but
<code>R.app</code> does not make use of command-line arguments. The ‘home
directory’ is the one inside the R.framework, but the startup and
current working directory are set as the user’s home directory unless a
different startup directory is given in the Preferences window
accessible from within the GUI.
</p>
<hr>
<a name="Scripting-with-R"></a>
<div class="header">
<p>
Previous: <a href="#Invoking-R-under-macOS" accesskey="p" rel="prev">Invoking R under macOS</a>, Up: <a href="#Invoking-R" accesskey="u" rel="up">Invoking R</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Scripting-with-R-1"></a>
<h3 class="appendixsec">B.4 Scripting with R</h3>
<p>If you just want to run a file <samp>foo.R</samp> of R commands, the
recommended way is to use <code>R CMD BATCH foo.R</code>. If you want to
run this in the background or as a batch job use OS-specific facilities
to do so: for example in most shells on Unix-alike OSes <code>R CMD
BATCH foo.R &</code> runs a background job.
</p>
<p>You can pass parameters to scripts via additional arguments on the
command line: for example (where the exact quoting needed will depend on
the shell in use)
</p>
<div class="example">
<pre class="example">R CMD BATCH "--args arg1 arg2" foo.R &
</pre></div>
<p>will pass arguments to a script which can be retrieved as a character
vector by
</p>
<div class="example">
<pre class="example">args <- commandArgs(TRUE)
</pre></div>
<p>This is made simpler by the alternative front-end <code>Rscript</code>,
which can be invoked by
</p>
<div class="example">
<pre class="example">Rscript foo.R arg1 arg2
</pre></div>
<p>and this can also be used to write executable script files like (at
least on Unix-alikes, and in some Windows shells)
</p>
<div class="example">
<pre class="example">#! /path/to/Rscript
args <- commandArgs(TRUE)
...
q(status=<exit status code>)
</pre></div>
<p>If this is entered into a text file <samp>runfoo</samp> and this is made
executable (by <code>chmod 755 runfoo</code>), it can be invoked for
different arguments by
</p>
<div class="example">
<pre class="example">runfoo arg1 arg2
</pre></div>
<p>For further options see <code>help("Rscript")</code>. This writes R
output to <samp>stdout</samp> and <samp>stderr</samp>, and this can be redirected in
the usual way for the shell running the command.
</p>
<p>If you do not wish to hardcode the path to <code>Rscript</code> but have it
in your path (which is normally the case for an installed R except on
Windows, but e.g. macOS users may need to add <samp>/usr/local/bin</samp>
to their path), use
</p>
<div class="example">
<pre class="example">#! /usr/bin/env Rscript
...
</pre></div>
<p>At least in Bourne and bash shells, the <code>#!</code> mechanism does
<strong>not</strong> allow extra arguments like
<code>#! /usr/bin/env Rscript --vanilla</code>.
</p>
<p>One thing to consider is what <code>stdin()</code> refers to. It is
commonplace to write R scripts with segments like
</p>
<div class="example">
<pre class="example">chem <- scan(n=24)
2.90 3.10 3.40 3.40 3.70 3.70 2.80 2.50 2.40 2.40 2.70 2.20
5.28 3.37 3.03 3.03 28.95 3.77 3.40 2.20 3.50 3.60 3.70 3.70
</pre></div>
<p>and <code>stdin()</code> refers to the script file to allow such traditional
usage. If you want to refer to the process’s <samp>stdin</samp>, use
<code>"stdin"</code> as a <code>file</code> connection, e.g. <code>scan("stdin", ...)</code>.
</p>
<p>Another way to write executable script files (suggested by François
Pinard) is to use a <em>here document</em> like
</p>
<div class="example">
<pre class="example">#!/bin/sh
[environment variables can be set here]
R --slave [other options] <<EOF
R program goes here...
EOF
</pre></div>
<p>but here <code>stdin()</code> refers to the program source and
<code>"stdin"</code> will not be usable.
</p>
<p>Short scripts can be passed to <code>Rscript</code> on the command-line
<em>via</em> the <samp>-e</samp> flag. (Empty scripts are not accepted.)
</p>
<p>Note that on a Unix-alike the input filename (such as <samp>foo.R</samp>)
should not contain spaces nor shell metacharacters.
</p>
<hr>
<a name="The-command_002dline-editor"></a>
<div class="header">
<p>
Next: <a href="#Function-and-variable-index" accesskey="n" rel="next">Function and variable index</a>, Previous: <a href="#Invoking-R" accesskey="p" rel="prev">Invoking R</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="The-command_002dline-editor-1"></a>
<h2 class="appendix">Appendix C The command-line editor</h2>
<a name="Preliminaries"></a>
<h3 class="appendixsection">C.1 Preliminaries</h3>
<p>When the <acronym>GNU</acronym> <strong>readline</strong> library is available at the
time R is configured for compilation under UNIX, an inbuilt command
line editor allowing recall, editing and re-submission of prior commands
is used. Note that other versions of <strong>readline</strong> exist and may be
used by the inbuilt command line editor: this used to happen on macOS.
</p>
<p>It can be disabled (useful for usage with <acronym>ESS</acronym> <a name="DOCF27" href="#FOOT27"><sup>27</sup></a>) using the startup option
<samp>--no-readline</samp>.
</p>
<p>Windows versions of R have somewhat simpler command-line editing: see
‘<samp>Console</samp>’ under the ‘<samp>Help</samp>’ menu of the <acronym>GUI</acronym>, and the
file <samp>README.Rterm</samp> for command-line editing under
<code>Rterm.exe</code>.
</p>
<p>When using R with GNU<a name="DOCF28" href="#FOOT28"><sup>28</sup></a> <strong>readline</strong> capabilities, the functions described
below are available, as well as others (probably) documented in
<code>man readline</code> or <code>info readline</code> on your system.
</p>
<p>Many of these use either Control or Meta characters. Control
characters, such as <kbd>Control-m</kbd>, are obtained by holding the
<tt class="key">CTRL</tt> down while you press the <tt class="key">m</tt> key, and are written as
<kbd>C-m</kbd> below. Meta characters, such as <kbd>Meta-b</kbd>, are typed by
holding down <tt class="key">META</tt><a name="DOCF29" href="#FOOT29"><sup>29</sup></a> and pressing <tt class="key">b</tt>, and written as <kbd>M-b</kbd>
in the following. If your terminal does not have a <tt class="key">META</tt> key
enabled, you can still type Meta characters using two-character
sequences starting with <kbd>ESC</kbd>. Thus, to enter <kbd>M-b</kbd>, you could
type <tt class="key">ESC</tt><tt class="key">b</tt>. The <kbd>ESC</kbd> character sequences are also
allowed on terminals with real Meta keys. Note that case is significant
for Meta characters.
</p>
<p>Some but not all versions<a name="DOCF30" href="#FOOT30"><sup>30</sup></a> of <strong>readline</strong>
will recognize resizing of the terminal window so this is best avoided.
</p>
<a name="Editing-actions"></a>
<h3 class="appendixsection">C.2 Editing actions</h3>
<p>The R program keeps a history of the command lines you type,
including the erroneous lines, and commands in your history may be
recalled, changed if necessary, and re-submitted as new commands. In
Emacs-style command-line editing any straight typing you do while in
this editing phase causes the characters to be inserted in the command
you are editing, displacing any characters to the right of the cursor.
In <em>vi</em> mode character insertion mode is started by <kbd>M-i</kbd> or
<kbd>M-a</kbd>, characters are typed and insertion mode is finished by typing
a further <tt class="key">ESC</tt>. (The default is Emacs-style, and only that is
described here: for <em>vi</em> mode see the <strong>readline</strong>
documentation.)
</p>
<p>Pressing the <tt class="key">RET</tt> command at any time causes the command to be
re-submitted.
</p>
<p>Other editing actions are summarized in the following table.
</p>
<a name="Command_002dline-editor-summary"></a>
<h3 class="appendixsection">C.3 Command-line editor summary</h3>
<a name="Command-recall-and-vertical-motion"></a>
<h4 class="subheading">Command recall and vertical motion</h4>
<dl compact="compact">
<dt><kbd>C-p</kbd></dt>
<dd><p>Go to the previous command (backwards in the history).
