/usr/share/singular/LIB/classifyci.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 | ////////////////////////////////////////////////////////////////////////////////
version=="version classifyci.lib 4.0.0.0 Jun_2013 "; // $Id: 3490b4512206c608167dc0874d4c2066225031b8 $
category="Singularities";
info="
LIBRARY: classifyci.lib Isolated complete intersection singularities in characteristic 0
AUTHORS: Gerhard Pfister pfister@mathematik.uni-kl.de
Deeba Afzal deebafzal@gmail.com
OVERVIEW:
A library for classifying isolated complete intersection singularities for the base field of characteristic 0
and for computing weierstrass semigroup of the space curve.Isolated complete intersection singularities were
classified by M.Giusti [1] for the base field of characteristic 0. Algorithm for the semigroup of a space
curve singularity is given in [2].
REFERENCES:
[1] Giusti,M:Classification des singularities isolees simples d'intersections completes,
C,R.Acad.Sci.Paris Ser.A-B 284(1977),167-169.
[2] Castellanos,A.,Castellanos,J.,2005:Algorithm for the semigroup of a space curve singularity.
Semigroup Forum 70,44-66.
PROCEDURES:
classifyicis(I); Isolated simple complete intersection singularities for the base field of charateristic 0
Semigroup(I); Weierstrass semigroup of the space curve given by equations
";
LIB "classify.lib";
LIB "classify_aeq.lib";
LIB "poly.lib";
LIB "curvepar.lib";
LIB "algebra.lib";
////////////////////////////////////////////////////////////////////////////////
proc classifyicis(ideal I)
"USAGE: classifyicis(I); I ideal
ASSUME: I is given by two generators
PURPOSE:Check whether the ideal defines a complete intersection singularity or not
RETURN: String type in the classification of Giusti,M
@* or The given singularity is not simple
EXAMPLE: example classifyicis; shows an example
"
{
def R=basering;
def SS=changeord(list(list("ds",nvars(R))),R);
setring SS;
ideal I=imap(R,I);
string re;
if(char(basering)==0)
{
re=ICIS12(I);
}
if(char(basering)!=0)
{
re="The characteristic of basering should be 0";
}
setring R;
return(re);
}
example
{
"EXAMPLE:"; echo=2;
ring R=0,(x,y,z),ds;
ideal I=x2+yz,xy+z4;
classifyicis(I);
}
////////////////////////////////////////////////////////////////////////////////
static proc ICIS12(ideal I)
{
int n=nvars(basering);
if(n==2)
{
return(zerodim_ICIS(I));
}
if(n==3)
{
return(onedim_ICIS(I));
}
if(n>=4)
{
return("The given singularity is not simple");
}
}
////////////////////////////////////////////////////////////////////////////////
static proc zerodim_ICIS(ideal I)
"USAGE: zerodim_ICIS(l); I is an ideal
ASSUME: I is given by two generators
PURPOSE: Check whether the ideal defines a complete intersection singularity of dimension zero or not
RETURN: String type in the classification of Giusti,M, of the 0-dimensional complete inetersection
