This file is indexed.

/usr/share/singular/LIB/resbinomial.lib is in singular-data 1:4.1.0-p3+ds-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
/////////////////////////////////////////////////////////////////////////
version="version resbinomial.lib 4.0.0.0 Jun_2013 "; // $Id: 7f5e8f0a7c702784ef3334266f3d767725a1f457 $
category="Resolution of singularities";
info="
LIBRARY: resbinomial.lib  Combinatorial algorithm of resolution of singularities
                        of binomial ideals in arbitrary characteristic.
                        Binomial resolution algorithm of Blanco

AUTHORS:  R. Blanco,            mariarocio.blanco@uclm.es,
@*        G. Pfister,           pfister@mathematik.uni-kl.de

PROCEDURES:
 BINresol(J);      computes a E-resolution of singularities of (J) (THE SECOND PART IS NOT IMPLEMENTED YET)

 Eresol(J);                         computes a E-resolution of singularities of (J) in char 0
 determinecenter(L1,L2,c,n,Y,a,mb,flag,control3);    computes the next blowing-up center
 Blowupcenter(L1,id,m,L2,c,n,h);    makes the blowing-up
 Nonhyp(Coef,expJ,sJ,n,flag,sums);  computes the ideal generated by the non hyperbolic generators of expJ

 identifyvar();                     identifies status of variables
 Edatalist(Coef,Exp,k,n,flag);      gives the E-order of each term in Exp
 EOrdlist(Coef,Exp,k,n,flag);       computes the E-order of an ideal (giving in the language of lists)
 maxEord(Coef,Exp,k,n,flag);        computes de maximum E-order of an ideal given by Coef and Exp
 ECoef(Coef,expP,sP,V,auxc,n,flag); Computes a simplified version of the E-Coeff ideal. The E-orders are correct,
                                    but tranformations of coefficients of the generators and powers of binomials
                                    cannot be computed easily in terms of lists.
 elimrep(L);                        removes repeated terms from a list
 Emaxcont(Coef,Exp,k,n,flag);       computes a list of hypersurfaces of E-maximal contact
 cleanunit(mon,n,flag);             clean the units in a monomial mon
 resfunction(t,auxinv,nchart,n);    composes the E-resolution function
 calculateI(Coef,J,c,n,Y,a,b,D);    computes the order of the non monomial part of an ideal J
 Maxord(L,n);                       computes the maximum exponent of an exceptional monomial ideal
 Gamma(L,c,n);                      computes the Gamma function for an exceptional monomial ideal given by L

 convertdata(C,L,n,flag);           computes the ideal corresponding to C,L
 lcmofall(nchart,mobile);           computes the lcm of the denominators of the E-orders for all the charts
 computemcm(Eolist);                computes the lcm of the denominators of the E-orders for one chart

 constructH(Hhist,n,flag);                construct the list of exceptional divisors accumulated at this chart
 constructblwup(blwhist,n,chy,flag);      construct the ideal defining the map K[W] --> K[Wi],
                                          which gives the composition map of all the blowing up leading to this chart
 constructlastblwup(blwhist,n,chy,flag);  construct the ideal defining the last blowup leading to this chart

 genoutput(chart,mobile,nchart,nsons,n,q,p);             generates the output for visualization
 salida(idchart,chart,mobile,numson,previousa,n,q);      generates the output for one chart

 iniD(n);                           creates a list of lists of zeros of size n
 sumlist(L1,L2);                    sums two lists component to component
 reslist(L1,L2);                    subtracts two lists component to component
 multiplylist(L,a);                 multiplies a list by a number, component to component
 dividelist(L1,L2);                 divides two lists component to component
 createlist(L1,L2);                 creates a list of lists of two elements
";
// inidata(K,k);                      verifies input data, a binomial ideal K of k generators
// data(K,k,n);                       transforms data on lists of length n
// list0(n);                          creates a list of zeros of size n

LIB "general.lib";
LIB "qhmoduli.lib";
LIB "inout.lib";
LIB "poly.lib";
LIB "resolve.lib";
LIB "reszeta.lib";
LIB "resgraph.lib";
////////////////////////////////////////////////////////////////////////////

static proc inidata(ideal K,int k)
"USAGE: inidata(K,k); K any ideal, k integer (!=0)
COMPUTE: Verifies the input data
RETURN: flag indicating if the ideal is binomial or not
EXAMPLE: example inidata; shows an example
"
{
 int i;
 for (i=1;i<=k; i++)
 { if (size(K[i])>2){return(0);}
 }
return(1);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..3)),dp;
  ideal J1=x(1)^4*x(2)^2, x(1)^2+x(3)^3;
  inidata(J1,2);

  ideal J2=x(1)^4*x(2)^2, x(1)^2+x(2)^3+x(3)^5;
  inidata(J2,2);
}
/////////////////////////////////////////////////////////////////////////////////

proc changeoriginalvar()
"USAGE: changeoriginalvar();
COMPUTE: Change the name of the variables to x(1...n), only necessary at the beginning
RETURN: the new ring with the suitable names
EXAMPLE: example changeoriginalvar; shows an example
"
{
int i,n,cont;

n=nvars(basering);
cont=0;
def r=basering;

// check the name of the variables

for (i=1;i<=n; i++){if (varstr(i)[1]=="x" or varstr(i)[1]=="y"){cont=cont+1;}}

// change them if there exists some variable different from x(i) or y(i)

if (cont!=n or n<=2){
             // making the change
              def Rnew=changevar ("x()");
              setring Rnew;
                // print("INVERTIBLE VARIABLES NOT CONSIDERED AT THE BEGINNING");
              return(Rnew,1);
             }
else{          // print("INVERTIBLE VARIABLES ALREADY CONSIDERED AT THE BEGINNING");
     return(r,0);
    }
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1),y(2),x(3),y(4),x(5..7),y(8)),dp;
  changeoriginalvar();

  ring r = 0,(x,y,z,w),dp;
  changeoriginalvar();
}

/////////////////////////////////////////////////////////////////////////////////

proc identifyvar()
"USAGE: identifyvar();
COMPUTE: Asign 0 to variables x and 1 to variables y, only necessary at the beginning
RETURN: list, say l, of size the dimension of the basering
        l[i] is: 0 if the i-th variable is x(i),
                 1 if the i-th variable is y(i)
EXAMPLE: example identifyvar; shows an example
"
{
int i,n;
list flaglist;

n=nvars(basering);
flaglist=list0(n);

for (i=1;i<=n; i++){if (varstr(i)[1]=="y"){flaglist[i]=1;}}

return(flaglist);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1),y(2),x(3),y(4),x(5..7),y(8)),dp;
  identifyvar();
}
/////////////////////////////////////////////////////////////////////////////////

proc data(ideal K,int k,int n)
"USAGE: data(K,k,n); K any ideal, k integer (!=0), n integer (!=0)
COMPUTE: Construcs a list with the coefficients and exponents of one ideal
RETURN: lists of coefficients and exponents of K
EXAMPLE: example data; shows an example
"
{int i,j,lon;
 number aa;
 intvec cc;
 list bb,dd,aux,ddaux,Coef,Exp;

 for (i=1;i<=k; i++)
 { lon=size(K[i]);

// binomial
if (lon==2){aa=leadcoef(K[i][1]);
                   bb=aa;
                   Coef[i]=bb;              // coefficients
                   cc=leadexp(K[i][1]);     // exponents

// cc is an intvec, transform cc in dd, a list of lists
                   dd=cc[1..n];
                   aux[1]=dd;
// the same for the second term

                   aa=leadcoef(K[i][2]);
                   bb=aa;
                   Coef[i]=Coef[i] + bb;  // all the coefficients of i-th generator of K
                   cc=leadexp(K[i][2]);

                   dd=cc[1..n];
                   aux[2]=dd;
                   Exp[i]=aux;}

// monomial
if (lon==1){aux=list();
            aa=leadcoef(K[i][1]);
            bb=aa;
            Coef[i]=bb;
            cc=leadexp(K[i][1]);
            dd=cc[1..n];
            aux[1]=dd;
            Exp[i]=aux;}
} //end for
return(Coef,Exp);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..3)),dp;
  ideal J=x(1)^4*x(2)^2, x(1)^2-x(3)^3;
  data(J,2,3);
}
//////////////////////////////////////////////////////

proc Edatalist(list Coef,list Exp,int k,int n,list flaglist)
"USAGE: Edatalist(Coef,Exp,k,n,flaglist);
        Coef,Exp,flaglist lists, k,n, integers
        Exp is a list of lists of exponents, k=size(Exp)
COMPUTE: computes a list with the E-order of each term
RETURN: a list with the E-order of each term
EXAMPLE: example Edatalist; shows an example
"
{int i,j,lon,mm;
 list dd,ss,sums;
 number aux,aux1,aux2;

 for (i=1;i<=k;i++){lon=size(Coef[i]);
                    if (lon==1) { for (j=1;j<=n;j++){if (flaglist[j]==0){aux=aux+Exp[i][1][j];}}
                                  ss=aux; aux=0;}            // monomial
                    else { for (j=1;j<=n;j++){if (flaglist[j]==0){ aux1=aux1+Exp[i][1][j];
                                                                   aux2=aux2+Exp[i][2][j];}}
                           ss=aux1,aux2; aux1=0; aux2=0; }   // binomial
                    sums[i]=ss;}
return(sums);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1),y(2),x(3),y(4),x(5..7),y(8)),dp;
  list flag=identifyvar();
  ideal J=x(1)^3*x(3)-y(2)*y(4)^2,x(5)*y(2)-x(7)*y(4)^2,x(6)^2*(1-y(4)*y(8)^5);
  list L=data(J,3,8);
  list EL=Edatalist(L[1],L[2],3,8,flag);
  EL; // E-order of each term


  ring r = 2,(x(1),y(2),x(3),y(4),x(5..7),y(8)),dp;
  list flag=identifyvar();
  ideal J=x(1)^3*x(3)-y(2)*y(4)^2,x(5)*y(2)-x(7)*y(4)^2,x(6)^2*(1-y(4)*y(8)^5);
  list L=data(J,3,8);
  list EL=Edatalist(L[1],L[2],3,8,flag);
  EL; // E-order of each term IN CHAR 2, COMPUTATIONS NEED TO BE DONE IN CHAR 0


  ring r = 0,(x(1..3)),dp;
  list flag=identifyvar();
  ideal J=x(1)^4*x(2)^2, x(1)^2-x(3)^3;
  list L=data(J,2,3);
  list EL=Edatalist(L[1],L[2],2,3,flag);
  EL; // E-order of each term
}
///////////////////////////////////////////////////////////////////////////////////

proc EOrdlist(list Coef,list Exp,int k,int n,list flaglist)
"USAGE: EOrdlist(Coef,Exp,k,n,flaglist);
        Coef,Exp,flaglist lists, k,n, integers
        Exp is a list of lists of exponents, k=size(Exp)
COMPUTE: computes de E-order of an ideal given by a list (Coef,Exp) and extra information
RETURN: maximal E-order, and its position=number of generator and term
EXAMPLE: example EOrdlist; shows an example
"
{int i,can,canpost,lon;
 number canmin;
 list sums;

sums=Edatalist(Coef,Exp,k,n,flaglist);

 canmin=sums[1][1];                            // inicializating, works also with a monomial
for (i=1;i<=k; i++){lon=size(sums[i]);         // this is 2 for binomial and 1 for monomial generators
                    if (sums[i][1]<=canmin and Coef[i][1]!=0){canmin=sums[i][1];
                                                               can=i; canpost=1;}