</p></dd>
<dt><kbd>C-n</kbd></dt>
<dd><p>Go to the next command (forwards in the history).
</p></dd>
<dt><kbd>C-r <var>text</var></kbd></dt>
<dd><p>Find the last command with the <var>text</var> string in it. This can be
cancelled by <code>C-g</code> (and on some versions of R by <code>C-c</code>).
</p></dd>
</dl>
<p>On most terminals, you can also use the up and down arrow keys instead
of <kbd>C-p</kbd> and <kbd>C-n</kbd>, respectively.
</p>
<a name="Horizontal-motion-of-the-cursor"></a>
<h4 class="subheading">Horizontal motion of the cursor</h4>
<dl compact="compact">
<dt><kbd>C-a</kbd></dt>
<dd><p>Go to the beginning of the command.
</p></dd>
<dt><kbd>C-e</kbd></dt>
<dd><p>Go to the end of the line.
</p></dd>
<dt><kbd>M-b</kbd></dt>
<dd><p>Go back one word.
</p></dd>
<dt><kbd>M-f</kbd></dt>
<dd><p>Go forward one word.
</p></dd>
<dt><kbd>C-b</kbd></dt>
<dd><p>Go back one character.
</p></dd>
<dt><kbd>C-f</kbd></dt>
<dd><p>Go forward one character.
</p></dd>
</dl>
<p>On most terminals, you can also use the left and right arrow keys
instead of <kbd>C-b</kbd> and <kbd>C-f</kbd>, respectively.
</p>
<a name="Editing-and-re_002dsubmission"></a>
<h4 class="subheading">Editing and re-submission</h4>
<dl compact="compact">
<dt><kbd><var>text</var></kbd></dt>
<dd><p>Insert <var>text</var> at the cursor.
</p></dd>
<dt><kbd>C-f <var>text</var></kbd></dt>
<dd><p>Append <var>text</var> after the cursor.
</p></dd>
<dt><kbd><span class="key">DEL</span></kbd></dt>
<dd><p>Delete the previous character (left of the cursor).
</p></dd>
<dt><kbd>C-d</kbd></dt>
<dd><p>Delete the character under the cursor.
</p></dd>
<dt><kbd>M-d</kbd></dt>
<dd><p>Delete the rest of the word under the cursor, and “save” it.
</p></dd>
<dt><kbd>C-k</kbd></dt>
<dd><p>Delete from cursor to end of command, and “save” it.
</p></dd>
<dt><kbd>C-y</kbd></dt>
<dd><p>Insert (yank) the last “saved” text here.
</p></dd>
<dt><kbd>C-t</kbd></dt>
<dd><p>Transpose the character under the cursor with the next.
</p></dd>
<dt><kbd>M-l</kbd></dt>
<dd><p>Change the rest of the word to lower case.
</p></dd>
<dt><kbd>M-c</kbd></dt>
<dd><p>Change the rest of the word to upper case.
</p></dd>
<dt><kbd><span class="key">RET</span></kbd></dt>
<dd><p>Re-submit the command to R.
</p></dd>
</dl>
<p>The final <tt class="key">RET</tt> terminates the command line editing sequence.
</p>
<p>The <strong>readline</strong> key bindings can be customized in the usual way
<em>via</em> a <samp>~/.inputrc</samp> file. These customizations can be
conditioned on application <code>R</code>, that is by including a section like
</p>
<div class="example">
<pre class="example">$if R
"\C-xd": "q('no')\n"
$endif
</pre></div>
<hr>
<a name="Function-and-variable-index"></a>
<div class="header">
<p>
Next: <a href="#Concept-index" accesskey="n" rel="next">Concept index</a>, Previous: <a href="#The-command_002dline-editor" accesskey="p" rel="prev">The command-line editor</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Function-and-variable-index-1"></a>
<h2 class="appendix">Appendix D Function and variable index</h2>
<table summary=""><tr><th valign="top">Jump to: </th><td><a class="summary-letter" href="#Function-and-variable-index_vr_symbol-1"><b>!</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-2"><b>%</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-3"><b>&</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-4"><b>*</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-5"><b>+</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-6"><b>-</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-7"><b>.</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-8"><b>/</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-9"><b>:</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-10"><b><</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-11"><b>=</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-12"><b>></b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-13"><b>?</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-14"><b>^</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-15"><b>|</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-16"><b>~</b></a>
<br>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-A"><b>A</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-B"><b>B</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-C"><b>C</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-D"><b>D</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-E"><b>E</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-F"><b>F</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-G"><b>G</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-H"><b>H</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-I"><b>I</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-J"><b>J</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-K"><b>K</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-L"><b>L</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-M"><b>M</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-N"><b>N</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-O"><b>O</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-P"><b>P</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-Q"><b>Q</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-R"><b>R</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-S"><b>S</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-T"><b>T</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-U"><b>U</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-V"><b>V</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-W"><b>W</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-X"><b>X</b></a>
</td></tr></table>
<table summary="" class="index-vr" border="0">
<tr><td></td><th align="left">Index Entry</th><td> </td><th align="left"> Section</th></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_symbol-1">!</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_0021"><code>!</code></a>:</td><td> </td><td valign="top"><a href="#Logical-vectors">Logical vectors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_0021_003d"><code>!=</code></a>:</td><td> </td><td valign="top"><a href="#Logical-vectors">Logical vectors</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_symbol-2">%</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_0025_002a_0025"><code>%*%</code></a>:</td><td> </td><td valign="top"><a href="#Multiplication">Multiplication</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_0025o_0025"><code>%o%</code></a>:</td><td> </td><td valign="top"><a href="#The-outer-product-of-two-arrays">The outer product of two arrays</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_symbol-3">&</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_0026"><code>&</code></a>:</td><td> </td><td valign="top"><a href="#Logical-vectors">Logical vectors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_0026_0026"><code>&&</code></a>:</td><td> </td><td valign="top"><a href="#Conditional-execution">Conditional execution</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_symbol-4">*</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002a"><code>*</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_symbol-5">+</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002b"><code>+</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_symbol-6">-</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002d"><code>-</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_symbol-7">.</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002e"><code>.</code></a>:</td><td> </td><td valign="top"><a href="#Updating-fitted-models">Updating fitted models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002eFirst"><code>.First</code></a>:</td><td> </td><td valign="top"><a href="#Customizing-the-environment">Customizing the environment</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002eLast"><code>.Last</code></a>:</td><td> </td><td valign="top"><a href="#Customizing-the-environment">Customizing the environment</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_symbol-8">/</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002f"><code>/</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_symbol-9">:</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_003a"><code>:</code></a>:</td><td> </td><td valign="top"><a href="#Generating-regular-sequences">Generating regular sequences</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_003a_003a"><code>::</code></a>:</td><td> </td><td valign="top"><a href="#Namespaces">Namespaces</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_003a_003a_003a"><code>:::</code></a>:</td><td> </td><td valign="top"><a href="#Namespaces">Namespaces</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_symbol-10"><</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_003c"><code><</code></a>:</td><td> </td><td valign="top"><a href="#Logical-vectors">Logical vectors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_003c_003c_002d"><code><<-</code></a>:</td><td> </td><td valign="top"><a href="#Scope">Scope</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_003c_003d"><code><=</code></a>:</td><td> </td><td valign="top"><a href="#Logical-vectors">Logical vectors</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_symbol-11">=</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_003d_003d"><code>==</code></a>:</td><td> </td><td valign="top"><a href="#Logical-vectors">Logical vectors</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_symbol-12">></a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_003e"><code>></code></a>:</td><td> </td><td valign="top"><a href="#Logical-vectors">Logical vectors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_003e_003d"><code>>=</code></a>:</td><td> </td><td valign="top"><a href="#Logical-vectors">Logical vectors</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_symbol-13">?</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_003f"><code>?</code></a>:</td><td> </td><td valign="top"><a href="#Getting-help">Getting help</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_003f_003f"><code>??