@* or The given singularity is not simple
EXAMPLE: example zerodim_ICIS; shows an example
"
{
def R=basering;
poly g,h,r;
ideal J;
int a,b,c,d;
map phi;
list L;
string re;
// g=g[0]+g[1] where ord(g[1])>=3 ,g[0] can be zero
// h=h[0]+h[1] where ord(h[1])>=3 ,h[0] can be zero
d=vdim(std(I));
if(d==-1)
{
return("The given singularity is not simple");
}
a=ord(I[1]);
b=ord(I[2]);
if((a>=3)&&(b>=3))
{ //start case1
return("The given singularity is not simple");
} // end case 1
if((a==2&&b>=3)||(a>=3&&b==2)) // start case 2
{
if(a==2)
{
g=I[1];
h=I[2];
}
if(b==2)
{
g=I[2];
h=I[1];
}
L=factorize(jet(g,2));
if(size(L[1])==3)
{
re=findwhichF(g,h,L);
return(re);
} // end size(L[1]=3)
if((size(L[1])==2)&&(L[2][2]==2))
{ // start (size(L[1])==2)&&(L[2][2]==2)
// case (x2,h);
r=L[1][2];
if(size(r)==2) // ax+by goes to x
{
matrix M3=coef(r,var(1));
M3=subst(M3,var(2),1);
matrix A[2][2]=M3[2,1],M3[2,2],0,1;
matrix B=inverse(A);
phi=R,B[1,1]*var(1)+B[1,2]*var(2),B[2,1]*var(1)+B[2,2]*var(2);
g=phi(g);
h=phi(h);
J=(g,h);
} // end size(r)=2
if(size(r)==1) // jet(g,2)=ax2 or by2 goes to x2
{
if(leadmonom(r)==var(1))
{
phi=R,var(1)/leadcoef(r),var(2);
g=phi(g);
h=phi(h);
}
if(leadmonom(r)==var(2))
{
phi=R,var(2)/leadcoef(r),var(1);
g=phi(g);
h=phi(h);
}
J=(g,h);
} // end size(r)=1
c=milnor(g);
if((d>=7)&&(c==2))
{
//"I-series";
if(d mod(2)==0)
{
return("I_"+string(d-1)+":(x2+y3,y"+string(d div 2)+")");
}
if(d mod(2)!=0)
{
return("I_"+string(d-1)+":(x2+y3,xy"+string((d-3) div 2)+")");
}
}
if(d==6)
{
return("G_5:(x2,y3)");
}
ring R1=0,(var(2),var(1)),ds;
setring R1;
ideal J=imap(R,J);
poly h1=reduce(J[2],std(J[1]),d);
poly h2=leadmonom(h1);
int ss=deg(h2)-1;
if((h2==var(1)^4)&&((c>=3)||(c==-1)))
{
setring R;
return("G_7:(x2,y4)");
}
if((h2==var(2)*var(1)^2)&&((c>=3)||(c==-1)))
{
setring R;
return("H_"+string(d-1)+":(x2+y"+string(d-4)+",xy2)");
}
setring R;
return("The given singularity is not simple");
} // end (size(L[1])==2)&&(L[2][2]==2)
if((size(L[1])==2)&&(L[2][2]==1))
{
def S=factorExt(g);
setring S;
poly h=imap(R,h); // poly g=imap(R,g); we need not S has already g
re= findwhichF(g,h,L);
setring R;
return(re);
}
} // end case 2
if((a==2)&&(b==2)) // start case 3
{
g=I[1];
h=I[2];
poly Q=testDiv(jet(h,2),jet(g,2));
if(Q!=0)
{
I=(g,h-Q*g);
return(zerodim_ICIS(I));
}
if(Q==0)
{
L=factorize(jet(g,2));
if(size(L[1])==3)
{
re=findwhichF(g,h,L);
return(re);
}
if((size(L[1])==2)&&(L[2][2]==1))
{
def S=factorExt(g);
setring S;
poly h=imap(R,h);
re=findwhichF(g,h,L);
setring R;
return(re);
}
L=factorize(jet(h,2));
if(size(L[1])==3)
{
re=findwhichF(h,g,L);
return(re);
}
if((size(L[1])==2)&&(L[2][2]==1))
{
def S=factorExt(h);
setring S;
poly g=imap(R,g);
re=findwhichF(h,g,L);
setring R;
return(re);
}
else
{ // there exist a s.t g[0]+ah[0] has two different factors.