// if the generator is a binomial we check the second term

                   if (lon==2) {if (sums[i][2]<canmin and Coef[i][2]!=0){canmin=sums[i][2];
                                                                          can=i; canpost=2;}}
}
return(canmin,can,canpost);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1),y(2),x(3),y(4),x(5..7),y(8)),dp;
  list flag=identifyvar();
  ideal J=x(1)^3*x(3)-y(2)*y(4)^2,x(5)*y(2)-x(7)*y(4)^2,x(6)^2*(1-y(4)*y(8)^5),x(7)^4*y(8)^2;
  list L=data(J,4,8);
  list Eo=EOrdlist(L[1],L[2],4,8,flag);
  Eo[1]; // E-order
  Eo[2]; // generator giving the E-order
  Eo[3]; // term giving the E-order
}

//////////////////////////////////////////////////////

proc maxEord(list Coef,list Exp,int k,int n,list flaglist)
"USAGE: maxEord(Coef,Exp,k,n,flaglist);
        Coef,Exp,flaglist lists, k,n, integers
        Exp is a list of lists of exponents, k=size(Exp)
RETURN: computes de maximal E-order of an ideal given by Coef,Exp
EXAMPLE: example maxEord; shows an example
"
{
int i,lon;
number canmin;  // THE ASSIGNMENT IS NOT OK BECAUSE IT IS OF TYPE NUMBER
list sums;

sums=Edatalist(Coef,Exp,k,n,flaglist);

canmin=sums[1][1];                             // inicializating, works also with a monomial
for (i=1;i<=k; i++){lon=size(sums[i]);         // this is 2 for binomial and 1 for monomial generators
                    if (sums[i][1]<=canmin and Coef[i][1]!=0){canmin=sums[i][1];}

// if the generator is a binomial we check the second term

                   if (lon==2) {if (sums[i][2]<canmin and Coef[i][2]!=0){canmin=sums[i][2];}}
}
return(canmin,sums);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1),y(2),x(3),y(4),x(5..7),y(8)),dp;
  list flag=identifyvar();
  ideal J=x(1)^3*x(3)-y(2)*y(4)^2*x(3),x(5)*y(2)-x(7)*y(4)^2,x(6)^2*(1-y(4)*y(8)^5),x(7)^4*y(8)^2;
  list L=data(J,4,8);
  list M=maxEord(L[1],L[2],4,8,flag);
  M[1];    // E-order
}
//////////////////////////////////////////////////////

proc elimrep(list maxvar)
"USAGE: elimrep(L); L is a list
COMPUTE: Eliminate repeated terms from a list
RETURN: the same list without repeated terms
EXAMPLE: example elimrep; shows an example
"
{
int i,j;
list aux2;

aux2=maxvar;
for (i=1;i<=size(aux2); i++)
{ for (j=i+1;j<=size(aux2); j++){if (aux2[i]==aux2[j] and i!=j){aux2=delete(aux2,j);}}
}
maxvar=aux2;
return(maxvar);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..3)),dp;
  list L=4,5,2,5,7,8,6,3,2;
  elimrep(L);
}
//////////////////////////////////////////////////////

proc Emaxcont(list Coef,list Exp,int k,int n,list flag)
"USAGE: Emaxcont(Coef,Exp,k,n,flag);
        Coef,Exp,flag lists, k,n, integers
        Exp is a list of lists of exponents, k=size(Exp)
COMPUTE: Identify ALL the variables of E-maximal contact
RETURN: a list with the indexes of the variables of E-maximal contact
EXAMPLE: example Emaxcont; shows an example
"
{
int i,j,lon;
number maxEo;
list L,sums,bx,maxvar;

L=maxEord(Coef,Exp,k,n,flag);

maxEo=L[1];
sums=L[2];

if (maxEo>0){

for (i=1;i<=k; i++){lon=size(sums[i]);
                   if (lon==2){if (sums[i][1]==maxEo)        // variables of the first term
                              {for (j=1;j<=n; j++){if(Exp[i][1][j]!=0 and flag[j]==0){bx=j; maxvar=maxvar + bx;}}}

                              if (sums[i][2]==maxEo)         // variables of the second term
                              {for (j=1;j<=n; j++){if(Exp[i][2][j]!=0 and flag[j]==0){bx=j; maxvar=maxvar + bx;}}}}
                   else {if (sums[i][1]==maxEo)
                        {for (j=1;j<=n; j++){if(Exp[i][1][j]!=0 and flag[j]==0){bx=j; maxvar=maxvar + bx;}}}}

                   }}
else {maxvar=list();}

// eliminating repeated terms
maxvar=elimrep(maxvar);

// It is necessary to check if flag[j]==0 in order to avoid the selection of y variables

return(maxEo,maxvar);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1),y(2),x(3),y(4),x(5..7),y(8)),dp;
  list flag=identifyvar();
  ideal J=x(1)^3*x(3)-y(2)*y(4)^2,x(5)*y(2)-x(7)*y(4)^2,x(6)^2*(1-y(4)*y(8)^5),x(7)^4*y(8)^2;
  list L=data(J,4,8);
  list hyp=Emaxcont(L[1],L[2],4,8,flag);
  hyp[1]; // max E-order=0
  hyp[2]; // There are no hypersurfaces of E-maximal contact

  ring r = 0,(x(1),y(2),x(3),y(4),x(5..7),y(8)),dp;
  list flag=identifyvar();
  ideal J=x(1)^3*x(3)-y(2)*y(4)^2*x(3),x(5)*y(2)-x(7)*y(4)^2,x(6)^2*(1-y(4)*y(8)^5),x(7)^4*y(8)^2;
  list L=data(J,4,8);
  list hyp=Emaxcont(L[1],L[2],4,8,flag);
  hyp[1]; // the E-order is 1
  hyp[2]; // {x(3)=0},{x(5)=0},{x(7)=0} are hypersurfaces of E-maximal contact

 }
///////////////////////////////////////////////////////

proc cleanunit(list mon,int n,list flaglist)
"USAGE: cleanunit(mon,n,flaglist);
        mon, flaglist lists, n integer
COMPUTE: We clean (or forget) the units in a monomial, given by "y" variables
RETURN: The list defining the monomial ideal already cleaned
EXAMPLE: example cleanunit; shows an example
"
{
int i;

for (i=1;i<=n;i++){if (flaglist[i]==1){mon[i]=0;}}

// coef[1]=coef[1]*y(i)^mon[i]; IS NOT ALLOWED because mon[i] can be a number
// therefore, the coefficients remain constant

return(mon);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1),y(2),x(3),y(4)),dp;
list flag=identifyvar();
ideal J=x(1)^3*y(2)*x(3)^5*y(4)^8;
list L=data(J,1,4);
L[2][1][1];  // list of exponents of the monomial J
list M=cleanunit(L[2][1][1],4,flag);
M;           // new list without units
}
//////////////////////////////////////////////////////
// Classification of the ideal E-Coeff_V(P):
// ccase=1,    E-Coeff_V(P)=0
//       2,3   Bold regular case
//       4     P=1 monomial case (detected before)
//       0     Otherwise

proc ECoef(list Coef,list expP,int sP,int V,number auxc,int n,list flaglist)
"USAGE: ECoef(Coef,expP,sP,V,auxc,n,flaglist);
        Coef, expP, flaglist lists, sP, V, n integers, auxc number
COMPUTE: The ideal E-Coeff_V(P), where V is a permissible hypersurface which belongs to the center
RETURN: list of exponents, list of coefficients and classification of the ideal E-Coeff_V(P)
EXAMPLE: example ECoef; shows an example
"
{
int i,j,k,l,numg,ccase,cont2,cont3,val;
number aa;
list Eco,newcoef,auxexp,newL,rs,rs2,aux,aux2,aux3,aux4,L;

auxexp=expP;

l=1;
for (i=1;i<=sP;i++)
{rs[i]=size(Coef[i]);
 if (rs[i]==2){                                   // binomials
               if (auxexp[i][1][V]!=auxexp[i][2][V])  // no common factors for the variable in V

                  {for (j=1;j<=2;j++){if (auxexp[i][j][V]<auxc){aa=auxc/(auxc-auxexp[i][j][V]);
                                                              auxexp[i][j][V]=0;
                                                              aux4[1]=multiplylist(auxexp[i][j],aa);
                                                              Eco[l]=aux4;
                                                            // newcoef[l]=Coef[i][j]^aa; IT IS NO ALLOWED!!!
                                                              newcoef[l]=Coef[i][j]; // we leave it constant
                                                              l=l+1;}}}

               else                               // common factors for the variable in V, of zero in both terms

                 {if (auxexp[i][1][V]<auxc){aa=auxc/(auxc-auxexp[i][1][V]);
                                          auxexp[i][1][V]=0; auxexp[i][2][V]=0;

                 // this generator is a power of a binomial
                 // one possibility is Eco[l]=auxexp[i]; we leave it constant and add some extra number aa, or
                 // define a binomial again. The E-order coincides!!!

                                          aux=multiplylist(auxexp[i][1],aa);
                                          aux2=multiplylist(auxexp[i][2],aa);
                                          aux3[1]=aux;
                                          aux3[2]=aux2;
                                          Eco[l]=aux3;
                                          newcoef[l]=Coef[i];
                                          l=l+1;}}
              }

else                                               // monomials
    {if (auxexp[i][1][V]<auxc){aa=auxc/(auxc-auxexp[i][1][V]);
                             auxexp[i][1][V]=0;
                             aux4=list();
                             aux4[1]=multiplylist(auxexp[i][1],aa);
                             Eco[l]=aux4;
                             newcoef[l]=Coef[i];
                             l=l+1;}}
}

// cleaning units from the monomial generators of Eco
// If there are hyperbolic equations in Eco, such that Eco=1, we detect it later, computing the E-order

 numg=size(Eco);
 for (k=1;k<=numg;k++){ if (size(newcoef[k])==1){Eco[k][1]=cleanunit(Eco[k][1],n,flaglist);}}

// checking Eco

ccase=0;
cont2=0;
cont3=0;
val=0;

// CASE Eco=0: If Eco=empty list then as ideal Eco=0

if (numg==0){ccase=1;}
else
{
for (i=1;i<=numg;i++) {rs2[i]=size(newcoef[i]);
                       if (rs2[i]==1){val=val+n;                                               // monomials
                                      for (l=1;l<=n; l++) {if (Eco[i][1][l]==0) {cont2=cont2+1;}}
                                      }
                       else{val=val+(2*n);                                                     // binomials
                            for (l=1;l<=n; l++) {if (Eco[i][1][l]==0) {cont2=cont2+1;}
                                                 if (Eco[i][2][l]==0) {cont2=cont2+1;}}
                            }
                       }

// If cont2=val then all the entries of Eco are zero!! As ideal Eco=1

for (i=1;i<=sP;i++){if (rs[i]==2){                                                           // binomials
                                  for (l=1;l<=n;l++) {if (expP[i][1][l]!=0) {cont3=cont3+1;}
                                                      if (expP[i][2][l]!=0) {cont3=cont3+1;}}
                                 }
                    else{                                                                    // monomials
                         for (l=1;l<=n;l++) {if (expP[i][1][l]!=0) {cont3=cont3+1;}}
                        }
                   }

// If cont3=0 all the entries of expP are zero!! As ideal P=1 this is detected before
// If cont3=1 then P is bold regular


// CASE Eco=1

if (cont2==val and cont3==1){ccase=2;}    // BOLD REGULAR CASE
if (cont2==val and cont3>1){ccase=3;}     // CASE P=x^{\alpha},x^{\beta}, IN FACT, BOLD REGULAR
if (cont2==val and cont3==0){ccase=4;}    // P=1, then I=1 monomial case

// Case BOLD REGULAR P=x^{\alpha}*(1-\mu y^{\delta})
// IT IS NON NECESSARY TO CHECK IT, Eco=empty list, already done!