</code></a>:</td><td> </td><td valign="top"><a href="#Getting-help">Getting help</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_symbol-14">^</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005e"><code>^</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_symbol-15">|</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_007c"><code>|</code></a>:</td><td> </td><td valign="top"><a href="#Logical-vectors">Logical vectors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_007c_007c"><code>||</code></a>:</td><td> </td><td valign="top"><a href="#Conditional-execution">Conditional execution</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_symbol-16">~</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_007e"><code>~</code></a>:</td><td> </td><td valign="top"><a href="#Formulae-for-statistical-models">Formulae for statistical models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-A">A</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-abline"><code>abline</code></a>:</td><td> </td><td valign="top"><a href="#Low_002dlevel-plotting-commands">Low-level plotting commands</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ace"><code>ace</code></a>:</td><td> </td><td valign="top"><a href="#Some-non_002dstandard-models">Some non-standard models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-add1"><code>add1</code></a>:</td><td> </td><td valign="top"><a href="#Updating-fitted-models">Updating fitted models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-anova"><code>anova</code></a>:</td><td> </td><td valign="top"><a href="#Generic-functions-for-extracting-model-information">Generic functions for extracting model information</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-anova-1"><code>anova</code></a>:</td><td> </td><td valign="top"><a href="#ANOVA-tables">ANOVA tables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aov"><code>aov</code></a>:</td><td> </td><td valign="top"><a href="#Analysis-of-variance-and-model-comparison">Analysis of variance and model comparison</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aperm"><code>aperm</code></a>:</td><td> </td><td valign="top"><a href="#Generalized-transpose-of-an-array">Generalized transpose of an array</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-array"><code>array</code></a>:</td><td> </td><td valign="top"><a href="#The-array_0028_0029-function">The array() function</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-as_002edata_002eframe"><code>as.data.frame</code></a>:</td><td> </td><td valign="top"><a href="#Making-data-frames">Making data frames</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-as_002evector"><code>as.vector</code></a>:</td><td> </td><td valign="top"><a href="#The-concatenation-function-c_0028_0029-with-arrays">The concatenation function c() with arrays</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-attach"><code>attach</code></a>:</td><td> </td><td valign="top"><a href="#attach_0028_0029-and-detach_0028_0029">attach() and detach()</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-attr"><code>attr</code></a>:</td><td> </td><td valign="top"><a href="#Getting-and-setting-attributes">Getting and setting attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-attr-1"><code>attr</code></a>:</td><td> </td><td valign="top"><a href="#Getting-and-setting-attributes">Getting and setting attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-attributes"><code>attributes</code></a>:</td><td> </td><td valign="top"><a href="#Getting-and-setting-attributes">Getting and setting attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-attributes-1"><code>attributes</code></a>:</td><td> </td><td valign="top"><a href="#Getting-and-setting-attributes">Getting and setting attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-avas"><code>avas</code></a>:</td><td> </td><td valign="top"><a href="#Some-non_002dstandard-models">Some non-standard models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-axis"><code>axis</code></a>:</td><td> </td><td valign="top"><a href="#Low_002dlevel-plotting-commands">Low-level plotting commands</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-B">B</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-boxplot"><code>boxplot</code></a>:</td><td> </td><td valign="top"><a href="#One_002d-and-two_002dsample-tests">One- and two-sample tests</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-break"><code>break</code></a>:</td><td> </td><td valign="top"><a href="#Repetitive-execution">Repetitive execution</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bruto"><code>bruto</code></a>:</td><td> </td><td valign="top"><a href="#Some-non_002dstandard-models">Some non-standard models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-C">C</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-c"><code>c</code></a>:</td><td> </td><td valign="top"><a href="#Vectors-and-assignment">Vectors and assignment</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-c-1"><code>c</code></a>:</td><td> </td><td valign="top"><a href="#Character-vectors">Character vectors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-c-2"><code>c</code></a>:</td><td> </td><td valign="top"><a href="#The-concatenation-function-c_0028_0029-with-arrays">The concatenation function c() with arrays</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-c-3"><code>c</code></a>:</td><td> </td><td valign="top"><a href="#Concatenating-lists">Concatenating lists</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C"><code>C</code></a>:</td><td> </td><td valign="top"><a href="#Contrasts">Contrasts</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cbind"><code>cbind</code></a>:</td><td> </td><td valign="top"><a href="#Forming-partitioned-matrices">Forming partitioned matrices</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-coef"><code>coef</code></a>:</td><td> </td><td valign="top"><a href="#Generic-functions-for-extracting-model-information">Generic functions for extracting model information</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-coefficients"><code>coefficients</code></a>:</td><td> </td><td valign="top"><a href="#Generic-functions-for-extracting-model-information">Generic functions for extracting model information</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-contour"><code>contour</code></a>:</td><td> </td><td valign="top"><a href="#Display-graphics">Display graphics</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-contrasts"><code>contrasts</code></a>:</td><td> </td><td valign="top"><a href="#Contrasts">Contrasts</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-coplot"><code>coplot</code></a>:</td><td> </td><td valign="top"><a href="#Displaying-multivariate-data">Displaying multivariate data</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cos"><code>cos</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-crossprod"><code>crossprod</code></a>:</td><td> </td><td valign="top"><a href="#Index-matrices">Index matrices</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-crossprod-1"><code>crossprod</code></a>:</td><td> </td><td valign="top"><a href="#Multiplication">Multiplication</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cut"><code>cut</code></a>:</td><td> </td><td valign="top"><a href="#Frequency-tables-from-factors">Frequency tables from factors</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-D">D</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-data"><code>data</code></a>:</td><td> </td><td valign="top"><a href="#Accessing-builtin-datasets">Accessing builtin datasets</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-data_002eframe"><code>data.frame</code></a>:</td><td> </td><td valign="top"><a href="#Making-data-frames">Making data frames</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-density"><code>density</code></a>:</td><td> </td><td valign="top"><a href="#Examining-the-distribution-of-a-set-of-data">Examining the distribution of a set of data</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-det"><code>det</code></a>:</td><td> </td><td valign="top"><a href="#Singular-value-decomposition-and-determinants">Singular value decomposition and determinants</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-detach"><code>detach</code></a>:</td><td> </td><td valign="top"><a href="#attach_0028_0029-and-detach_0028_0029">attach() and detach()</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-determinant"><code>determinant</code></a>:</td><td> </td><td valign="top"><a href="#Singular-value-decomposition-and-determinants">Singular value decomposition and determinants</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dev_002elist"><code>dev.list</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-graphics-devices">Multiple graphics devices</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dev_002enext"><code>dev.next</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-graphics-devices">Multiple graphics devices</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dev_002eoff"><code>dev.off</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-graphics-devices">Multiple graphics devices</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dev_002eprev"><code>dev.prev</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-graphics-devices">Multiple graphics devices</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dev_002eset"><code>dev.set</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-graphics-devices">Multiple graphics devices</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-deviance"><code>deviance</code></a>:</td><td> </td><td valign="top"><a href="#Generic-functions-for-extracting-model-information">Generic functions for extracting model information</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-diag"><code>diag</code></a>:</td><td> </td><td valign="top"><a href="#Multiplication">Multiplication</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dim"><code>dim</code></a>:</td><td> </td><td valign="top"><a href="#Arrays">Arrays</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dotchart"><code>dotchart</code></a>:</td><td> </td><td valign="top"><a href="#Display-graphics">Display graphics</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-drop1"><code>drop1</code></a>:</td><td> </td><td valign="top"><a href="#Updating-fitted-models">Updating fitted models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-E">E</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-ecdf"><code>ecdf</code></a>:</td><td> </td><td valign="top"><a href="#Examining-the-distribution-of-a-set-of-data">Examining the distribution of a set of data</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-edit"><code>edit</code></a>:</td><td> </td><td valign="top"><a href="#Editing-data">Editing data</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-eigen"><code>eigen</code></a>:</td><td> </td><td valign="top"><a href="#Eigenvalues-and-eigenvectors">Eigenvalues and eigenvectors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-else"><code>else</code></a>:</td><td> </td><td valign="top"><a href="#Conditional-execution">Conditional execution</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Error"><code>Error</code></a>:</td><td> </td><td valign="top"><a href="#Analysis-of-variance-and-model-comparison">Analysis of variance and model comparison</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-example"><code>example</code></a>:</td><td> </td><td valign="top"><a href="#Getting-help">Getting help</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exp"><code>exp</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-F">F</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-F"><code>F</code></a>:</td><td> </td><td valign="top"><a href="#Logical-vectors">Logical vectors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-factor"><code>factor</code></a>:</td><td> </td><td valign="top"><a href="#Factors">Factors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-FALSE"><code>FALSE</code></a>:</td><td> </td><td valign="top"><a href="#Logical-vectors">Logical vectors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fivenum"><code>fivenum</code></a>:</td><td> </td><td valign="top"><a href="#Examining-the-distribution-of-a-set-of-data">Examining the distribution of a set of data</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-for"><code>for</code></a>:</td><td> </td><td valign="top"><a href="#Repetitive-execution">Repetitive execution</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-formula"><code>formula</code></a>:</td><td> </td><td valign="top"><a href="#Generic-functions-for-extracting-model-information">Generic functions for extracting model