int e=Finda(g,h);
I=(g+e*h,h);
re=zerodim_ICIS(I);
return(re);
}
}
} // end case 3
} // proc
example
{
"EXAMPLE:"; echo=2;
ring R=0,(x,y),ds;
ideal I=x2+8xy+16y2+y3,xy7+4y8;
zerodim_ICIS(I);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
static proc Finda(poly g,poly h)
"USAGE: Finda(g,h); g,h are polynomials
PURPOSE: Find a such that jet(g,2)+a*jet(h,2) has two different factors
RETURN: integer a
{
// find a s.t jet(g,2)+a*jet(h,2) has two different factors.
int o;
list L=factorize(jet(h,2));
if(L[2][2]==1){return(0);}
poly r= jet(g,2);
list T=factorize(r);
while(T[2][2]!=1)
{
o++;
r= r+jet(h,2);
T=factorize(r);
}
return(o);
}
/*
ring R=0,(x,y),ds;
poly g=x2+xy3;
poly h=y2+x3+y7;
finda(g,h);
*/
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
static proc testDiv(poly f,poly g)
"USAGE: testDiv(f,g); f,g are polynomials
ASSUME: I is given by two generators
PURPOSE: Check whether f divides g or not.
RETURN: poly h(quotient) if f divides g
@* 0 if f does not divide g
{
poly h=f/g;
if(f-h*g==0)
{
return(h);
}
return(0);
}
/*
ring R=0,(x,y,ds;
poly f=x2+y2;
poly g=3x2+3y2
testDiv(f,g);
*/
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
static proc findwhichF(poly g,poly h,list L)
"USAGE: findwhichF(g,h,L); g,h are polynomials,L list of factors of jet(g,2)
RETURN: string type F^n,p_n+p-1 in the classification of Giusti,M
{
// return("F^n,p_n+p-1")
def R=basering;
matrix M,N;
ideal J;
map si;
list T;
string rem;
// in each case we want to transform jet(g,2) which has two factors to xy
// and then find std and know about the type of "F^n,p_n+p-1"
if((size(L[1][2])==2)&&(size(L[1][3])==2))
{
M=coef(L[1][2],var(1));
N=coef(L[1][3],var(1));
matrix A[2][2]=M[2,1],M[2,2],N[2,1],N[2,2];
A=subst(A,var(1),1,var(2),1);
matrix B=inverse(A);
si=R,B[1,1]*var(1)+B[1,2]*var(2),B[2,1]*var(1)+B[2,2]*var(2);
g=si(g);
h=si(h);
J=(g,h);
J=std(J);
// if g and h both of order 2 no problem in that case because deg(J[2])=2 so lead(J[2])=x2,y2,xy does not matter
T[1]=deg(lead(J[2]));
T[2]=deg(lead(J[3]))-1;
rem="F^"+string(T[1])+","+string(T[2])+"_"+string(T[1]+T[2]-1)+":(xy,x"+string(T[1])+"+y"+string(T[2])+")";
return(rem);
}
if((size(L[1][2])==2)&&(size(L[1][3])==1))
{
// two cases 1- jet(g,2)=(ax+by)*cx, 2- jet(g,2)=(ax+by)*cy
if(leadmonom(L[1][3])==var(1))
{
M=coef(L[1][2],var(1));
M=subst(M,var(2),1);
si=R,var(1),-M[2,1]/M[2,2]*var(1)+var(2);
g=si(g);
h=si(h);
J=(g,h);
J=std(J);
T[1]=deg(lead(J[2]));
T[2]=deg(lead(J[3]))-1;
rem="F^"+string(T[1])+","+string(T[2])+"_"+string(T[1]+T[2]-1)+":(xy,x"+string(T[1])+"+y"+string(T[2])+")";
return(rem);
}
if(leadmonom(L[1][3])==var(2))
{
M=coef(L[1][2],var(1));
M=subst(M,var(2),1);
matrix A[2][2]=M[2,1],M[2,2],0,1;
matrix B=inverse(A);
si=R,B[1,1]*var(1)+B[1,2]*var(2),B[2,1]*var(1)+B[2,2]*var(2);
g=si(g);