 L=maxEord(newcoef,Eco,numg,n,flaglist);         // L[1] is the E-order of Eco
 if (L[1]==0){ccase=2; print("E-order zero!");}  // BOLD REGULAR CASE

// we leave it to check the computations

} // close else

return(Eco,newcoef,ccase);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1),y(2),x(3),y(4),x(5..7)),dp;
list flag=identifyvar();
ideal P=x(1)^2*x(3)^5-x(5)^7*y(4),x(6)^3*y(2)^5-x(7)^5,x(5)^3*x(6)-y(4)^3*x(1)^5;
list L=data(P,3,7);
list L2=ECoef(L[1],L[2],3,1,3,7,flag);
L2[1];  // exponents of the E-Coefficient ideal respect to x(1)
L2[2];  // its coefficients
L2[3];  // classify the type of ideal obtained

ring r = 0,(x(1),y(2),x(3),y(4)),dp;
list flag=identifyvar();
ideal J=x(1)^3*(1-2*y(2)*y(4)^2);  // Bold regular case
list L=data(J,1,4);
list L2=ECoef(L[1],L[2],1,1,3,4,flag);
L2;

ring r = 0,(x(1),y(2),x(3),y(4),x(5..7)),dp;
list flag=identifyvar();
ideal J=x(1)^3-x(3)^2*y(4)^2,x(1)*x(7)*y(2)-x(6)^3*x(5)*y(4)^3,x(5)^3-x(5)^3*y(2)^2;
list L=data(J,3,7);
list L2=ECoef(L[1],L[2],3,1,2,7,flag);
L2;

ring r = 3,(x(1),y(2),x(3),y(4),x(5..7)),dp;
list flag=identifyvar();
ideal J=x(1)^3-x(3)^2*y(4)^2,x(1)*x(7)*y(2)-x(6)^3*x(5)*y(4)^3,x(5)^3-x(5)^3*y(2)^2;
list L=data(J,3,7);
list L2=ECoef(L[1],L[2],3,1,2,7,flag);
L2; // THE COMPUTATIONS ARE NOT CORRECT IN CHARACTERISTIC p>0
    // because numbers are treated as 0 in assignments

}
////////////////////////////////////////////////////////////////////////////
// The intvec a indicates the previous center
// Hhist = intvec of exceptional divisors of the parent chart

proc determinecenter(list Coef,list expJ,number c,int n,int Y,intvec a,list listmb,list flag,int control3,intvec Hhist)
"USAGE: determinecenter(Coef,expJ,c,n,Y,a,listmb,flag,control3,Hhist);
        Coef, expJ, listmb, flag lists, c number, n, Y, control3 integers, a, Hhist intvec
COMPUTE: next center of blowing up and related information, see example
RETURN: several lists defining the center and related information
EXAMPLE: example determinecenter; shows an example
"
{int i,j,rstep,l,mm,cont,cont1,cont2,cont3,a4,sI,sP,V,V2,ccase,b,Mindx,tip,mval;
 number auxc,a1,a2,ex,maxEo,aux;

 list D,H,auxJ; // lists of D_n,D_n-1,...,D_1; H_n,H_n-1,...,H_1; J_n,J_n-1,...,J_1

 list oldOlist,oldC,oldt,oldD,oldH,allH;  // information of the previous step

 list Olist,C,t,Dstar,center,expI,expP,newJ,maxset;

 list maxvar,auxlist,aux3,auxD,auxolist,auxdiv,auxaux,L,rs,auxgamma,auxg2,aux1;   // auxiliary lists
 list auxinvlist,newcoef,EL,Ecoaux,Hplus,transH,Hsum,auxset,sumnewH;              // auxiliary lists
 list auxcoefI,auxcent,center2;

 intvec oldinfobo7,infobo7;
 int infaux,leh,leh2,leh3;

tip=listmb[1];   // It is not used in this procedure, it is used to compute the lcm of the denominators
oldOlist=listmb[2];
oldC=listmb[3];
oldt=listmb[4];  // t= resolution function
oldD=listmb[5];

oldH=listmb[6];
allH=listmb[7];

oldinfobo7=listmb[8];  // auxiliary intvec, it is used to define BO[7]

// inicializating lists
 Olist=list();
 C=list();
 auxinvlist=list();

 auxJ[1]=expJ;
 rstep=n;             // we are in dimension rstep
 auxc=c;
 cont=1;

if (Y==0) {D=iniD(n); H=iniD(n); infobo7=-1;} // first center, inicializate previous information

 if (Y!=0 and rstep==n)           // In dimension n, D'_n is always of this form
   { auxdiv=list0(n);
     Dstar[1]=oldD[1];

     b=size(a);
     for (i=1;i<=n;i++) {for (j=1;j<=b;j++) {if (a[j]==i) {aux=aux+oldD[1][i];}}}
     Dstar[1][Y]=aux;
     aux=0;

     auxdiv[Y]=oldOlist[1]-oldC[1];
     D[1]=sumlist(Dstar[1],auxdiv);}  // list defining D_n

// computing strict transforms of the exceptional divisors H

if (Y!=0){transH=iniD(n);
          for (i=1;i<=size(oldH);i++){transH[i]=oldH[i]; transH[i][Y]=0;}         // Note: size(oldH)<=n
          allH[Y]=1;}                                                             // transform of |H|=H_nU...UH_1

// We put here size(oldH) instead of n because maybe we have not
// calculated all the dimensions in the previous step

// STARTING THE LOOP

 while (rstep>=1)
  {
    if (Y!=0 and rstep!=n) // transformation law of D_i for i<n
    {
      if (cont!=0)      // the resolution function did not drop in higher dimensions
      {
       if (oldt[n-rstep]==a1/a2 and c==oldC[1] and control3==0)
        {auxD=list0(n);
         auxD[Y]=oldOlist[n-rstep+1]-oldC[n-rstep+1];
          Dstar[n-rstep+1]=oldD[n-rstep+1];

           for (i=1;i<=n;i++) {for (j=1;j<=b;j++) {if (a[j]==i) {aux=aux+oldD[n-rstep+1][i];}}}
           Dstar[n-rstep+1][Y]=aux;
           aux=0;

           D[n-rstep+1]=sumlist(Dstar[n-rstep+1],auxD);

        }
       else
           {cont=0;
            for (j=n-rstep+1;j<=n; j++){D[j]=list0(n);}
           }
      }
    }

// Factorizing J=M*I

   cont1=0;
   for (i=1;i<=n;i++) {if (D[n-rstep+1][i]==0) {cont1=cont1+1;}}  // if it fails write: listO(n)[i]

   if (cont1==n) {expI=expJ;}    // D[n-rstep+1]=0 (is a list of zeros)
   else {
         for (i=1;i<=size(expJ);i++)
         {rs[i]=size(Coef[i]);
          if (rs[i]==2){ aux1=list();
                         aux1[1]=reslist(expJ[i][1],D[n-rstep+1]);
                         aux1[2]=reslist(expJ[i][2],D[n-rstep+1]);
                         expI[i]=aux1;}                             // binomial
          else {aux1=list();
                aux1[1]=reslist(expJ[i][1],D[n-rstep+1]);
                expI[i]=aux1;}}                                     // monomial
        }

// NOTE: coeficients of I = coeficients of J, because I and J differ in a monomial

// Detecting errors, negative exponents in expI

sI=size(expI);

for (i=1;i<=sI;i++)
{rs[i]=size(Coef[i]);
 if (rs[i]==2){for (j=1;j<=2;j++){for (l=1;l<=n; l++)
             {if (expI[i][j][l]<0) {print("ERROR, the BINOMIAL ideal I has negative components");
        //   print("M ideal"); print(D[n-rstep+1]); print(expI); print("dimension"); print(rstep);
        //                print("previous chart"); print(size(finalchart)); ~;
 }}}}
  else {for (l=1;l<=n; l++)
  {if (expI[i][1][l]<0) {print("ERROR, the MONOMIAL ideal I has negative components");
        //  print("M ideal"); print(D[n-rstep+1]); print(expI); print("dimension"); print(rstep);
        //  print("previous chart"); print(size(finalchart)); ~;
  }}}
}

// Compute the maximal E-order of I

L=maxEord(Coef,expI,sI,n,flag);
maxEo=L[1]; // E-order of I

// Inicializating information

   auxolist=maxEo;
   a1=maxEo;
   a2=auxc;
   Olist=Olist+auxolist;  // list of new maximal E-orders o_n,o_{n-1},...o_1
   aux3=auxc;
   C=C+aux3;              // list of new critical values c=c_{n+1},c_{n},...c_2

// It is necessary to check if the first coordinate of the invariant has dropped or not
// NOTE: By construction, the first coordinate is always 1 !!
// It has dropped is equivalent to: CURRENT C<c of the previous step

// Calculate new H, this is done for every dimension

if (Y!=0){a4=size(oldt);
          if (n-rstep+1>a4){cont=0; oldt[n-rstep+1]=0; }            // VERIFICAR!!!!

          if (cont!=0 and oldt[n-rstep+1]==a1/a2 and c==oldC[1] and control3==0){H[n-rstep+1]=transH[n-rstep+1];

              // we fill now the value for BO[7]
                    if (oldinfobo7[n-rstep+1]==-1){leh=size(Hhist);
                                                   infobo7[n-rstep+1]=Hhist[leh];} // suitable index !!!
                    else{ infaux=oldinfobo7[n-rstep+1];
                          infobo7[n-rstep+1]=infaux;}      // the same as the previous step

                                                                                }
          else {
                if (rstep<n) {sumnewH=list0(n);
                              for (i=1;i<n-rstep+1;i++){sumnewH=sumlist(sumnewH,H[i]);}
                              H[n-rstep+1]=reslist(allH,sumnewH);}
                else {H[n-rstep+1]=allH;}

                 // we fill the value for BO[7] too, we complete it at the end if necessary
                infobo7[n-rstep+1]=-1;
               }
          }

// It is necessary to detect the monomial case AFTER inicializate the information
// OTHERWISE WE WILL HAVE EMPTY COMPONENTS IN THE RESOLUTION FUNCTION

// If maxEo=0 but maxo!=0 MONOMIAL CASE (because E-Sing(J,c) still !=emptyset)
// If maxEo=0 and maxo=0 then I=1, (real) monomial case, the same case for us
// NOTE THAT IT DOESN'T MATTER IF THERE IS A p-TH POWER OF A HYPERBOLIC EQ, THE E-ORDER IS ZERO ANYWAY

if (maxEo==0){auxgamma=Gamma(D[n-rstep+1],auxc,n); // Gamma gives (maxlist,gamma,center)
              auxg2=auxgamma[3];
              center=center+auxg2;
              center=elimrep(center);
              auxinvlist=auxgamma[2];

// print("gamma"); print(auxg2);

              break;}

// Calculate P    // P=I+M^{o/(c-o)} with weight o

if (maxEo>=auxc) {expP=expI; Mindx=0;}                 // The coefficients also remain constant
   else {ex=maxEo/(auxc-maxEo);
         auxlist=list();
         Mindx=1;
         auxlist[1]=multiplylist(D[n-rstep+1],ex);     // weighted monomial part: D[n-rstep+1]^ex;
         expP=insert(expI,auxlist);                    // P=I+D[n-rstep+1]^ex;
         auxcoefI=Coef;
         Coef=insert(Coef,list(1));}                   // Adding the coefficient for M