information</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-function"><code>function</code></a>:</td><td> </td><td valign="top"><a href="#Writing-your-own-functions">Writing your own functions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-G">G</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-getAnywhere"><code>getAnywhere</code></a>:</td><td> </td><td valign="top"><a href="#Object-orientation">Object orientation</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-getS3method"><code>getS3method</code></a>:</td><td> </td><td valign="top"><a href="#Object-orientation">Object orientation</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-glm"><code>glm</code></a>:</td><td> </td><td valign="top"><a href="#The-glm_0028_0029-function">The glm() function</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-H">H</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-help"><code>help</code></a>:</td><td> </td><td valign="top"><a href="#Getting-help">Getting help</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-help-1"><code>help</code></a>:</td><td> </td><td valign="top"><a href="#Getting-help">Getting help</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-help_002esearch"><code>help.search</code></a>:</td><td> </td><td valign="top"><a href="#Getting-help">Getting help</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-help_002estart"><code>help.start</code></a>:</td><td> </td><td valign="top"><a href="#Getting-help">Getting help</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hist"><code>hist</code></a>:</td><td> </td><td valign="top"><a href="#Examining-the-distribution-of-a-set-of-data">Examining the distribution of a set of data</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hist-1"><code>hist</code></a>:</td><td> </td><td valign="top"><a href="#Display-graphics">Display graphics</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-I">I</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-identify"><code>identify</code></a>:</td><td> </td><td valign="top"><a href="#Interacting-with-graphics">Interacting with graphics</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-if"><code>if</code></a>:</td><td> </td><td valign="top"><a href="#Conditional-execution">Conditional execution</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-if-1"><code>if</code></a>:</td><td> </td><td valign="top"><a href="#Conditional-execution">Conditional execution</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ifelse"><code>ifelse</code></a>:</td><td> </td><td valign="top"><a href="#Conditional-execution">Conditional execution</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-image"><code>image</code></a>:</td><td> </td><td valign="top"><a href="#Display-graphics">Display graphics</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-is_002ena"><code>is.na</code></a>:</td><td> </td><td valign="top"><a href="#Missing-values">Missing values</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-is_002enan"><code>is.nan</code></a>:</td><td> </td><td valign="top"><a href="#Missing-values">Missing values</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-J">J</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-jpeg"><code>jpeg</code></a>:</td><td> </td><td valign="top"><a href="#Device-drivers">Device drivers</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-K">K</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-ks_002etest"><code>ks.test</code></a>:</td><td> </td><td valign="top"><a href="#Examining-the-distribution-of-a-set-of-data">Examining the distribution of a set of data</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-L">L</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-legend"><code>legend</code></a>:</td><td> </td><td valign="top"><a href="#Low_002dlevel-plotting-commands">Low-level plotting commands</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-length"><code>length</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-length-1"><code>length</code></a>:</td><td> </td><td valign="top"><a href="#The-intrinsic-attributes-mode-and-length">The intrinsic attributes mode and length</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-levels"><code>levels</code></a>:</td><td> </td><td valign="top"><a href="#Factors">Factors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lines"><code>lines</code></a>:</td><td> </td><td valign="top"><a href="#Low_002dlevel-plotting-commands">Low-level plotting commands</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-list"><code>list</code></a>:</td><td> </td><td valign="top"><a href="#Lists">Lists</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lm"><code>lm</code></a>:</td><td> </td><td valign="top"><a href="#Linear-models">Linear models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lme"><code>lme</code></a>:</td><td> </td><td valign="top"><a href="#Some-non_002dstandard-models">Some non-standard models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-locator"><code>locator</code></a>:</td><td> </td><td valign="top"><a href="#Interacting-with-graphics">Interacting with graphics</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-loess"><code>loess</code></a>:</td><td> </td><td valign="top"><a href="#Some-non_002dstandard-models">Some non-standard models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-loess-1"><code>loess</code></a>:</td><td> </td><td valign="top"><a href="#Some-non_002dstandard-models">Some non-standard models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-log"><code>log</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lqs"><code>lqs</code></a>:</td><td> </td><td valign="top"><a href="#Some-non_002dstandard-models">Some non-standard models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lsfit"><code>lsfit</code></a>:</td><td> </td><td valign="top"><a href="#Least-squares-fitting-and-the-QR-decomposition">Least squares fitting and the QR decomposition</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-M">M</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-mars"><code>mars</code></a>:</td><td> </td><td valign="top"><a href="#Some-non_002dstandard-models">Some non-standard models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-max"><code>max</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mean"><code>mean</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-methods"><code>methods</code></a>:</td><td> </td><td valign="top"><a href="#Object-orientation">Object orientation</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-min"><code>min</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mode"><code>mode</code></a>:</td><td> </td><td valign="top"><a href="#The-intrinsic-attributes-mode-and-length">The intrinsic attributes mode and length</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-N">N</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-NA"><code>NA</code></a>:</td><td> </td><td valign="top"><a href="#Missing-values">Missing values</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-NaN"><code>NaN</code></a>:</td><td> </td><td valign="top"><a href="#Missing-values">Missing values</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ncol"><code>ncol</code></a>:</td><td> </td><td valign="top"><a href="#Matrix-facilities">Matrix facilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-next"><code>next</code></a>:</td><td> </td><td valign="top"><a href="#Repetitive-execution">Repetitive execution</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nlm"><code>nlm</code></a>:</td><td> </td><td valign="top"><a href="#Nonlinear-least-squares-and-maximum-likelihood-models">Nonlinear least squares and maximum likelihood models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nlm-1"><code>nlm</code></a>:</td><td> </td><td valign="top"><a href="#Least-squares">Least squares</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nlm-2"><code>nlm</code></a>:</td><td> </td><td valign="top"><a href="#Maximum-likelihood">Maximum likelihood</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nlme"><code>nlme</code></a>:</td><td> </td><td valign="top"><a href="#Some-non_002dstandard-models">Some non-standard models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nlminb"><code>nlminb</code></a>:</td><td> </td><td valign="top"><a href="#Nonlinear-least-squares-and-maximum-likelihood-models">Nonlinear least squares and maximum likelihood models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nrow"><code>nrow</code></a>:</td><td> </td><td valign="top"><a href="#Matrix-facilities">Matrix facilities</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-O">O</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-optim"><code>optim</code></a>:</td><td> </td><td valign="top"><a href="#Nonlinear-least-squares-and-maximum-likelihood-models">Nonlinear least squares and maximum likelihood models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-order"><code>order</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ordered"><code>ordered</code></a>:</td><td> </td><td valign="top"><a href="#Ordered-factors">Ordered factors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ordered-1"><code>ordered</code></a>:</td><td> </td><td valign="top"><a href="#Ordered-factors">Ordered factors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-outer"><code>outer</code></a>:</td><td> </td><td valign="top"><a href="#The-outer-product-of-two-arrays">The outer product of two arrays</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-P">P</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-pairs"><code>pairs</code></a>:</td><td> </td><td valign="top"><a href="#Displaying-multivariate-data">Displaying multivariate data</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-par"><code>par</code></a>:</td><td> </td><td valign="top"><a href="#The-par_0028_0029-function">The par() function</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-paste"><code>paste</code></a>:</td><td> </td><td valign="top"><a href="#Character-vectors">Character vectors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pdf"><code>pdf</code></a>:</td><td> </td><td valign="top"><a href="#Device-drivers">Device drivers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-persp"><code>persp</code></a>:</td><td> </td><td valign="top"><a href="#Display-graphics">Display graphics</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-plot"><code>plot</code></a>:</td><td> </td><td valign="top"><a href="#Generic-functions-for-extracting-model-information">Generic functions for extracting model information</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-plot-1"><code>plot</code></a>:</td><td> </td><td valign="top"><a href="#The-plot_0028_0029-function">The plot() function</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pmax"><code>pmax</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pmin"><code>pmin</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-png"><code>png</code></a>:</td><td> </td><td valign="top"><a href="#Device-drivers">Device drivers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-points"><code>points</code></a>:</td><td> </td><td valign="top"><a href="#Low_002dlevel-plotting-commands">Low-level plotting commands</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-polygon"><code>polygon</code></a>:</td><td> </td><td valign="top"><a href="#Low_002dlevel-plotting-commands">Low-level plotting commands</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-postscript"><code>postscript</code></a>:</td><td> </td><td