h=si(h);
J=(g,h);
J=std(J);
T[1]=deg(lead(J[2]));
T[2]=deg(lead(J[3]))-1;
rem="F^"+string(T[1])+","+string(T[2])+"_"+string(T[1]+T[2]-1)+":(xy,x"+string(T[1])+"+y"+string(T[2])+")";
return(rem);
}
}
else
{
J=(g,h);
J=std(J);
T[1]=deg(lead(J[2]));
T[2]=deg(lead(J[3]))-1;
rem="F^"+string(T[1])+","+string(T[2])+"_"+string(T[1]+T[2]-1)+":(xy,x"+string(T[1])+"+y"+string(T[2])+")";
return(rem);
}
}
/*
ring R=0,(x,y),ds;
poly g=xy+y2+y4;
poly h=x4+4x3y+6x2y2+4xy3+y4+y7+xy7;
L=factorize(jet(g,2),2);
findwhichF(g,h,L);
*/
////////////////////////////////////////////////////////////////////////////////
static proc factorExt(poly g)
"USAGE: procExt(g); jet(g,2) is an irreducible polynomial
PURPOSE: Find the field extension in which jet(g,2) has two different factors
RETURN: ring S in which jet(g,2) has factors
{
def R=basering;
g=simplify(g,1);
poly f=jet(g,2);
list L=factorize(f);
if(L[2][2]==1)
{
ring S=(0,t),(var(1),var(2)),ds;
poly f=fetch(R,f);
poly g=fetch(R,g);
minpoly=t2+leadcoef(f/(var(1)*var(2)))*t+leadcoef(f/var(2)^2);
list L=factorize(f);
export L;
export g;
}
else
{
def S=R;
export L;
}
setring R;
return(S);
}
/*
ring R=0,(x,y),ds;
poly g=x2=y2+x4+xy11;
factorExt(g);
*/
////////////////////////////////////////////////////////////////////////////////
static proc onedim_ICIS(ideal I)
"USAGE: onedim_ICIS(l); I is an ideal
ASSUME: I is given by two generators
PURPOSE: Check whether the ideal defines a complete intersection singularity of dimension 1 or not
RETURN: String type in the classification of Giusti,M, of 1-dimesnional complete inetersection singualrity
@* or The given singularity is not simple
EXAMPLE: example onedim_ICIS; shows an example
"
{
int m,t,r;
poly g1,g2,f1,f2;
string rem;
list A,B;
f1=I[1];
f2=I[2];
// I=nf_icis(I);
m=genericmilnor(I);
t=tjurina(I);
if(m==-1)
{
return("The given singularity is not simple");
}
if(m!=t) // in ICIS milnor=tjurina
{
return("The given singularity is not simple");
}
g1=jet(f1,2);
g2=jet(f2,2);
if((ord(g1)==1)||(ord(g2)==1)){return(arnoldsimple(I,m));}
if(g1==0)
{
return("The given singularity is not simple");
}
if(g2==0)
{
return("The given singularity is not simple");
}
rem=typejet2(g1,g2);
if(rem=="type1")
{
return("S_5:(x2+y2+z2,yz)");
}
if(rem=="type2")
{
return("S_"+string(m)+":(x2+y2+z"+string(m-3)+",yz)");
}
if(rem=="type3")
{
if(m==7)
{
return("T_7:(x2+y3+z3,yz)");
}
if(m==8)
{
return("T_8:(x2+y3+z4,yz)");
}
if(m==9)
{
B=Semigroup(I);
B=changeType(B);
A=list(list(2,5),list(2,3));
if(compLL(A,B))
{
return("T_9:(x2+y3+z5,yz)");
}
}
return("The given singularity is not simple");
}
if(rem=="type4")
{
if(m==7)
{
return("U_7:(x2+yz,xy+z3)");
}
if(m==8)
{
return("U_8:(x2+yz+z3,xy)");
}
if(m==9)
{
return("U_9:(x2+yz,xy+z4)");
}
return("The given singularity is not simple");
}
if(rem=="type5")
{