// NOTE: IT IS NECESSARY TO ADD COEFFICIENT 1 TO THE MONOMIAL PART M
// E-ord(P_i)=E-ord(I_i) so to compute the E-order of P_i we can compute E-ord(I_i)

// Calculate variables of E-maximal contact, ALWAYS WITH RESPECT TO THE IDEAL I !!

sP=size(expP);     // Can be different from size(expI)

if (Mindx==1){ maxvar=Emaxcont(auxcoefI,expI,sI,n,flag);}
else{ maxvar=Emaxcont(Coef,expP,sP,n,flag);}

auxc=maxvar[1];     // E-order of P, critical value for the next step, ALSO VALID auxc=maxEo;
if (auxc!=maxEo){print("ERROR, the E-order is not well computed");}

maxset=maxvar[2];

// center=center + maxset;  // HACER DESPUES Y A?ADIR SOLO V!!!!!!
// Cleaning the center: eliminating repeated variables
// center=elimrep(center);

// if (rstep==1) {break;}   // Induction finished, is not necessary to compute the rest

// Calculate Hplus=set of non permissible hypersurfaces
// RESET Hplus if c has dropped or we have eliminated hyperbolic generators

// ES NECESARIO PONER CONDICION DE SI INVARIANTE BAJA O NO??? SI BAJA HPLUS NO SE USA...

if (Y==0 or c<oldC[1] or control3==1) {Hplus=list0(n);}
else {Hsum=list0(n);
      Hplus=allH;
      for (i=1;i<=n-rstep+1;i++){Hsum=sumlist(Hsum,H[i]);}
      Hplus=reslist(Hplus,Hsum);                             // CHEQUEAR QUE NO SALEN -1'S
     }

// Taking into account variables of maxset outside of Hplus (so inside Hminus)

if (Y==0 or c<oldC[1] or control3==1){V=maxset[1];                  // Hplus=0 so any variable is permissible
                                      maxset=delete(maxset,1);}     // eliminating this variable V from maxset
else{
     // If the invariant remains constant V comes from the previous step

    if (cont!=0 and oldt[n-rstep+1]==a1/a2 and c==oldC[1]){
                                                           if (Mindx==1){
//----------------------------USING HPLUS----------------------------------------
// REMIND THAT IN THIS CASE maxset=HYPERSURFACES OF E-MAXIMAL CONTACT FOR I, INSTEAD OF P

      V2=a[n-rstep+1];           // V can be different from the variable coming from the previous step
// check that V2 belongs to maxset

for (i=1;i<=size(maxset);i++){
                              if (V2==maxset[i]){mval=1; break;}
                              else{mval=0;}
                             }

      if (Hplus[V2]==0 and mval==1){V=V2;}   // V2 is permissible
      else{
                                                      cont2=1;
                                                      cont3=1;
                                                      auxset=maxset;
                                                        while (cont2!=0){mm=auxset[1];
                                                          if (Hplus[mm]!=0) {auxset=delete(auxset,1); cont3=cont3+1;}
                                                               // eliminating non permissible variables from maxset
                                                          else {cont2=0;}}
                                                      V=maxset[cont3];        // first permissible variable
                                                      maxset=delete(maxset,cont3);
           }
                                                                         }

//-------------------------------------------------------------------------------
                                                           else{ V=a[n-rstep+1];}
                                                          }
    else {V=maxset[1];     // Hplus=0 so any variable is permissible
          maxset=delete(maxset,1);
         }

     }


// if (V!=V2 and V2!=0){print(a); print(rstep); print(V); print(V2); print("num cartas"); print(size(finalchart)); ~;}

V2=0;

// Adding the new hypersurface of E-maximal contact to the center

auxcent[1]=V;

center=center + auxcent; // print("num cartas"); print(size(finalchart)); print(center); if (size(finalchart)==2){~~;}

auxcent=list();

// Cleaning the center: eliminating repeated variables CREO QUE NO HACE FALTA

center2=elimrep(center);  // print(center2); print("-----------");

// if (size(center2)!=size(center)){print("MAL");}

// for (i=1;i<=size(center);i++){if (center2[i]!=center[i]){print("cambia");}}


if (rstep==1) {break;}   // Induction finished, is not necessary to compute the rest


// Calculate Eco=E-Coeff_V(P) where V is a permissible hypersurface which belongs to the center
// Eco can have rational exponents

Ecoaux=ECoef(Coef,expP,sP,V,auxc,n,flag);

// SPECIAL CASES: BOLD REGULAR CASE
//--------------------------------------------------------------------

if (Ecoaux[3]==1){                      // Eco=EMPTY LIST, Eco=0 AS IDEAL
                  aux1[1]=list0(n);
                  newJ[1]=aux1;         // monomial with zero entries, newJ=1 as ideal
                  newcoef[1]=list(1);   // the new coefficient is only 1
                  auxaux=list();
                  auxaux[1]=newJ;
                  auxJ=auxJ+auxaux;     // auxJ list of ideals J_i
                  auxinvlist=1;
                  break;}

//-----------------------------------------------------------
// THIS CASE IS NOT GOING TO APPEAR, BUT WE LEAVE IT TO CHECK COMPUTATIONS

if (Ecoaux[3]==2 or Ecoaux[3]==3){                     // Eco=0 LIST, Eco=1 AS IDEAL
                                  aux1[1]=list0(n);
                                  newJ[1]=aux1;
                                  newcoef[1]=list(1); // print("Strange case happens"); ~;
                                  auxaux=list();
                                  auxaux[1]=newJ;
                                  auxJ=auxJ + auxaux;  // auxJ list of ideals J_i
                                  auxinvlist=1;
                                  break;}
//-----------------------------------------------------------
// THIS CASE IS NOT GOING TO APPEAR, BUT WE LEAVE IT TO CHECK COMPUTATIONS

// P=1 THIS CANNOT HAPPEN SINCE P=1 IFF I=1 (or I is equivalent to 1)
// and this is the monomial case, already checked

if (Ecoaux[3]==4){print("ERROR in ECoef"); break;}
//-----------------------------------------------------------

// If we are here Ecoaux[3]=0, then continue

// Filling the list of "ideals", auxJ=J_n,J_{n-1},...

 newJ=Ecoaux[1];
 newcoef=Ecoaux[2];

 auxJ=insert(auxJ,newJ,n-rstep+1); // newJ is inserted after n-rstep+1 position, so in position n-rstep+2

// New input for the loop, if we are here newJ is different from 0

   expJ=newJ;
   Coef=newcoef;

   newJ=list();
   expI=list();
   expP=list();
   rstep=rstep-1;  // print(size(auxJ));
}

// EXIT LOOP "while"
// we do NOT construct the center as an ideal because WE USE LISTS

t=dividelist(Olist,C);    // resolution function t

// Complete the intvec infobo7 if necessary

if (control3==1){infobo7=-1;} // We reset the value after clean hyperbolic equations
leh2=size(Olist);
leh3=size(infobo7);
if (leh3<leh2){for (j=leh3+1;j<=leh2; j++){infobo7[j]=-1;}}

// Auxiliary list to complete the resolution function in special cases
if (size(auxinvlist)==0) {auxinvlist[1]=0;}

return(center,auxJ,Olist,C,t,D,H,allH,auxinvlist,infobo7);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..4)),dp;
  list flag=identifyvar();
  ideal J=x(1)^2-x(2)^2*x(3)^5, x(1)*x(3)^3+x(4)^6;
  list Lmb=1,list(0,0,0,0),list(0,0,0,0),list(0,0,0,0),iniD(4),iniD(4),list(0,0,0,0),-1;
  list L=data(J,2,4);
  list LL=determinecenter(L[1],L[2],2,4,0,0,Lmb,flag,0,-1); // Compute the first center
  LL[1];  // index of variables in the center
  LL[2];  // exponents of ideals J_4,J_3,J_2,J_1
  LL[3];  // list of orders of J_4,J_3,J_2,J_1
  LL[4];  // list of critical values
  LL[5];  // components of the resolution function t
  LL[6];  // list of D_4,D_3,D_2,D_1
  LL[7];  // list of H_4,H_3,H_2,H_1 (exceptional divisors)
  LL[8];  // list of all exceptional divisors acumulated
  LL[9];  // auxiliary invariant
  LL[10]; // intvec pointing out the last step where the function t has dropped

  ring r= 0,(x(1..4)),dp;
  list flag=identifyvar();
  ideal J=x(1)^3-x(2)^2*x(3)^5, x(1)*x(3)^3+x(4)^5;
  list Lmb=2,list(0,0,0,0),list(0,0,0,0),list(0,0,0,0),iniD(4),iniD(4),list(0,0,0,0),-1;
  list L2=data(J,2,4);
  list L3=determinecenter(L2[1],L2[2],2,4,0,0,Lmb,flag,0,-1); // Example with rational exponents in E-Coeff
  L3[1]; // index of variables in the center
  L3[2]; // exponents of ideals J_4,J_3,J_2,J_1
  L3[3]; // list of orders of J_4,J_3,J_2,J_1
  L3[4]; // list of critical values
  L3[5]; // components of the resolution function
}
////////////////////////////////////////////////////////
// idchart= identity number of the current chart
// infochart=chart[idchart] information related to the chart to blow up
// infochart= int parent,int Y,intvec a,list expJ,list Coef, list flag,                // NEEDED FOR THE RESOLUTION
//            intvec Hhist, list blwhist, module path, list hipercoef, list hiperexp   // NEEDED FOR THE OUTPUT

// NOTE: IT IS NOT NECESSARY TAKE INTO ACCOUNT "y" VARIABLES BECAUSE THE CENTER IS ALREADY GIVEN

proc Blowupcenter(list center,int idchart,int nchart,list infochart,number c,int n,int currentstep)
"USAGE: Blowupcenter(center,id,nchart,infochart,c,n,cstep);
        center, infochart lists, id, nchart, n, cstep integers, c number
COMPUTE: The blowing up at the chart IDCHART along the given center
RETURN:  new affine charts and related information, see example
EXAMPLE: example Blowupcenter; shows an example
"
{int num,i,j,k,l,parent,Y,lon,m,m2;
 intvec a,Hhist,auxHhist;
 number auxsum, auxsum2;
 list sons,aux,expJ,blexpJ,blD;
 list auxstep,Coef;
 list auxchart,auxchart1,info,flaglist;
 list auxblwhist,blwhist,hipercoef,hiperexp;
module auxpath,auxp2;

parent=idchart;
num=size(center);

// Transform to intvec the list of variables defining the center
  a=center[1];
  for (i=2;i<=num;i++){a=a,center[i];}

expJ=infochart[4];
Coef=infochart[5];
flaglist=infochart[6];
Hhist=infochart[7];
blwhist=infochart[8];
auxpath=infochart[9];
hipercoef=infochart[10];
hiperexp=infochart[11];

l=size(expJ);

// input for the loop
blexpJ=expJ;

// making the blowing up in the i-th chart
for (i=1;i<=num;i++)
{
// we assign the current number of charts +1 to the i-th chart
idchart=nchart+1;
nchart=nchart+1;
aux=idchart;
sons=sons+aux;

auxstep[i]=currentstep+1;

Y=center[i];