valign="top"><a href="#Device-drivers">Device drivers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-predict"><code>predict</code></a>:</td><td> </td><td valign="top"><a href="#Generic-functions-for-extracting-model-information">Generic functions for extracting model information</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-print"><code>print</code></a>:</td><td> </td><td valign="top"><a href="#Generic-functions-for-extracting-model-information">Generic functions for extracting model information</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-prod"><code>prod</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-Q">Q</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-qqline"><code>qqline</code></a>:</td><td> </td><td valign="top"><a href="#Examining-the-distribution-of-a-set-of-data">Examining the distribution of a set of data</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qqline-1"><code>qqline</code></a>:</td><td> </td><td valign="top"><a href="#Display-graphics">Display graphics</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qqnorm"><code>qqnorm</code></a>:</td><td> </td><td valign="top"><a href="#Examining-the-distribution-of-a-set-of-data">Examining the distribution of a set of data</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qqnorm-1"><code>qqnorm</code></a>:</td><td> </td><td valign="top"><a href="#Display-graphics">Display graphics</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qqplot"><code>qqplot</code></a>:</td><td> </td><td valign="top"><a href="#Display-graphics">Display graphics</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qr"><code>qr</code></a>:</td><td> </td><td valign="top"><a href="#Least-squares-fitting-and-the-QR-decomposition">Least squares fitting and the QR decomposition</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-quartz"><code>quartz</code></a>:</td><td> </td><td valign="top"><a href="#Device-drivers">Device drivers</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-R">R</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-range"><code>range</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rbind"><code>rbind</code></a>:</td><td> </td><td valign="top"><a href="#Forming-partitioned-matrices">Forming partitioned matrices</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-read_002etable"><code>read.table</code></a>:</td><td> </td><td valign="top"><a href="#The-read_002etable_0028_0029-function">The read.table() function</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rep"><code>rep</code></a>:</td><td> </td><td valign="top"><a href="#Generating-regular-sequences">Generating regular sequences</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-repeat"><code>repeat</code></a>:</td><td> </td><td valign="top"><a href="#Repetitive-execution">Repetitive execution</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-resid"><code>resid</code></a>:</td><td> </td><td valign="top"><a href="#Generic-functions-for-extracting-model-information">Generic functions for extracting model information</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-residuals"><code>residuals</code></a>:</td><td> </td><td valign="top"><a href="#Generic-functions-for-extracting-model-information">Generic functions for extracting model information</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rlm"><code>rlm</code></a>:</td><td> </td><td valign="top"><a href="#Some-non_002dstandard-models">Some non-standard models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rm"><code>rm</code></a>:</td><td> </td><td valign="top"><a href="#Data-permanency-and-removing-objects">Data permanency and removing objects</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-S">S</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-scan"><code>scan</code></a>:</td><td> </td><td valign="top"><a href="#The-scan_0028_0029-function">The scan() function</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sd"><code>sd</code></a>:</td><td> </td><td valign="top"><a href="#The-function-tapply_0028_0029-and-ragged-arrays">The function tapply() and ragged arrays</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-search"><code>search</code></a>:</td><td> </td><td valign="top"><a href="#Managing-the-search-path">Managing the search path</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-seq"><code>seq</code></a>:</td><td> </td><td valign="top"><a href="#Generating-regular-sequences">Generating regular sequences</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-shapiro_002etest"><code>shapiro.test</code></a>:</td><td> </td><td valign="top"><a href="#Examining-the-distribution-of-a-set-of-data">Examining the distribution of a set of data</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sin"><code>sin</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sink"><code>sink</code></a>:</td><td> </td><td valign="top"><a href="#Executing-commands-from-or-diverting-output-to-a-file">Executing commands from or diverting output to a file</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-solve"><code>solve</code></a>:</td><td> </td><td valign="top"><a href="#Linear-equations-and-inversion">Linear equations and inversion</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sort"><code>sort</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-source"><code>source</code></a>:</td><td> </td><td valign="top"><a href="#Executing-commands-from-or-diverting-output-to-a-file">Executing commands from or diverting output to a file</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-split"><code>split</code></a>:</td><td> </td><td valign="top"><a href="#Repetitive-execution">Repetitive execution</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sqrt"><code>sqrt</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-stem"><code>stem</code></a>:</td><td> </td><td valign="top"><a href="#Examining-the-distribution-of-a-set-of-data">Examining the distribution of a set of data</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-step"><code>step</code></a>:</td><td> </td><td valign="top"><a href="#Generic-functions-for-extracting-model-information">Generic functions for extracting model information</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-step-1"><code>step</code></a>:</td><td> </td><td valign="top"><a href="#Updating-fitted-models">Updating fitted models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sum"><code>sum</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-summary"><code>summary</code></a>:</td><td> </td><td valign="top"><a href="#Examining-the-distribution-of-a-set-of-data">Examining the distribution of a set of data</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-summary-1"><code>summary</code></a>:</td><td> </td><td valign="top"><a href="#Generic-functions-for-extracting-model-information">Generic functions for extracting model information</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-svd"><code>svd</code></a>:</td><td> </td><td valign="top"><a href="#Singular-value-decomposition-and-determinants">Singular value decomposition and determinants</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-T">T</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-T"><code>T</code></a>:</td><td> </td><td valign="top"><a href="#Logical-vectors">Logical vectors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-t"><code>t</code></a>:</td><td> </td><td valign="top"><a href="#Generalized-transpose-of-an-array">Generalized transpose of an array</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-t_002etest"><code>t.test</code></a>:</td><td> </td><td valign="top"><a href="#One_002d-and-two_002dsample-tests">One- and two-sample tests</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-table"><code>table</code></a>:</td><td> </td><td valign="top"><a href="#Index-matrices">Index matrices</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-table-1"><code>table</code></a>:</td><td> </td><td valign="top"><a href="#Frequency-tables-from-factors">Frequency tables from factors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tan"><code>tan</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tapply"><code>tapply</code></a>:</td><td> </td><td valign="top"><a href="#The-function-tapply_0028_0029-and-ragged-arrays">The function tapply() and ragged arrays</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-text"><code>text</code></a>:</td><td> </td><td valign="top"><a href="#Low_002dlevel-plotting-commands">Low-level plotting commands</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-title"><code>title</code></a>:</td><td> </td><td valign="top"><a href="#Low_002dlevel-plotting-commands">Low-level plotting commands</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tree"><code>tree</code></a>:</td><td> </td><td valign="top"><a href="#Some-non_002dstandard-models">Some non-standard models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-TRUE"><code>TRUE</code></a>:</td><td> </td><td valign="top"><a href="#Logical-vectors">Logical vectors</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-U">U</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-unclass"><code>unclass</code></a>:</td><td> </td><td valign="top"><a href="#The-class-of-an-object">The class of an object</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-update"><code>update</code></a>:</td><td> </td><td valign="top"><a href="#Updating-fitted-models">Updating fitted models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-V">V</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-var"><code>var</code></a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-var-1"><code>var</code></a>:</td><td> </td><td valign="top"><a href="#The-function-tapply_0028_0029-and-ragged-arrays">The function tapply() and ragged arrays</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-var_002etest"><code>var.test</code></a>:</td><td> </td><td valign="top"><a href="#One_002d-and-two_002dsample-tests">One- and two-sample tests</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-vcov"><code>vcov</code></a>:</td><td> </td><td valign="top"><a href="#Generic-functions-for-extracting-model-information">Generic functions for extracting model information</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-vector"><code>vector</code></a>:</td><td> </td><td valign="top"><a href="#Vectors-and-assignment">Vectors and assignment</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-W">W</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-while"><code>while</code></a>:</td><td> </td><td valign="top"><a href="#Repetitive-execution">Repetitive execution</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-wilcox_002etest"><code>wilcox.test</code></a>:</td><td> </td><td valign="top"><a href="#One_002d-and-two_002dsample-tests">One- and two-sample tests</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-windows"><code>windows</code></a>:</td><td> </td><td valign="top"><a href="#Device-drivers">Device drivers</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Function-and-variable-index_vr_letter-X">X</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-X11"><code>X11</code></a>:</td><td> </td><td valign="top"><a href="#Device-drivers">Device drivers</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
</table>