if(m==8)
{
return("W_8:(x2+z3,y2+xz)");
}
if(m==9)
{
return("W_9:(x2+yz2,y2+xz)");
}
return("The given singularity is not simple");
}
if(rem=="type6")
{
if(m==9)
{
return("Z_9:(x2+z3,y2+z3)");
}
if(m==10)
{
return("Z_10:(x2+yz2,y2+z3)");
}
return("The given singularity is not simple");
}
if(rem=="not simple")
{
return("The given singularity is not simple");
}
}
example
{
"EXAMPLE:"; echo=2;
ring R=0,(x,y,z),ds;
ideal I=x2+8xy+16y2+2xz+8yz+z2+yz2+9z3,y2+xz+22yz+82z2;
onedim_ICIS(I);
}
////////////////////////////////////////////////////////////////////////////////
static proc arnoldsimple(ideal I,int m)
"USAGE: arnoldsimple(I,m); I is an ideal, m is an integer greater or equal to milnor number of the ideal I
ASSUME: I is given by two generators and one of the generator of the ideal I is of order 1
PURPOSE: check whether the ideal defines a hypersurface simple complete intersection singularity or not
RETURN: string type in the classification of Arnold,
@* or The given singularity is not simple
EXAMPLE: example arnoldsimple; shows an example
"
{
//if one generator is of order 1 we reduce case to hypersurface case
def R=basering;
if(ord(I[1])==1)
{
poly g=specialNF(I[2],I[1],m);
ring S=0,(var(2),var(3)),ds;
setring S;
poly g=imap(R,g);
string dd=complexSingType(g);
int e=modality(g);
setring R;
if(e==0)
{
return(dd);
}
if(e!=0)
{
return( "The given singularity is not simple");
}
}
if(ord(I[2])==1)
{
I=I[2],I[1];
return(arnoldsimple(I,m));
}
}
example
{
"EXAMPLE:"; echo=2;
ring R=0,(x,y,z),ds;
ideal I=x+y2,y3+z4+xy11;
arnoldsimple(I,6);
}
////////////////////////////////////////////////////////////////////////////////
static proc specialNF(poly g,poly f,int m)
"USAGE: specialNF(g,f); g,f are polynomials, m is an integer greater or equal to milnor number of the ideal I=(g,h)
ASSUME: f is of order 1 and f=x+higher
RETURN: poly g not involving x (Using implicit fn thm)
{
poly k;
list T=linearpart(g,f);
f=T[1];
g=T[2];
poly h=var(1)-f;
while(1)
{
g=subst(g,var(1),h);
k=jet(g,m);
if(diff(k,var(1))==0)
{
break;
}
}
return(k);
}
/*
ring R=0,(x,y,z),ds;
poly f=x+y2;
poly g=y3+z4+xy11;
speciaNF(g,f,6);
*/
////////////////////////////////////////////////////////////////////////////////
static proc linearpart(poly g,poly f) // f=linear part+higher,g output list T,T[1]=x+higher term,T[2]=g
"USAGE: specialNF(g,f); g,f are polynomials
ASSUME: f=lineat part+higher that is f is of order 1
RETURN: list T, T[1]=x+higher and T[2]=g'
{
def R=basering;
poly i,j,k;
list T;
i=diff(jet(f,1),var(1));
j=diff(jet(f,1),var(2));
k=diff(jet(f,1),var(3));
if(i!=0)
{
ideal M=maxideal(1);
M[1]=(var(1)-((j*var(2)+k*var(3))/leadcoef(f)))/leadcoef(f);
map phi=R,M;
f=phi(f);
g=phi(g);
}
if(i==0)
{
if(j!=0)
{
map phi=R,var(2),var(1),var(3);
f=phi(f);
g=phi(g);
return(linearpart(g,f));