// The blowing up

 for (j=1;j<=l;j++){lon=size(Coef[j]);
                   if (lon==1){for (m=1;m<=n;m++){for (m2=1;m2<=num;m2++){
                                                    if (m==center[m2]){auxsum=auxsum+ expJ[j][1][m];}}}
                               blexpJ[j][1][Y]=auxsum-c;
                               auxsum=0;}                   // monomial
                   else {for (m=1;m<=n;m++){for (m2=1;m2<=num;m2++){
                                              if (m==center[m2]){auxsum=auxsum+expJ[j][1][m];
                                                                auxsum2=auxsum2+expJ[j][2][m];}}}
                         blexpJ[j][1][Y]=auxsum-c;
                         blexpJ[j][2][Y]=auxsum2-c;
                         auxsum=0; auxsum2=0;}               // binomial
                  }


auxHhist=Hhist,Y;                        // history of the exceptional divisors in this chart
auxblwhist=tradblwup(blwhist,n,Y,a,num); // history of the blow ups in this chart

auxp2=auxpath,[parent,i];

auxchart1=parent,Y,a,blexpJ,Coef,flaglist,auxHhist,auxblwhist,auxp2,hipercoef,hiperexp;

// Coef, flaglist are not modified after the blowing-up, the hyperbolic information is the same as in the parent chart

auxchart[i]=auxchart1;

// Inicializating the exponents of J for the next chart

blexpJ=expJ;
}
// end of the loop

// we add its sons to the current chart
infochart=infochart+sons;
info[1]=infochart;

return(info,auxchart,nchart,auxstep,num);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1),y(2),x(3),y(4),x(5..7)),dp;
list flag=identifyvar();
ideal J=x(1)^3-x(3)^2*y(4)^2,x(1)*x(7)*y(2)-x(6)^3*x(5)*y(4)^3,x(5)^3-x(5)^3*y(2)^2;
list Lmb=2,list(0,0,0,0,0,0,0),list(0,0,0,0,0,0,0),list(0,0,0,0,0,0,0),iniD(7),iniD(7),list(0,0,0,0,0,0,0),-1;
list L=data(J,3,7);
list L2=determinecenter(L[1],L[2],2,7,0,0,Lmb,flag,0,-1); // Computing the center
module auxpath=[0,-1];
list infochart=0,0,0,L[2],L[1],flag,0,list(0,0,0,0,0,0,0),auxpath,list(),list();
list L3=Blowupcenter(L2[1],1,1,infochart,2,7,0);
L3[1]; // current chart (parent,Y,center,expJ,Coef,flag,Hhist,blwhist,path,hipercoef,hiperexp) with sons: [12],...,[16]
L3[2][1]; // information of its first son, write L3[2][2],...,L3[2][5] to see the other sons
L3[3];    // current number of charts
L3[4];    // step/level associated to each son
L3[5];    // number of variables in the center
}
//////////////////////////////////////////////////////////////

proc tradblwup(list blwhist,int n,int Y,intvec a,int num)
"Internal procedure - no help and no example available
"
{
int i,j,blwnew;
intvec aux,aux2;

for (j=1;j<=n;j++){
                   for (i=1;i<=num;i++){
                                       if (j==a[i] and a[i]!=Y){blwnew=Y; break;}
                                       else {blwnew=0;}
                                       }
                   aux=blwhist[j];
                   aux2=aux,blwnew;
                   blwhist[j]=aux2;
                  }
return(blwhist);
}
//////////////////////////////////////////////////////////////
// It is called only when Eord(J)=0, and J!=1 it is checked inside
// SO IT IS CALLED AFTER: maxEord(Coef,expJ,sJ,n,flaglist); --> gives (max E-order,sums)

proc Nonhyp(list Coef,list expJ,int sJ,int n,list flaglist,list sums)
"USAGE: Nonhyp(Coef,expJ,sJ,n,flaglist,sums);
        Coef, expJ, flaglist, sums lists, sJ, n integers
COMPUTE: The "ideal" generated by the non hyperbolic generators of J
RETURN: lists with the following information
        newcoef,newJ: coefficients and exponents of the non hyperbolic generators
        totalhyp,totalgen: coefficients and exponents of the hyperbolic generators
        flaglist: new list saying status of variables
NOTE: the basering r is supposed to be a polynomial ring K[x,y],
      in fact, we work in a localization of K[x,y], of type K[x,y]_y with y invertible variables.
EXAMPLE: example Nonhyp; shows an example
"
{
int i,j,k,h,lon,lon2,cont;
number eordcontrol;
list genhyp,listgen,listid,posnumJ,newJ,newcoef,hypcoef,hyp,aux1,aux2,aux3,aux,midlist;
list totalhyp,totalgen;

eordcontrol=0;

while (eordcontrol==0 and sJ!=0)
{

// Give a positional number/flag to each generator of expJ

for (i=1;i<=sJ; i++){listgen=expJ[i]; listid=i; posnumJ[i]=listgen+listid; }

// Select the non hyperbolic and hyperbolic generators

for (j=1;j<=sJ; j++){lon=size(Coef[j]);
                     if (lon==1){

// IS NOT NECESSARY TO CHECK IF THERE EXIST A MONOMIAL WITH ONLY UNITS, ALREADY DONE!!

                                     aux1=aux1+posnumJ[j];
                                     aux3=list();
                                     aux3[1]=expJ[j];
                                     newJ=newJ+aux3;
                                     aux3[1]=Coef[j];
                                     newcoef=newcoef+aux3;
                                }

                     else{   // CHECKING BINOMIALS, ONE TERM WITH E-ORDER ZERO GIVES HYPERBOLIC EQ

                          if (sums[j][1]==0 or sums[j][2]==0){aux2=aux2+posnumJ[j];
                                                              aux3=list();
                                                              aux3[1]=expJ[j];
                                                              genhyp=genhyp+aux3;
                                                              aux3[1]=Coef[j];
                                                              hypcoef=hypcoef+aux3;
                                                              if (sums[j][1]==0){aux3[1]=expJ[j][2]; hyp=hyp+aux3;}
                                                              if (sums[j][2]==0){aux3[1]=expJ[j][1]; hyp=hyp+aux3;}
                                                             }
                          else {aux1=aux1+posnumJ[j];
                                aux3=list();
                                aux3[1]=expJ[j];
                                newJ=newJ+aux3;
                                aux3[1]=Coef[j];
                                newcoef=newcoef+aux3;}

                          }
                    }

// NOTE: aux1 and aux2 are no needed right now!

// Identify new y variables, that is, x variables in the monomials contained in hyp

h=size(hyp);

for (k=1;k<=h; k++){ for(i=1;i<=n; i++){ if (hyp[k][i]!=0 and flaglist[i]==0) {flaglist[i]=1;}}}

// To replace x by y IT IS NECESSARY TO CHANGE THE BASERING!!! We change only the list flaglist

// CHECK IF THE IDEAL IS ALREADY GENERATED BY MONOMIALS, in this case
// WE HAVE FINISHED THE E-RESOLUTION PART, J GENERATED BY MONOMIALS AND HYPERBOLIC EQS

cont=0;
lon2=size(newJ);
for (j=1;j<=lon2; j++){if (size(newJ[j])==1){cont=cont+1;}}

if (cont==lon2){newcoef=list();
                newJ=list();
                totalgen=totalgen+genhyp;
                totalhyp=totalhyp+hypcoef;
                break;}

// CHECK IF THERE ARE MORE HYPERBOLIC EQUATIONS AFTER UPDATE THE FLAG LIST
// CHECK THE MAXIMAL E-ORDER AGAIN

if (lon2==0){   // we are in the previous case, newJ=empty list, save values and exit

             totalgen=totalgen+genhyp;
             totalhyp=totalhyp+hypcoef;
             break;
             }

midlist=maxEord(newcoef,newJ,lon2,n,flaglist);

eordcontrol=midlist[1];

  if (eordcontrol==0){                  // new input for the loop
                      Coef=newcoef;
                      expJ=newJ;
                      sJ=lon2;
                      sums=midlist[2]; // flaglist is already updated

                      totalgen=totalgen+genhyp;
                      totalhyp=totalhyp+hypcoef;

                      hypcoef=list();
                      genhyp=list();

                      newJ=list();
                      newcoef=list();
                    }
else{  // If the process is already finished we save the values and exit

     totalgen=totalgen+genhyp;
     totalhyp=totalhyp+hypcoef;
    }

} // closing while

return(newcoef,newJ,totalhyp,totalgen,flaglist);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1),y(2),x(3),y(4),x(5..7)),dp;
list flag=identifyvar();  // List giving flag=1 to invertible variables: y(2),y(4)
ideal J=x(1)^3-x(3)^2*y(4)^2,x(1)*x(7)*y(2)-x(6)^3*x(5)*y(4)^3,1-x(5)^2*y(2)^2;
list L=data(J,3,7);
list L2=maxEord(L[1],L[2],3,7,flag);
L2[1];     // Maximum E-order
list New=Nonhyp(L[1],L[2],3,7,flag,L2[2]);
New[1];    // Coefficients of the non hyperbolic part
New[2];    // Exponents of the non hyperbolic part
New[3];    // Coefficients of the hyperbolic part
New[4];    // New hyperbolic equations
New[5];    // New list giving flag=1 to invertible variables: y(2),y(4),y(5)

ring r = 0,(x(1..4)),dp;
list flag=identifyvar();
ideal J=1-x(1)^5*x(2)^2*x(3)^5, x(1)^2*x(3)^3+x(1)^4*x(4)^6;
list L=data(J,2,4);
list L2=maxEord(L[1],L[2],2,4,flag);
L2[1];     // Maximum E-order
list New=Nonhyp(L[1],L[2],2,4,flag,L2[2]);
New;

}
//////////////////////////////////////////////////////////////

proc calculateI(list Coef,list expJ,number c,int n,int Y,intvec a,number oldordI,list oldD)
"USAGE: calculateI(Coef,expJ,c,n,Y,a,b,D);
        Coef, expJ, D lists, c, b numbers, n,Y integers, a intvec
RETURN: ideal I, non monomial part of J
EXAMPLE: example calculateI; shows an example
"
{
 int i,cont1,b,j;
 number EordI,aux;
 list D,L,expI;
 list auxdiv,Dstar,aux1,rs;

// WE NEED THE MONOMIAL PART, BUT ONLY IN DIMENSION n

     auxdiv=list0(n);
     auxdiv[Y]=oldordI-c;
     Dstar[1]=oldD[1];

     b=size(a);
     for (i=1;i<=n;i++) {for (j=1;j<=b;j++) {if (a[j]==i) {aux=aux+oldD[1][i];}}}
     Dstar[1][Y]=aux;
     aux=0;