<table summary=""><tr><th valign="top">Jump to: </th><td><a class="summary-letter" href="#Function-and-variable-index_vr_symbol-1"><b>!</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-2"><b>%</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-3"><b>&</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-4"><b>*</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-5"><b>+</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-6"><b>-</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-7"><b>.</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-8"><b>/</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-9"><b>:</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-10"><b><</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-11"><b>=</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-12"><b>></b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-13"><b>?</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-14"><b>^</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-15"><b>|</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_symbol-16"><b>~</b></a>
<br>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-A"><b>A</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-B"><b>B</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-C"><b>C</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-D"><b>D</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-E"><b>E</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-F"><b>F</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-G"><b>G</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-H"><b>H</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-I"><b>I</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-J"><b>J</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-K"><b>K</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-L"><b>L</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-M"><b>M</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-N"><b>N</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-O"><b>O</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-P"><b>P</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-Q"><b>Q</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-R"><b>R</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-S"><b>S</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-T"><b>T</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-U"><b>U</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-V"><b>V</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-W"><b>W</b></a>
<a class="summary-letter" href="#Function-and-variable-index_vr_letter-X"><b>X</b></a>
</td></tr></table>
<hr>
<a name="Concept-index"></a>
<div class="header">
<p>
Next: <a href="#References" accesskey="n" rel="next">References</a>, Previous: <a href="#Function-and-variable-index" accesskey="p" rel="prev">Function and variable index</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Concept-index-1"></a>
<h2 class="appendix">Appendix E Concept index</h2>
<table summary=""><tr><th valign="top">Jump to: </th><td><a class="summary-letter" href="#Concept-index_cp_letter-A"><b>A</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-B"><b>B</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-C"><b>C</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-D"><b>D</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-E"><b>E</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-F"><b>F</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-G"><b>G</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-I"><b>I</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-K"><b>K</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-L"><b>L</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-M"><b>M</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-N"><b>N</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-O"><b>O</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-P"><b>P</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-Q"><b>Q</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-R"><b>R</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-S"><b>S</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-T"><b>T</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-U"><b>U</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-V"><b>V</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-W"><b>W</b></a>
</td></tr></table>
<table summary="" class="index-cp" border="0">
<tr><td></td><th align="left">Index Entry</th><td> </td><th align="left"> Section</th></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-A">A</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Accessing-builtin-datasets">Accessing builtin datasets</a>:</td><td> </td><td valign="top"><a href="#Accessing-builtin-datasets">Accessing builtin datasets</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Additive-models">Additive models</a>:</td><td> </td><td valign="top"><a href="#Some-non_002dstandard-models">Some non-standard models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Analysis-of-variance">Analysis of variance</a>:</td><td> </td><td valign="top"><a href="#Analysis-of-variance-and-model-comparison">Analysis of variance and model comparison</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Arithmetic-functions-and-operators">Arithmetic functions and operators</a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Arrays">Arrays</a>:</td><td> </td><td valign="top"><a href="#Arrays">Arrays</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Assignment">Assignment</a>:</td><td> </td><td valign="top"><a href="#Vectors-and-assignment">Vectors and assignment</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Attributes">Attributes</a>:</td><td> </td><td valign="top"><a href="#Objects">Objects</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-B">B</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Binary-operators">Binary operators</a>:</td><td> </td><td valign="top"><a href="#Defining-new-binary-operators">Defining new binary operators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Box-plots">Box plots</a>:</td><td> </td><td valign="top"><a href="#One_002d-and-two_002dsample-tests">One- and two-sample tests</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-C">C</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Character-vectors">Character vectors</a>:</td><td> </td><td valign="top"><a href="#Character-vectors">Character vectors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Classes">Classes</a>:</td><td> </td><td valign="top"><a href="#The-class-of-an-object">The class of an object</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Classes-1">Classes</a>:</td><td> </td><td valign="top"><a href="#Object-orientation">Object orientation</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Concatenating-lists">Concatenating lists</a>:</td><td> </td><td valign="top"><a href="#Concatenating-lists">Concatenating lists</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Contrasts">Contrasts</a>:</td><td> </td><td valign="top"><a href="#Contrasts">Contrasts</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Control-statements">Control statements</a>:</td><td> </td><td valign="top"><a href="#Control-statements">Control statements</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CRAN">CRAN</a>:</td><td> </td><td valign="top"><a href="#Contributed-packages-and-CRAN">Contributed packages and CRAN</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Customizing-the-environment">Customizing the environment</a>:</td><td> </td><td valign="top"><a href="#Customizing-the-environment">Customizing the environment</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-D">D</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Data-frames">Data frames</a>:</td><td> </td><td valign="top"><a href="#Data-frames">Data frames</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Default-values">Default values</a>:</td><td> </td><td valign="top"><a href="#Named-arguments-and-defaults">Named arguments and defaults</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Density-estimation">Density estimation</a>:</td><td> </td><td valign="top"><a href="#Examining-the-distribution-of-a-set-of-data">Examining the distribution of a set of data</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Determinants">Determinants</a>:</td><td> </td><td valign="top"><a href="#Singular-value-decomposition-and-determinants">Singular value decomposition and determinants</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Diverting-input-and-output">Diverting input and output</a>:</td><td> </td><td valign="top"><a href="#Executing-commands-from-or-diverting-output-to-a-file">Executing commands from or diverting output to a file</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Dynamic-graphics">Dynamic graphics</a>:</td><td> </td><td valign="top"><a href="#Dynamic-graphics">Dynamic graphics</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-E">E</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Eigenvalues-and-eigenvectors">Eigenvalues and eigenvectors</a>:</td><td> </td><td valign="top"><a href="#Eigenvalues-and-eigenvectors">Eigenvalues and eigenvectors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Empirical-CDFs">Empirical CDFs</a>:</td><td> </td><td valign="top"><a href="#Examining-the-distribution-of-a-set-of-data">Examining the distribution of a set of data</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-F">F</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Factors">Factors</a>:</td><td> </td><td valign="top"><a href="#Factors">Factors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Factors-1">Factors</a>:</td><td> </td><td valign="top"><a href="#Contrasts">Contrasts</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Families">Families</a>:</td><td> </td><td valign="top"><a href="#Families">Families</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Formulae">Formulae</a>:</td><td> </td><td valign="top"><a href="#Formulae-for-statistical-models">Formulae for statistical models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-G">G</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Generalized-linear-models">Generalized linear models</a>:</td><td> </td><td valign="top"><a href="#Generalized-linear-models">Generalized linear models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Generalized-transpose-of-an-array">Generalized transpose of an array</a>:</td><td> </td><td valign="top"><a href="#Generalized-transpose-of-an-array">Generalized transpose of an array</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Generic-functions">Generic functions</a>:</td><td> </td><td valign="top"><a href="#Object-orientation">Object orientation</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Graphics-device-drivers">Graphics device drivers</a>:</td><td> </td><td valign="top"><a href="#Device-drivers">Device drivers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Graphics-parameters">Graphics parameters</a>:</td><td> </td><td valign="top"><a href="#The-par_0028_0029-function">The par() function</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Grouped-expressions">Grouped expressions</a>:</td><td> </td><td valign="top"><a href="#Grouped-expressions">Grouped expressions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-I">I</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Indexing-of-and-by-arrays">Indexing of and by arrays</a>:</td><td> </td><td valign="top"><a href="#Array-indexing">Array indexing</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Indexing-vectors">Indexing vectors</a>:</td><td> </td><td