}
if(k!=0)
{
map phi=R,var(3),var(2),var(1);
f=phi(f);
g=phi(g);
return(linearpart(g,f));
}
}
T[1]=f;
T[2]=g;
return(T);
}
/*
ring R=0,(x,y,z),ds;
poly f=x+2y+y2;
poly g=y3+z4+zy11;
lineatpart(g,f);
*/
////////////////////////////////////////////////////////////////////////////////
static proc typejet2(poly g1,poly g2)
"USAGE: typejet2(g1,g2); g1,g2 are polynomials
ASSUME: g1,g2 are homogenous polynomials of degree 2
PURPOSE: Check whether (g1,g2) is a quadratic form in the list of Guisti or not
RETURN: string type for the quadratic forms appearing in Guist's list
@* or not simple
{
def R=basering;
ideal I=(g1,g2);
def S=absPrimdecGTZ(I);
setring S;
list L,T;
int e,i,j;
intvec a,a1;
L=primary_decomp;
for(j=1;j<=size(L);j++)
{
if(dim(std(L[j][1]))!=2)
{
return("not simple");
}
}
T=absolute_primes;
for(i=1;i<=size(T);i++)
{
e=e+T[i][2];
}
if(e==4)
{
setring R;
return("type1");
}
if(e==3)
{
setring R;
return("type2");
}
if(e==2)
{
ideal J=std(L[1][1]);
ideal J1=std(L[2][1]);
a=hilbPoly(J);
a1=hilbPoly(J1);
if((a[2]==2)&&(a1[2]==2))
{
setring R;
return("type3");
}
if(((a[2]==3)&&(a1[2]==1))||((a[2]==1)&&(a1[2]==3))) //||(a[2]==1)&&(a1[2]==3))
{
setring R;
return("type4");
}
}
if(e==1)
{
setring R; // I lies in R and zero in S1
ideal JJ=radical(I);
JJ=JJ^3;
ideal JJJ=reduce(JJ,std(I));
if(size(JJJ)==0)
{
return("type6");
}
if(size(JJJ)!=0)
{
return("type5");
}
}
setring R;
return("not simple");
}
/*
ring R=0,(x,y,z),ds;
poly g1=x2+yz;
poly g2=xy;
typejet2(g1,g2);
*/
////////////////////////////////////////////////////////////////////////////////
static proc compL(list L,list M)
{
int l,m,i,j;
l=size(L);
m=size(M);
if(l!=m)
{return(0);}
for(i=1;i<=m;i++)
{
if(L[i]!=M[i])
{return(0);}
}
return(1);
}
////////////////////////////////////////////////////////////////////////////////
static proc compLL(list L,list M)
"USAGE: compLL(L,M); L, M are lists
PURPOSE: Check whether the lists are equal or not
RETURN: 1 if both lists are equal upto a permutation
@* 0 if both are not equal
{
int l,m,i,j,s;
l=size(L);
m=size(M);
if(l!=m)
{return(0);}
for(i=1;i<=m;i++)
{
for(j=1;j<=m;j++)
{
if(compL(L[i],M[j]))
{
s++;
break;
}
}
}
if(s==m)
{return(1);}
if(s!=m)
{
return(0);
}
}
/*
ring R=0,(x,y,z),ds;
list L=(1),(2,3),(2,5);
list T=(2,3),(1),(2,5);
compLL(L,T);
*/
////////////////////////////////////////////////////////////////////////////////
static proc changeType(list L)
"USAGE: changeType(L); L is a list of intvectors
PURPOSE: Change the list of intvectors to the list of lists
RETURN: List of lists
{
int i,j;
list T;
for(i=1;i<=size(L);i++)
{
list S;
for(j=1;j<=size(L[i]);j++)
{
S[j]=L[i][j];
}
T[size(T)+1]=S;
kill S;
}
return(T);
}
/*
ring R=0,(x,y,z),ds;
list B=(4,6,7);
changeType(B);
*/
////////////////////////////////////////////////////////////////////////////////