     D[1]=sumlist(Dstar[1],auxdiv);

   cont1=0;
   for (i=1;i<=n;i++) {if (D[1][i]==0) {cont1=cont1+1;}}   // if it fails write listO(n)[i]

   if (cont1==n) {expI=expJ;}
   else {
         for (i=1;i<=size(expJ);i++)
         {rs[i]=size(Coef[i]);
          if (rs[i]==2){ aux1=list();
                         aux1[1]=reslist(expJ[i][1],D[1]);
                         aux1[2]=reslist(expJ[i][2],D[1]);
                         expI[i]=aux1;}                            // binomial
          else {aux1=list();
                aux1[1]=reslist(expJ[i][1],D[1]);
                expI[i]=aux1;}}                                    // monomial
        }

return(expI);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..3)),dp;
  list flag=identifyvar();
  ideal J=x(1)^4*x(2)^2, x(3)^3;
  list Lmb=1,list(0,0,0),list(0,0,0),list(3),iniD(3),iniD(3),list(0,0,0),-1;
  list L=data(J,2,3);
  list LL=determinecenter(L[1],L[2],3,3,0,0,Lmb,flag,0,-1); // Calculate the center
  module auxpath=[0,-1];
  list infochart=0,0,0,L[2],L[1],flag,0,list(0,0,0),auxpath,list(),list();
  list L3=Blowupcenter(LL[1],1,1,infochart,3,3,0); // blowing-up and looking to the x(3) chart
  calculateI(L3[2][1][5],L3[2][1][4],3,3,3,L3[2][1][3],3,iniD(3)); //  (I_3)
  // looking to the x(1) chart
  calculateI(L3[2][2][5],L3[2][2][4],3,3,1,L3[2][2][3],3,iniD(3)); //  (I_3)
}
//////////////////////////////////////////////////////////////////////////////////////
//                                                                                  //
//  E-RESOLUTION: Eresol(J) subroutine computing the E-resolution of J, char 0      //
//                                                                                  //
//////////////////////////////////////////////////////////////////////////////////////

proc Eresol(ideal J)
"USAGE: Eresol(J); J ideal
RETURN: The E-resolution of singularities of J in terms of the affine charts, see example
EXAMPLE: example Eresol; shows an example
"
{int i,n,k,idchart,nchart,parent,Y,oldid,tnum,s,cont,control,control2,control3,cont2,val,rs2,l,cont3,tip;
 intvec a,Hhist;
 number c,EordJ,EordI,oldordI;
 list L,LL,oldD,t,auxL,finalchart,chart,auxchart,newL,auxp,auxfchart,L2;
 list Coef,expJ,expI,sons,oldOlist,oldC,oldt,oldH,allH,auxordJ,auxordI,auxmb,mobile,invariant;
 list step,nsons,auxinv,extraL,totalinv,auxsum;
 string empstring;
 module auxpath;

// ADDED LATER

 list flag,newflag,blwhist,hipercoef,hiperexp,hipercoefson,hiperexpson;
 intvec infobo7;

export finalchart;
// export nsons;
// export tnum;
// export nchart;
// export step;
export invariant;
 export auxinv;
export mobile;

 n=nvars(basering);
 flag=identifyvar();

 k=size(J);
// Checking input data
 if (inidata(J,k)==0){return("This library only works for binomial ideals.");}

idchart=1;
nchart=1;
parent=0;
step=0;
control=0;
control2=0;
control3=0;

// Translate the input ideal to a list
 auxL=data(J,k,n);                       // data gives (Coef,Exp)

// THEREAFTER WE WORK ALL THE TIME WITH LISTS

L=maxEord(auxL[1],auxL[2],k,n,flag);   // gives (max E-ord, sums)
EordJ=L[1];

// before the first blow up I=J
EordI=EordJ;

//  main loop AT EACH CHART WE MUST INICIALIZATE ALL THE VALUES AND
// CONSTRUCT THE FIRST CHART chart[1] BEFORE THE LOOP

// at the first step, before the blow up, there are no exceptional divisors, Y=0
Y=0;
expJ=auxL[2];
Coef=auxL[1];
Hhist=0;
blwhist=list0(n);
auxpath=[0,-1];
hipercoef=list();   // this is for the first chart
hiperexp=list();
auxp=parent,Y,a,expJ,Coef,flag,Hhist,blwhist,auxpath,hipercoef,hiperexp;
chart[1]=auxp;      // information of the first chart

tip=1;
oldOlist=list0(n);
oldC=list0(n);
oldC[1]=EordJ;    // non necessary here
c=EordJ;          // the value c is given by the previous step
oldt=list0(n);
oldD=iniD(n);
oldH=iniD(n);
allH=list0(n);

for (i=1;i<=n;i++){infobo7[i]=-1;}

auxmb=tip,oldOlist,oldC,oldt,oldD,oldH,allH,infobo7;
mobile[1]=auxmb;           // mobile corresponding to the first chart
auxinv[1]=list(0);

// NOTE: oldC[1] is the value c to classify the chart in one of the next cases

// HERE BEGIN THE LOOP

while (idchart<=nchart)   // WE PROCEED WHILE THERE EXIST UNSOLVED CHARTS
{
if (idchart!=1)           // WE ARE NOT IN THE FIRST CHART, INICIALIZATE ALL THE VALUES
{

parent=chart[idchart][1];
Y=chart[idchart][2];
a=chart[idchart][3];
expJ=chart[idchart][4];
Coef=chart[idchart][5];
flag=chart[idchart][6];
Hhist=chart[idchart][7]; // it is not necessary for the computations
blwhist=chart[idchart][8];
auxpath=chart[idchart][9];
hipercoef=chart[idchart][10];
hiperexp=chart[idchart][11];

k=size(Coef);   // IT IS NECESSARY TO COMPUTE IT BECAUSE IT DECREASES IF THERE ARE HYPERBOLIC EQS

auxordJ=maxEord(Coef,expJ,k,n,flag);
EordJ=auxordJ[1];

if (control==0){c=mobile[parent+1][3][1];}  // we keep c from the last step
else {c=EordJ; control=0; }                  // we reset the value of c

 if (control2==1){c=EordJ; control2=0; control3=1;}    // we reset the value of c

// NOTE: oldC[1] is the value c to classify the chart in one of the next cases

}

// The E-order must be computed here

oldid=idchart;

if (EordJ<0) {print("ERROR in J in chart"); print(idchart); ~; break;}


//-------------------------------------------------------------
// CASE J=1, if we reset c, can happen Eord=c=0

// or if there are hyperbolic equations at the beginning!!! A?ADIR!!!!

// if (EordJ==0){auxfchart[1]=chart[idchart];       // WE HAVE FINISHED
//              finalchart=finalchart+auxfchart;
//              empstring="#";                   print("reset c and Eord=c=0"); print(idchart);
//              invariant[idchart]=empstring;
//              auxinv[idchart]=list(0);
//              nsons[idchart]=0;
//              idchart=idchart+1;}


//----------------------------------------------------------------------
if (EordJ>=c and EordJ!=0)      // subroutine: E-RESOLUTION OF PAIRS
{
  if (parent>0)
  { LL=determinecenter(Coef,expJ,c,n,Y,a,mobile[parent+1],flag,control3,chart[parent][7]); }
  else { LL=determinecenter(Coef,expJ,c,n,Y,a,mobile[parent+1],flag,control3,Hhist); }

// determinecenter gives (center,auxJ,Olist,C,t,D,H,allH,auxinvlist,infobo7)

// save current values, before the blow up
oldOlist=LL[3];
tip=computemcm(oldOlist);
oldC=LL[4];
oldt=LL[5];
oldD=LL[6];
oldH=LL[7];
allH=LL[8];
auxinv[idchart]=LL[9];
infobo7=LL[10];

auxmb=tip,oldOlist,oldC,oldt,oldD,oldH,allH,infobo7;
mobile[idchart+1]=auxmb;
invariant[idchart]=oldt;

newL=Blowupcenter(LL[1],idchart,nchart,chart[idchart],c,n,step[idchart]);

// Blowupcenter gives (info,auxchart,nchart,auxstep,num)

// IMPORTANT: ADD THE NEW CHARTS AFTER EACH BLOW UP, IN ORDER TO KEEP THEM CORRECTLY

step=step+newL[4];
nsons[idchart]=newL[5];

chart=chart+newL[2];
finalchart=finalchart+newL[1];

// new input for the loop

idchart=idchart+1;
nchart=newL[3];

control3=0;

} // END OF CASE EordJ>=c
//---------------------------------------------------------------------

else{

// compute EordI=max E-order(I)

expI=calculateI(Coef,expJ,c,n,Y,a,mobile[parent+1][2][1],mobile[parent+1][5]);
k=size(expJ);                     // probably non necessary
auxordI=maxEord(Coef,expI,k,n,flag);
EordI=auxordI[1];
auxsum=auxordI[2];

// CASE EordI>0  DROP c AND CONTINUE

if (EordI>0){idchart=idchart;  // keep the chart and back to the main loop while, dropping the value of c
             control=1;}
else{                          // EordI=0, so check if I=1 or not

cont2=0;                       // If cont2=val then all the entries of expI are zero!!
val=0;

for (i=1;i<=k;i++) {rs2=size(Coef[i]);
                    if (rs2==1){if (auxsum[i][1]==0){cont2=val; break;} // THERE EXIST A MONOMIAL WITH ONLY UNITS

                                val=val+n;                                               // monomials
                                for (l=1;l<=n; l++) {if (expI[i][1][l]==0) {cont2=cont2+1;}}
                               }
                    else{val=val+(2*n);                                                     // binomials
                         for (l=1;l<=n; l++) {if (expI[i][1][l]==0) {cont2=cont2+1;}
                                              if (expI[i][2][l]==0) {cont2=cont2+1;}}
                        }
                    }


// CASE EordI==0 AND I=1 THIS CHART IS DONE, FINISH

// NOTE: THIS CASE IS NOT MONOMIAL BECAUSE E-Sing(J,c) is empty

if (cont2==val){auxfchart[1]=chart[idchart];
                finalchart=finalchart+auxfchart;
                empstring="#";
                invariant[idchart]=empstring;
                auxinv[idchart]=list(0);
                nsons[idchart]=0;

// information for the mobile
                tip=1;
                oldOlist=list(0);
                oldC=list(0);
                oldt=list(0);
                oldD=list(0);
                oldH=list(0);
                allH=list(0);  // the value of the parent + the new one
                infobo7=-1;

                auxmb=tip,oldOlist,oldC,oldt,oldD,oldH,allH,infobo7;
                mobile[idchart+1]=auxmb;

                idchart=idchart+1;}

else{         // CASE EordI==0 AND I!=1 --> HYPERBOLIC EQUATIONS

// COMPUTE THE IDEAL OF NON HYPERBOLIC ELEMENTS

extraL=Nonhyp(Coef,expI,k,n,flag,auxordI[2]);    // gives (newcoef,newI,hypcoef,genhyp,flaglist)

// CHECK IF ALL THE VARIABLES ARE ALREADY INVERTIBLE

newflag=extraL[5];
chart[idchart][6]=extraL[5];          // update the status of variables

cont3=0;
for (i=1;i<=n;i++){if (newflag[i]==1){cont3=cont3+1;}}

if (cont3==n){    // ALL THE VARIABLES ARE INVERTIBLE
              auxfchart[1]=chart[idchart];
              finalchart=finalchart+auxfchart;
              empstring="@";
              invariant[idchart]=empstring;
              auxinv[idchart]=list(0);
              nsons[idchart]=0;

// information for the mobile
                tip=1;
                oldOlist=list(0);
                oldC=list(0);
                oldt=list(0);
                oldD=list(0);
                oldH=list(0);
                allH=list(0);
                infobo7=-1;

                auxmb=tip,oldOlist,oldC,oldt,oldD,oldH,allH,infobo7;
                mobile[idchart+1]=auxmb;

              idchart=idchart+1;}
else{     // OTHERWISE, CONTINUE CHEKING IF newI=0 or not

Coef=extraL[1];
expI=extraL[2];

hipercoefson=extraL[3];  // Information about hyperbolic generators
hiperexpson=extraL[4];

k=size(expI);

if (k==0){auxfchart[1]=chart[idchart];       // WE HAVE FINISHED
          finalchart=finalchart+auxfchart;
          empstring="#";                  //  no more non-hyperbolic generators in this chart
          invariant[idchart]=empstring;
          auxinv[idchart]=list(0);
          nsons[idchart]=0;

// information for the mobile
                tip=1;
                oldOlist=list(0);
                oldC=list(0);
                oldt=list(0);
                oldD=list(0);
                oldH=list(0);
                allH=list(0);
                infobo7=-1;

                auxmb=tip,oldOlist,oldC,oldt,oldD,oldH,allH,infobo7;
                mobile[idchart+1]=auxmb;

          idchart=idchart+1;}

else{           // CONTINUE WITH THE IDEAL OF NON HYPERBOLIC EQS

     chart[idchart][4]=expI;   // new input ideal and coefficients
     chart[idchart][5]=Coef;
     chart[idchart][10]=hipercoef+hipercoefson;
     chart[idchart][11]=hiperexp+hiperexpson;

     idchart=idchart;
     control2=1;   // it is necessary to reset the value of c
     control3=1;   // and the previous exceptional divisors
    }

// PROBABLY IT IS NEC MORE INFORMATION !!!