valign="top"><a href="#Index-vectors">Index vectors</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-K">K</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Kolmogorov_002dSmirnov-test">Kolmogorov-Smirnov test</a>:</td><td> </td><td valign="top"><a href="#Examining-the-distribution-of-a-set-of-data">Examining the distribution of a set of data</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-L">L</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Least-squares-fitting">Least squares fitting</a>:</td><td> </td><td valign="top"><a href="#Least-squares-fitting-and-the-QR-decomposition">Least squares fitting and the QR decomposition</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Linear-equations">Linear equations</a>:</td><td> </td><td valign="top"><a href="#Linear-equations-and-inversion">Linear equations and inversion</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Linear-models">Linear models</a>:</td><td> </td><td valign="top"><a href="#Linear-models">Linear models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Lists">Lists</a>:</td><td> </td><td valign="top"><a href="#Lists">Lists</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Local-approximating-regressions">Local approximating regressions</a>:</td><td> </td><td valign="top"><a href="#Some-non_002dstandard-models">Some non-standard models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Loops-and-conditional-execution">Loops and conditional execution</a>:</td><td> </td><td valign="top"><a href="#Loops-and-conditional-execution">Loops and conditional execution</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-M">M</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Matrices">Matrices</a>:</td><td> </td><td valign="top"><a href="#Arrays">Arrays</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Matrix-multiplication">Matrix multiplication</a>:</td><td> </td><td valign="top"><a href="#Multiplication">Multiplication</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Maximum-likelihood">Maximum likelihood</a>:</td><td> </td><td valign="top"><a href="#Maximum-likelihood">Maximum likelihood</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Missing-values">Missing values</a>:</td><td> </td><td valign="top"><a href="#Missing-values">Missing values</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Mixed-models">Mixed models</a>:</td><td> </td><td valign="top"><a href="#Some-non_002dstandard-models">Some non-standard models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-N">N</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Named-arguments">Named arguments</a>:</td><td> </td><td valign="top"><a href="#Named-arguments-and-defaults">Named arguments and defaults</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Namespace">Namespace</a>:</td><td> </td><td valign="top"><a href="#Namespaces">Namespaces</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Nonlinear-least-squares">Nonlinear least squares</a>:</td><td> </td><td valign="top"><a href="#Nonlinear-least-squares-and-maximum-likelihood-models">Nonlinear least squares and maximum likelihood models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-O">O</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Object-orientation">Object orientation</a>:</td><td> </td><td valign="top"><a href="#Object-orientation">Object orientation</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Objects">Objects</a>:</td><td> </td><td valign="top"><a href="#Objects">Objects</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-One_002d-and-two_002dsample-tests">One- and two-sample tests</a>:</td><td> </td><td valign="top"><a href="#One_002d-and-two_002dsample-tests">One- and two-sample tests</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Ordered-factors">Ordered factors</a>:</td><td> </td><td valign="top"><a href="#Factors">Factors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Ordered-factors-1">Ordered factors</a>:</td><td> </td><td valign="top"><a href="#Contrasts">Contrasts</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Outer-products-of-arrays">Outer products of arrays</a>:</td><td> </td><td valign="top"><a href="#The-outer-product-of-two-arrays">The outer product of two arrays</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-P">P</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Packages">Packages</a>:</td><td> </td><td valign="top"><a href="#R-and-statistics">R and statistics</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Packages-1">Packages</a>:</td><td> </td><td valign="top"><a href="#Packages">Packages</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Probability-distributions">Probability distributions</a>:</td><td> </td><td valign="top"><a href="#Probability-distributions">Probability distributions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-Q">Q</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-QR-decomposition">QR decomposition</a>:</td><td> </td><td valign="top"><a href="#Least-squares-fitting-and-the-QR-decomposition">Least squares fitting and the QR decomposition</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Quantile_002dquantile-plots">Quantile-quantile plots</a>:</td><td> </td><td valign="top"><a href="#Examining-the-distribution-of-a-set-of-data">Examining the distribution of a set of data</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-R">R</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Reading-data-from-files">Reading data from files</a>:</td><td> </td><td valign="top"><a href="#Reading-data-from-files">Reading data from files</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Recycling-rule">Recycling rule</a>:</td><td> </td><td valign="top"><a href="#Vector-arithmetic">Vector arithmetic</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Recycling-rule-1">Recycling rule</a>:</td><td> </td><td valign="top"><a href="#The-recycling-rule">The recycling rule</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Regular-sequences">Regular sequences</a>:</td><td> </td><td valign="top"><a href="#Generating-regular-sequences">Generating regular sequences</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Removing-objects">Removing objects</a>:</td><td> </td><td valign="top"><a href="#Data-permanency-and-removing-objects">Data permanency and removing objects</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Robust-regression">Robust regression</a>:</td><td> </td><td valign="top"><a href="#Some-non_002dstandard-models">Some non-standard models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-S">S</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Scope">Scope</a>:</td><td> </td><td valign="top"><a href="#Scope">Scope</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Search-path">Search path</a>:</td><td> </td><td valign="top"><a href="#Managing-the-search-path">Managing the search path</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Shapiro_002dWilk-test">Shapiro-Wilk test</a>:</td><td> </td><td valign="top"><a href="#Examining-the-distribution-of-a-set-of-data">Examining the distribution of a set of data</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Singular-value-decomposition">Singular value decomposition</a>:</td><td> </td><td valign="top"><a href="#Singular-value-decomposition-and-determinants">Singular value decomposition and determinants</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Statistical-models">Statistical models</a>:</td><td> </td><td valign="top"><a href="#Statistical-models-in-R">Statistical models in R</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Student_0027s-t-test">Student’s <em>t</em> test</a>:</td><td> </td><td valign="top"><a href="#One_002d-and-two_002dsample-tests">One- and two-sample tests</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-T">T</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Tabulation">Tabulation</a>:</td><td> </td><td valign="top"><a href="#Frequency-tables-from-factors">Frequency tables from factors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Tree_002dbased-models">Tree-based models</a>:</td><td> </td><td valign="top"><a href="#Some-non_002dstandard-models">Some non-standard models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-U">U</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Updating-fitted-models">Updating fitted models</a>:</td><td> </td><td valign="top"><a href="#Updating-fitted-models">Updating fitted models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-V">V</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Vectors">Vectors</a>:</td><td> </td><td valign="top"><a href="#Simple-manipulations-numbers-and-vectors">Simple manipulations numbers and vectors</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Concept-index_cp_letter-W">W</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wilcoxon-test">Wilcoxon test</a>:</td><td> </td><td valign="top"><a href="#One_002d-and-two_002dsample-tests">One- and two-sample tests</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Workspace">Workspace</a>:</td><td> </td><td valign="top"><a href="#Data-permanency-and-removing-objects">Data permanency and removing objects</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Writing-functions">Writing functions</a>:</td><td> </td><td valign="top"><a href="#Writing-your-own-functions">Writing your own functions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
</table>
<table summary=""><tr><th valign="top">Jump to: </th><td><a class="summary-letter" href="#Concept-index_cp_letter-A"><b>A</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-B"><b>B</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-C"><b>C</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-D"><b>D</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-E"><b>E</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-F"><b>F</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-G"><b>G</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-I"><b>I</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-K"><b>K</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-L"><b>L</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-M"><b>M</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-N"><b>N</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-O"><b>O</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-P"><b>P</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-Q"><b>Q</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-R"><b>R</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-S"><b>S</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-T"><b>T</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-U"><b>U</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-V"><b>V</b></a>
<a class="summary-letter" href="#Concept-index_cp_letter-W"><b>W</b></a>
</td></tr></table>
<hr>
<a name="References"></a>
<div class="header">
<p>
Previous: <a href="#Concept-index" accesskey="p" rel="prev">Concept index</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Function-and-variable-index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="References-1"></a>
<h2 class="appendix">Appendix F References</h2>
<p>D. M. Bates and D. G. Watts (1988), <em>Nonlinear Regression
Analysis and Its Applications.</em> John Wiley & Sons, New York.
</p>
<p>Richard A. Becker, John M. Chambers and Allan R. Wilks (1988),
<em>The New S Language.</em> Chapman & Hall, New York.
This book is often called the “<em>Blue Book</em>”.