static proc genericmilnor(ideal I)
"USAGE: genericmilnor(l); I is an ideal
PURPOSE: Computes the milnor number of generic linear combination of the ideal I
RETURN: Milnor number of I if it is finite
@* or -1 if it is not finite
{
int m=milnor(I);
int i,a,b;
if(m>=0)
{
return(m);
}
def R=basering;
def R1=changechar(32003,R);
setring R1;
ideal I;
while(i<10)
{
i++;
a=random(-100,100);
b=random(-100,100);
while(a==0)
{
a=random(-100,100);
}
while(b==0)
{
b=random(-100,100);
}
I=imap(R,I);
I[1]=a*I[1]+b*I[2];
m=milnor(I);
if(m>=0)
{
setring R;
return(m);
}
}
setring R;
return(-1);
}
/*
ring R=0,(x,y,z),ds;
ideal I=x2+z3,y2+z3;
genericmilnor(I);
*/
////////////////////////////////////////////////////////////////////////////////
proc Semigroup(ideal I)
"USAGE: Semigroup(l); I is an ideal
PURPOSE: Computes the semigroup of the ideal I corresponding to each branch
RETURN: list of semigroup of ideal I corresponding to each branch
EXAMPLE: Semigroup; shows an example
"
{
list L=facstd(I);
list RE,JE,PE;
if(size(L)==1)
{
RE=CurveRes(L[1]);
RE=semi_group(RE);
return(RE);
}
ideal J,K;
list T,T1,T2,T3,T4,T5,H;
int i,j,l;
for(i=1;i<=size(L);i++)
{
RE=CurveRes(radical(L[i])) ;
T1[i]=semi_group(RE);
for(j=i+1;j<=size(L);j++)
{
JE=CurveRes(radical(L[j]));
T2[j]=semi_group(JE);
J=L[i]+L[j];
if(dim(std(J))!=1)
{
break;
}
K=slocus(J);
if(K[1]==1)
{ T3=1;}
else
{
PE=CurveRes(radical(J));
T3=semi_group(PE);
}
T4=commonpartlists(T1[i],T3);
T5=commonpartlists(T2[j],T3);
if(compLL(T4,T5))
{
T1[i]=del(T1[i],T4);
}
}
for(l=1;l<=size(T1[i]);l++)
{
H[size(H)+1]=T1[i][l];
}
}
return(H);
}
example
{
"EXAMPLE:"; echo=2;
ring R=0,(x,y,z),ds;
ideal I=x2+y3+z5,yz;
Semigroup(I);
}
////////////////////////////////////////////////////////////////////////////////
static proc del(list L,list M)
"USAGE: del(L,M); L and M are two lists
PURPOSE: Delete common part of list M from List L
RETURN: list L
{
int i,j;
for(i=1;i<=size(M);i++)
{
for(j=1;j<=size(L);j++)
{
if(compL(L[j],M[i]))
{L=delete(L,j);}
}
}
return(L);
}
////////////////////////////////////////////////////////////////////////////////
static proc commonpartlists(list L,list M)
"USAGE: commonpart(L,M); L and M are two lists
PURPOSE: Computes the intersetion of two list
RETURN: list T
{
list T;
int i,m,l,j,k;
m=size(M);
l=size(L);
if(l>=m)
{
for(i=1;i<=m;i++)
{
for(j=1;j<=l;j++)
{
if(compLL(M[i],L[j]))
{
T[k+1]=M[i];
k++;
}
}
}
}
return(T);
}
////////////////////////////////////////////////////////////////////////////////
static proc semi_group(list H)
"USAGE: semi_group(H); H list
COMPUTE:Weierstrass semigroup of space curve C,which is given by an ideal
RETURN: list A , which gives generators set of the Weierstrass semigroup corresponding to each irreducible component of C
{
int i,d,u,v,w,k;
int j=1;
int e=1;