} // closing else otherwise

    } // closing else case I!=1

} // closing else for EordI=0

if (EordI<0) {print("ERROR in chart"); print(idchart); ~; break;}

//----------------------- guardar de momento--------
// if (EordI==0) {auxfchart[1]=chart[idchart];
//         finalchart=finalchart+auxfchart;
//         L2=Gamma(expJ,c,n); // HAY QUE APLICARLO AL M NO AL J
//         invariant[idchart]=L2[2];
//         auxinv[idchart]=list(0);
//         nsons[idchart]=0;
//         idchart=idchart+1;}
//------------------------------------------------


} // END ELSE
//---------------------------------------------------

} // END LOOP WHILE

tnum=step[nchart];

totalinv=resfunction(invariant,auxinv,nchart,n);

return(chart,finalchart,invariant,nchart,step,nsons,auxinv,mobile,totalinv);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..2)),dp;
  ideal J=x(1)^2-x(2)^3;
  list L=Eresol(J);
"Please press return after each break point to see the next element of the output list";
  L[1][1]; // information of the first chart, L[1] list of charts
~;
  L[2]; // list of charts with information about sons
~;
  L[3]; // invariant, "#" means solved chart
~;
  L[4]; // number of charts, 7 in this example
~;
  L[5]; // height corresponding to each chart
~;
  L[6]; // number of sons
~;
  L[7]; // auxiliary invariant
~;
  L[8]; // H exceptional divisors and more information
~;
  L[9]; // complete resolution function

"Second example, write L[i] to see the i-th component of the list";
  ring r = 0,(x(1..3)),dp;
  ideal J=x(1)^2*x(2),x(3)^3; // SOLVED!
  list L=Eresol(J);
  L[4];  // 16 charts
  L[9]; // complete resolution function
 ~;

"Third example, write L[i] to see the i-th component of the list";
  ring r = 0,(x(1..2)),dp;
  ideal J=x(1)^3-x(1)*x(2)^3;
  list L=Eresol(J);
  L[4];  // 8 charts, rational exponents
  L[9]; // complete resolution function
~;
}

//////////////////////////////////////////////////////////////////////////////////////

proc resfunction(list invariant, list auxinv, int nchart,int n)
"USAGE: resfunction(invariant,auxinv,nchart,n);
        invariant, auxinv lists, nchart, n integers
COMPUTE: Patch the resolution function
RETURN: The complete resolution function
EXAMPLE: example resfunction; shows an example
"
{
int i,j,l,k;
list patchfun,aux;

for (i=1;i<=nchart;i++){patchfun[i]=invariant[i];}

for (i=1;i<=nchart;i++){if (auxinv[i][1]!=0 and size(auxinv[i])==3){l=size(invariant[i]);
                                                                    for (j=1;j<=l;j++){
                                                                         if (invariant[i][j]==0){aux=auxinv[i];
                                                                                                 patchfun[i][j]=aux;
                                                                    if (l<n){for (k=j+1;k<=n;k++){patchfun[i][k]="*";}}}}

                                                                    }
                        else{
                        if (auxinv[i][1]==1 and size(auxinv[i])==1){l=size(invariant[i]);
                                                                    if (l<n){for (k=l+1;k<=n;k++){patchfun[i][k]="*";}}
                                                                    }
                            }
                        }

return(patchfun);
}
example
{"EXAMPLE:"; echo = 2;
 ring r = 0,(x(1..2)),dp;
 ideal J=x(1)^2-x(2)^3;
 list L=Eresol(J);
 L[3]; // incomplete resolution function
 resfunction(L[3],L[7],7,2); // complete resolution function
}
//////////////////////////////////////////////////////////////////////////////////////
//                                                                                  //
//                              MAIN PROCEDURE                                      //
//                                                                                  //
//////////////////////////////////////////////////////////////////////////////////////

proc BINresol(ideal J)
"USAGE: BINresol(J); J ideal
RETURN: E-resolution of singularities of a binomial ideal J in terms of the affine charts, see example
EXAMPLE: example BINresol; shows an example
"
{

int p,n;

p=char(basering);
n=nvars(basering);  // already computed in Eresol, it can be improved

 def rr=basering;

// INTERNAL CHANGE: changing the name of the variables, only if it is necessary

list Mout=changeoriginalvar();

if (Mout[2]==1){
                def r=Mout[1];
                setring r;
                ideal chy=maxideal(1);
                map frr=rr,chy;
                ideal J=frr(J);
               }
// else{def r=basering;}   // CHECK THAT IS NECESSARY !!!

// IF WE ARE IN POSTIVE CHAR

if (p>0){list Lring=ringlist(basering);
         Lring[1]=0;
//         def r=basering;
         def Rnew=ring(Lring);
         setring Rnew;
         ideal chy=maxideal(1);
         map fRnew=r,chy;
         ideal J=fRnew(J);

// E-RESOLUTION, Computations in char 0

         list L=Eresol(J);

// STEP 2: WRITE THE LOCALLY MONOMIAL IDEAL AS A MONOMIAL IDEAL

// not implemented yet, CHAR p !!!!

// STEP 3: DO THE E-RESOLUTION AGAIN (char 0 again)


// generating output in char p

         int q=lcmofall(L[4],L[8]);    // lcm of the denominators

         list B=genoutput(L[1],L[8],L[4],L[6],n,q,p); // generate output needed for visualization


//         setring r;                   // Back to the basering
//         ideal chy=maxideal(1);
//         map fr=Rnew,chy;
//         list L=fr(L);
//         list B=fr(B);

         }

else{

// E-RESOLUTION

 list L=Eresol(J);

// STEP 2: WRITE THE LOCALLY MONOMIAL IDEAL AS A MONOMIAL IDEAL

// not implemented yet

// STEP 3: DO THE E-RESOLUTION AGAIN


// generating output

      int q=lcmofall(L[4],L[8]);

      list B=genoutput(L[1],L[8],L[4],L[6],n,q,p);

     }

return(B);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..2)),dp;
  ideal J=x(1)^2-x(2)^3;
  list B=BINresol(J);
  B[1]; // list of final charts
  B[2]; // list of all charts

  ring r = 2,(x(1..3)),dp;
  ideal J=x(1)^2-x(2)^2*x(3)^2;
  list B=BINresol(J);
  B[2]; // list of all charts
}
///////////////////////////////////////////////////////

proc Maxord(list L,int n)
"USAGE: Maxord(L,n); L list, n integer
COMPUTE: Find the maximal entry of a list, input is a list defining a monomial
RETURN: maximum entry of a list and its position
EXAMPLE: example Maxord; shows an example
"
{int i,can;
 number canmax;
 list aux;

canmax=1;
can=1;
for (i=1;i<=n;i++)
{ if (L[i]>=canmax and i>=can)
 {canmax=L[i]; can=i;}}

return(canmax,can);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..3)),dp;
  ideal J=x(1)^2*x(2)*x(3)^5;
  list L=data(J,1,3);
  L[2]; // list of exponents
  Maxord(L[2][1][1],3);
}
///////////////////////////////////////////////////////

proc Gamma(list expM,number c,int n)
"USAGE: Gamma(L,c,n); L list, c number, n integer
COMPUTE: The Gamma function, resolution function corresponding to the monomial case
RETURN: lists of maximum exponents in L, value of Gamma function, center of blow up
EXAMPLE: example Gamma; shows an example
"
{int i,j,k,l,cont,can;
 intvec upla;
 number canmax;
 list expM2,gamma,L,aux,maxlist,center,aux2;

 i=1;
 cont=0;
 expM2=expM;

 while (cont==0 and i<=n)
{

  L=Maxord(expM2,n);
  aux=L[1];
  maxlist=maxlist + aux;
  can=L[2];

if (i==1) {upla=can; center=can;}
else {upla=upla,can; aux2=can; center=center+aux2;}

  canmax=sum(maxlist);
  if (canmax>=c)
  {gamma[1]=-i; gamma[2]=canmax/c; gamma[3]=upla; cont=1;}
  else {expM2[can]=0;}
  i=i+1;
}
 return(maxlist,gamma,center);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..5)),dp;
  ideal J=x(1)^2*x(2)*x(3)^5*x(4)^2*x(5)^3;
  list L=data(J,1,5);
  list G=Gamma(L[2][1][1],9,5);   // critical value c=9
  G[1]; // maximum exponents in the ideal
  G[2]; // maximal value of Gamma function
  G[3]; // center given by Gamma
}
///////////////////////////////////////////////////////

proc convertdata(list C,list L, int n, list flaglist)
"USAGE: convertdata(C,L,n,flaglist);
        C, L, flaglist lists, n integer
COMPUTE: Compute the ideal corresponding to the given lists C,L
RETURN: an ideal whose coefficients are given by C, exponents given by L
EXAMPLE: example convertdata; shows an example
"
{int i,j,k,a,b,lon;
 poly aux,aux1,aux2,aux3,f;
 ideal J;

aux=poly(0);
aux1=poly(1);
aux2=poly(0);
aux3=poly(1);


k=size(L);
for (i=1;i<=k;i++){lon=size(C[i]);
if (lon==1){                                                // variables in the monomial
            for (j=1;j<=n;j++){a=int(poly(L[i][1][j]));
                               if (a!=0){
                                         if (flaglist[j]==0){aux=poly(x(j)^a);
                                                             aux1=aux1*aux;}
                                         else {aux=poly(y(j)^a);
                                               aux1=aux1*aux;}
                                        }
                              }
            if (C[i][1]!=0){aux1=C[i][1]*aux1;}            // we add the coefficient
            else {aux1=0;}

            J[i]=aux1;
            aux1=poly(1);
           }

else{                                                    // variables in the binomial

     for (j=1;j<=n;j++){a=int(poly(L[i][1][j])); b=int(poly(L[i][2][j]));

                        if (a!=0){
                                  if (flaglist[j]==0){aux=poly(x(j)^a);
                                                      aux1=aux1*aux;}
                                  else {aux=poly(y(j)^a);
                                        aux1=aux1*aux;}
                                 }

                        if (b!=0){
                                  if (flaglist[j]==0){aux2=poly(x(j)^b);
                                                      aux3=aux3*aux2;}
                                  else {aux2=poly(y(j)^b);
                                        aux3=aux3*aux2;}
                                 }
                          }
                                                       // we add the coefficients
   if (C[i][1]!=0){aux1=C[i][1]*aux1;}
    else {aux1=0;}
   if (C[i][2]!=0){aux3=C[i][2]*aux3;}
    else {aux3=0;}

   f=aux1+aux3;
   J[i]=f;
   aux1=poly(1);
   aux3=poly(1);