</p>
<p>John M. Chambers and Trevor J. Hastie eds. (1992),
<em>Statistical Models in S.</em> Chapman & Hall, New York.
This is also called the “<em>White Book</em>”.
</p>
<p>John M. Chambers (1998)
<em>Programming with Data</em>. Springer, New York.
This is also called the “<em>Green Book</em>”.
</p>
<p>A. C. Davison and D. V. Hinkley (1997), <em>Bootstrap Methods
and Their Applications</em>, Cambridge University Press.
</p>
<p>Annette J. Dobson (1990), <em>An Introduction to Generalized Linear
Models</em>, Chapman and Hall, London.
</p>
<p>Peter McCullagh and John A. Nelder (1989), <em>Generalized Linear
Models.</em> Second edition, Chapman and Hall, London.
</p>
<p>John A. Rice (1995), <em>Mathematical Statistics and Data Analysis.</em>
Second edition. Duxbury Press, Belmont, CA.
</p>
<p>S. D. Silvey (1970), <em>Statistical Inference.</em> Penguin, London.
</p>
<div class="footnote">
<hr>
<h4 class="footnotes-heading">Footnotes</h4>
<h3><a name="FOOT1" href="#DOCF1">(1)</a></h3>
<p>ACM Software Systems award, 1998:
<a href="https://awards.acm.org/award_winners/chambers_6640862.cfm">https://awards.acm.org/award_winners/chambers_6640862.cfm</a>.</p>
<h3><a name="FOOT2" href="#DOCF2">(2)</a></h3>
<p>For portable R code (including that to
be used in R packages) only A–Za–z0–9 should be used.</p>
<h3><a name="FOOT3" href="#DOCF3">(3)</a></h3>
<p><strong>not</strong> inside strings,
nor within the argument list of a function definition</p>
<h3><a name="FOOT4" href="#DOCF4">(4)</a></h3>
<p>some of the
consoles will not allow you to enter more, and amongst those which do
some will silently discard the excess and some will use it as the start
of the next line.</p>
<h3><a name="FOOT5" href="#DOCF5">(5)</a></h3>
<p>of unlimited length.</p>
<h3><a name="FOOT6" href="#DOCF6">(6)</a></h3>
<p>The leading “dot” in
this file name makes it <em>invisible</em> in normal file listings in
UNIX, and in default GUI file listings on macOS and Windows.</p>
<h3><a name="FOOT7" href="#DOCF7">(7)</a></h3>
<p>With other than vector types of argument,
such as <code>list</code> mode arguments, the action of <code>c()</code> is rather
different. See <a href="#Concatenating-lists">Concatenating lists</a>.</p>
<h3><a name="FOOT8" href="#DOCF8">(8)</a></h3>
<p>Actually, it is still available as
<code>.Last.value</code> before any other statements are executed.</p>
<h3><a name="FOOT9" href="#DOCF9">(9)</a></h3>
<p><code>paste(..., collapse=<var>ss</var>)</code> joins the
arguments into a single character string putting <var>ss</var> in between, e.g.,
<code>ss <- "|"</code>. There are more tools for character manipulation, see the help
for <code>sub</code> and <code>substring</code>.</p>
<h3><a name="FOOT10" href="#DOCF10">(10)</a></h3>
<p><em>numeric</em> mode is
actually an amalgam of two distinct modes, namely <em>integer</em> and
<em>double</em> precision, as explained in the manual.</p>
<h3><a name="FOOT11" href="#DOCF11">(11)</a></h3>
<p>Note however that <code>length(<var>object</var>)</code> does not always
contain intrinsic useful information, e.g., when <code><var>object</var></code> is a
function.</p>
<h3><a name="FOOT12" href="#DOCF12">(12)</a></h3>
<p>In general, coercion
from numeric to character and back again will not be exactly reversible,
because of roundoff errors in the character representation.</p>
<h3><a name="FOOT13" href="#DOCF13">(13)</a></h3>
<p>A different style using
‘formal’ or ‘S4’ classes is provided in package <code>methods</code>.</p>
<h3><a name="FOOT14" href="#DOCF14">(14)</a></h3>
<p>Readers should note
that there are eight states and territories in Australia, namely the
Australian Capital Territory, New South Wales, the Northern Territory,
Queensland, South Australia, Tasmania, Victoria and Western Australia.</p>
<h3><a name="FOOT15" href="#DOCF15">(15)</a></h3>
<p>Note that <code>tapply()</code> also works in this case
when its second argument is not a factor, e.g.,
‘<samp><code>tapply(incomes, state)</code></samp>’, and this is true for quite a few
other functions, since arguments are <em>coerced</em> to factors when
necessary (using <code>as.factor()</code>).</p>
<h3><a name="FOOT16" href="#DOCF16">(16)</a></h3>
<p>Note that <code>x %*% x</code> is ambiguous, as
it could mean either x’x or x x’, where x is the
column form. In such cases the smaller matrix seems implicitly to be
the interpretation adopted, so the scalar x’x is in this case the
result. The matrix x x’ may be calculated either by <code>cbind(x)
%*% x</code> or <code>x %*% rbind(x)</code> since the result of <code>rbind()</code> or
<code>cbind()</code> is always a matrix. However, the best way to compute
x’x or x x’ is <code>crossprod(x)</code> or <code>x %o% x</code> respectively.</p>
<h3><a name="FOOT17" href="#DOCF17">(17)</a></h3>
<p>Even better would be to form a matrix square
root B with A = BB’ and find the squared length
of the solution of By = x , perhaps using the Cholesky or
eigen decomposition of A. </p>
<h3><a name="FOOT18" href="#DOCF18">(18)</a></h3>
<p>Conversion of character columns to factors is
overridden using the <code>stringsAsFactors</code> argument to the
<code>data.frame()</code> function.</p>
<h3><a name="FOOT19" href="#DOCF19">(19)</a></h3>
<p>See the on-line help
for <code>autoload</code> for the meaning of the second term.</p>
<h3><a name="FOOT20" href="#DOCF20">(20)</a></h3>
<p>Under UNIX, the utilities
<code>sed</code> or<code>awk</code> can be used.</p>
<h3><a name="FOOT21" href="#DOCF21">(21)</a></h3>
<p>to be
discussed later, or use <code>xyplot</code> from package <a href="https://CRAN.R-project.org/package=lattice"><strong>lattice</strong></a>.</p>
<h3><a name="FOOT22" href="#DOCF22">(22)</a></h3>
<p>See also the methods described in <a href="#Statistical-models-in-R">Statistical models in R</a></p>
<h3><a name="FOOT23" href="#DOCF23">(23)</a></h3>
<p>In some sense this
mimics the behavior in <small>S-PLUS</small> since in <small>S-PLUS</small> this operator always
creates or assigns to a global variable.</p>
<h3><a name="FOOT24" href="#DOCF24">(24)</a></h3>
<p>So it is hidden under
UNIX.</p>
<h3><a name="FOOT25" href="#DOCF25">(25)</a></h3>
<p>Some graphics
parameters such as the size of the current device are for information
only.</p>
<h3><a name="FOOT26" href="#DOCF26">(26)</a></h3>
<p>2.5Gb on versions of Windows that support 3Gb per
process and have the support enabled: see the <samp>rw-FAQ</samp> Q2.9; 3.5Gb
on most 64-bit versions of Windows.</p>
<h3><a name="FOOT27" href="#DOCF27">(27)</a></h3>
<p>The
‘Emacs Speaks Statistics’ package; see the <acronym>URL</acronym>
<a href="https://ESS.R-project.org/">https://ESS.R-project.org/</a></p>
<h3><a name="FOOT28" href="#DOCF28">(28)</a></h3>
<p>It is possible to build R using an
emulation of GNU <strong>readline</strong>, such as one based on NetBSD’s
<strong>editline</strong>, it which case only a subset of the capabilities may
be provided.</p>
<h3><a name="FOOT29" href="#DOCF29">(29)</a></h3>
<p>On a PC keyboard this is usually the
Alt key, occasionally the ‘Windows’ key. On a Mac keyboard normally no
meta key is available.</p>
<h3><a name="FOOT30" href="#DOCF30">(30)</a></h3>
<p>In particular, not versions 6.3 or
later: this is worked around as from R 3.4.0.</p>
</div>
<hr>
</body>
</html>
|