def R=basering;
list A;
string mpo;
list LL;
for(k=1;k<=size(H);k++)
{
LL=CurveParam(H[k]);
def S=LL[1];
setring S;
list TT;
for(i=1;i<=size(Param);i++)
{
d=deg(Param[i][2]);
TT=Param[i];
mpo=string(Param[i][2]);
ring S1=(0,a),(t),ds;
setring S1;
execute("minpoly="+mpo+";");
list TT=imap(S,TT);
list T;
ideal J1;
for(u=1;u<=size(TT[1]);u++)
{
J1[u]=TT[1][u];
}
J1=simplify(J1,2);
J1=sagbiAlg(J1);
w=Classify_aeq::ConductorBound(J1);
J1=lead(J1);
list TTT;
for(v=1;v<=size(J1);v++)
{
TTT[v]=J1[v];
}
for(j=1;j<=d;j++)
{
T=WSemigroup(TTT,w);
A[e]=T[1]; // intersted only in semigroup
e++;
}
setring S;
kill S1;
kill T;
}
setring R;
kill S;
}
return(A);
}
//==============================Examples======================================
/*
//=========Examples of Isolated simple complete intersection singularities======
ring R=0,(x,y),ds;
ideal M=maxideal(1);
//======================
ideal I=x2+y3,xy11;
M[1]=x;
M[2]=x+3y+xy;
map phi=R,M;
I=phi(I);
classifyicis(I);
//======================
ideal I=xy,x5+y4;
M[1]=x+4y;
M[2]=y;
map phi=R,M;
I=phi(I);
classifyicis(I);
//======================
ideal I=x2,y4;
M[1]=x+xy2;
M[2]=x+y+x2+y2;
map phi=R,M;
I=phi(I);
classifyicis(I)
//===========================================
ideal I=x2+y11,x2y3+xy4;
classifyicis(I);
//======================
ring S=0,(u,v),dp;
ideal N=maxideal(1);
//======================
ideal J=u2+v7,uv2;
N[1]=u+3v+uv+u3v;
N[2]=v;
map si=S,N;
J=si(J);
classifyicis(J);
//======================
ideal J=u2+v2+uv5+v11,uv4+v5;
classifyicis(I);
//===========================================
ring R=0,(x,y,z),ds;
ideal M=maxideal(1);
//======================
ideal I=x2+y3+z5,yz;
classifyicis(I);
//======================
ideal I=x2+z3,y2+z3;
classificis(I);
//======================
ideal I=x2+yz+z3,xy;
M[3]=x+4y+3z+x2y;
map phi=R,M;
I=phi(I);
classifyicis(I);
//======================
ideal I=x2+y3+z6,yz+xy3;
classifyicis(I);
//============================================
ideal I=x2+z3,y2+xz;
M[2]=x+3y;
map phi=R,M;
I=phi(I);
classifyicis(I);
//============================================
ring S=0,(u,v,w),ds;
ideal M=maxideal(1);
ideal I=u2+vw+w3,uv;
M[1]=u+3v+3vw+w2;
map phi=S,M;
I=phi(I);
classifyicis(I);
//==========Examples of Semigroup of the space curves====================
ring R=0,(x,y,z),ds;
ideal I=xy+z3,xz+z2y2+y6;
Semigroup(I);
//======================
ideal I=xy,xz+z3+z2y3+y11;
Semigroup(I);
//======================
ideal I=xy+z4,xz+y6+yz2;
Semigroup(I);
//======================
ideal I=xy+z2,x2+z2y+5y4;
Semigroup(I);
//======================
ideal I=x2+yz2,y2+z3;
Semigroup(I);
//======================
ideal I=x2+yz,xy+z4;
Semigroup(I);
//======================
ideal I=xy,xz+z3+z2y5+2y15;
Semigroup(I);
//======================
ideal I=xy,xz+z3+zy9;
Semigroup(I);
//======================
*/
|