     }
}
return(J);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..4),y(5)),dp;
  list M=identifyvar();
  ideal J=x(1)^2*y(5)^2-x(2)^2*x(3)^2,6*x(4)^2;
  list L=data(J,2,5);
  L[1]; // Coefficients
  L[2]; // Exponents
  ideal J2=convertdata(L[1],L[2],5,M);
  J2;
}

/////////////////////////////////////////////////////////////////////////////

proc lcmofall(int nchart,list mobile)
"USAGE: lcmofall(nchart,mobile);
        nchart integer, mobile list of lists
COMPUTE: Compute the lcm of the denominators of the E-orders of all the charts
RETURN: an integer given the lcm
NOTE: CALL BEFORE salida
EXAMPLE: example lcmofall; shows an example
"

{
int i,m,tip,mcmall;
intvec numall;

for (i=2;i<=nchart+1;i++){
                          tip=mobile[i][1];
                          if (tip!=1){numall=numall,tip;}
                         }
m=size(numall);

if (m==1){mcmall=1;}
else{
     if (numall[1]==0){numall=numall[2..m];}
     mcmall=lcm(numall);}

return(mcmall);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..2)),dp;
  ideal J=x(1)^3-x(1)*x(2)^3;
  list L=Eresol(J);
  L[4];  // 8 charts, rational exponents
  L[8][2][2]; // E-orders at the first chart
  lcmofall(8,L[8]);
}
/////////////////////////////////////////////////////////////////////////////

proc salida(int idchart,list chart,list mobile,int numson,intvec previousa,int n,int q,int p)
"USAGE: salida(idchart,chart,mobile,numson,previousa,n,q,p);
        idchart, numson, n, q, p integers, chart, mobile, lists, previousa intvec
COMPUTE: CONVERT THE OUTPUT OF A CHART IN A RING, WHERE DEFINE A BASIC OBJECT (BO)
RETURN: the ring corresponding to the chart
EXAMPLE: example salida; shows an example
"
{
int l,i,m,aux,parent,m4,j;
intvec Hhist,EOhist,aux7,aux9;
list expJ,Coef,BO,blwhist,Eolist,hipercoef,hiperexp;
list flag;

// chart gives: parent,Y,a,expJ,Coef,flag,Hhist,blwhist,path,hipercoef,hiperexp
// mobile gives: tip,oldOlist,oldC,oldt,oldD,oldH,allH,infobo7;  NOTE: Eolist=mobile[2];

// we need to define the suitable ring at this chart

list Lring=ringlist(basering);
def RR2=basering;

flag=chart[6];
string newl;

for (l=1;l<=n; l++){if (flag[l]==1){newl=string(l);
                                    Lring[2][l]="y("+newl+")";} }


         def RRnew=ring(Lring);
         setring RRnew;
         ideal chy=maxideal(1);
         map fRnew=RR2,chy;

         list chart=fRnew(chart);

         list mobile2=fRnew(mobile);


flag=chart[6];

// we need to convert expJ and Coef to an ideal

expJ=chart[4];
Coef=chart[5];
Hhist=chart[7];
blwhist=chart[8];

// now the ideal will be correctly defined in the ring Rnew

ideal J2=convertdata(Coef,expJ,n,flag);        // Computations in RRnew

//------------------------------------------------------------------------------
// START TO CREATE THE BO corresponding to this chart

BO=createBO(J2);

// MODIFY BO WITH THE INFORMATION OF THE CHART

// BO[1] an ideal, say W_i, defining the ambient space of the i-th chart of the blowing up
// If there are hyperbolic equations, we put them here

hipercoef=chart[10];
hiperexp=chart[11];

if (size(hipercoef)!=0){
                        ideal ambJ=convertdata(hipercoef,hiperexp,n,flag);
                        BO[1]=ambJ;
                       }

// BO[2] an ideal defining the controlled transform

BO[2]=J2;

// BO[3] intvec, tupla containing the maximal E-order of BO[2]

if (numson==0){BO[3]=1;}    // we write 1 if the chart is a final chart
else{
     Eolist=mobile2[2];     // otherwise, convert the list of E-orders in an intvec
     m=size(Eolist);
     aux=int(Eolist[1]*q);
     EOhist=aux;

     if (m>1){for (i=2;i<=m;i++){aux=int(Eolist[i]*q); EOhist=EOhist,aux;}}

     BO[3]=EOhist;
     }

// BO[4] the list of exceptional divisors given by Hhist

 BO[4]=constructH(Hhist,n,flag);

// BO[5] an ideal defining the map K[W] ----> K[Wi] given by blwhist

BO[5]=constructblwup(blwhist,n,chy,flag);

// BO[6] an intvec, BO[6][j]=1 indicates that <BO[4][j],BO[2]>=1, i.e. the
//                  strict transform does not meet the j-th exceptional divisor

m4=size(BO[4]);
ideal auxydeal;
ideal Jint;

for (j=1;j<=m4;j++){

                    auxydeal=BO[4][j]+J2;
                    Jint=std(auxydeal);

                    if (size(Jint)==1 and Jint[1]==1){BO[6][j]=1;}
                    else{BO[6][j]=0;}
                   }

// BO[7] intvec, the index of the first blown-up object in the resolution process
//                leading to this object for which the value of b was BO[3]
//                the subsequent ones are the indices for the Coeff-Objects
//                of BO[2] used when determining the center
//   index of last element of H^- in H


if (numson!=0){BO[7]=mobile2[8];}  // it is always -1 at the final charts

// BO[8] a matrix indicating that BO[4][i] meets BO[4][j] by BO[8][i,j]=1 for i < j

if (m4>0){
matrix aux8[m4][m4];

BO[8]=aux8;

ideal auxydeal2;
ideal Jint2;

for (i=1;i<=m4;i++){
                    for (j=i+1;j<=m4;j++){
                                        auxydeal2=BO[4][i]+BO[4][j];
                                        Jint2=std(auxydeal2);

                                        if (size(Jint2)==1 and Jint2[1]==1){BO[8][i,j]=0;}
                                        else{ for (l=1;l<j;l++){BO[8][l,j]=1;} }
                                        }

                    }
}
else{ matrix aux8[1][1];
      BO[8]=aux8;}


// BO[9] INTERNAL DATA, second component of Villamayor resolution function,
// only needed to use the visualization procedures

 int m3=size(BO[3]);

if (m3==1){aux9=intvec(0);}
else{ aux9[1]=0;
      for (i=2;i<=m3;i++){aux9=aux9,0;}
    }

BO[9]=aux9;

//------------------------------------------------------------------------------

// START TO CREATE THE extra information corresponding to this chart

/////////////// Short description of data in a chart ///////////////////
// All chart data is stored in an object of type ring, the following
// variables are always present in such a ring:

// BO:      already created

// cent:  ideal, describing the upcoming center determined by the algorithm

   ideal cent=tradtoideal(previousa,J2,flag);


// path= module (autoconverted to matrix)
// path[1][idchart]=parent[idchart] index of the parent-chart in resolution history of this chart
// path[2][idchart]=index of this chart in relation with its brother-charts

   module path=chart[9];


// lastMap: ideal, describing the preceding blow up leading to this chart

   ideal lastMap=constructlastblwup(blwhist,n,chy,flag);


//------------------------------------------------------------------------------

// EXTRA INFORMATION NEEDED

  list invSat=ideal(0),aux9;


// BACK TO THE CHAR OF THE ORIGINAL RING, IF IT HAD p>0

if (p>0){

         list Lring;
         Lring=ringlist(RRnew);
         Lring[1]=p;
         def auxRnew=ring(Lring);

         kill Lring;
         setring auxRnew;
 ideal chy=maxideal(1);
 map frnew=RRnew,chy;
 def BO=frnew(BO);

// def chart=frr(chart);
 def invSat=frnew(invSat);
 def lastMap=frnew(lastMap);
 def cent=frnew(cent);
 def path=frnew(path);

        }

// export everything needed

export BO;
export(invSat);
export lastMap;
export path;
export cent;

if (p==0){return(RRnew);}
else{
     return(auxRnew);}
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..2)),dp;
  ideal J=x(1)^2-x(2)^3;
  list L=Eresol(J);
  list B=salida(5,L[1][5],L[8][6],2,L[1][3][3],2,1,0); // chart 5
  def RR=B[1];
  setring RR;
  BO;
"press return to see next example"; ~;

  ring r = 0,(x(1..2)),dp;
  ideal J=x(1)^2-x(2)^3;
  list L=Eresol(J);
  list B=salida(7,L[1][7],L[8][8],0,L[1][5][3],2,1,0); // chart 7
  def RR=B[1];
  setring RR;
  BO;
  showBO(BO);
"press return to see next example"; ~;

  ring r = 0,(x(1..2)),dp;
  ideal J=x(1)^3-x(1)*x(2)^3;
  list L=Eresol(J); // 8 charts, rational exponents
  list B=salida(1,L[1][1],L[8][2],2,0,2,2,0); // CHART 1
  def RR=B[1];
  setring RR;
  BO;

}

/////////////////////////////////////////////////////////////////////////////
// CONVERT THE OUTPUT OF Eresol IN A LIST OF RINGS, WHERE A BASIC OBJECT (BO) IS DEFINED
// IN ORDER TO INTEGRATE THIS LIBRARY INSIDE THE LIBRARY resolve.lib

proc genoutput(list chart,list mobile,int nchart,list nsons,int n,int q, int p)
"USAGE: genoutput(chart,mobile,nchart,nsons,n,q,p);
        chart, mobile, nsons lists, nchart, n,q, p integers
RETURN: two lists, the first one gives the rings corresponding to the final charts,
        the second one is the list of all rings corresponding to the affine charts of the resolution process
EXAMPLE: example genoutput; shows an example
"
{
  int idchart,parent;
  list auxlist,solvedrings,totalringlist,previousa;
  list auxlistenp,solvedringsenp,totalringenp;

// chart gives: parent,Y,a,expJ,Coef,flag,Hhist,blwhist,path,hipercoef,hiperexp
// mobile gives: tip,oldOlist,oldC,oldt,oldD,oldH,allH,infobo7;  NOTE: Eolist=mobile[2];

  idchart=1;

// first loop, construct list previousa

  while (idchart<=nchart)
  {
    if (idchart==1){previousa[1]=chart[2][3];}
    else
    {
// if there are no sons, the next center is nothing
      if (nsons[idchart]==0){previousa[idchart]=0;}
// always fill the parent
      parent=chart[idchart][1];
      previousa[parent]=chart[idchart][3];
    }
    idchart=idchart+1;
  }
// HERE BEGIN THE LOOP
  idchart=1;
  while (idchart<=nchart)
  {
    def auxexit=salida(idchart,chart[idchart],mobile[idchart+1],nsons[idchart],previousa[idchart],n,q,p);
    if (p>0)
    { // we need the computations in char 0 too
      def auxexitenp=salida(idchart,chart[idchart],mobile[idchart+1],nsons[idchart],previousa[idchart],n,q,0);
    }
    else{def auxexitenp=auxexit;}
// we add the ring to the list of all rings
    auxlist[1]=auxexit;
    totalringlist=totalringlist+auxlist;
    auxlistenp[1]=auxexitenp;
    totalringenp=totalringenp+auxlistenp;
// if the chart has no sons, add it to the list of final charts
    if (nsons[idchart]==0)
    {
      solvedrings=solvedrings+auxlist;
      solvedringsenp=solvedringsenp+auxlistenp;
    }
    auxlist=list();
    auxlistenp=list();
    kill auxexit;
    kill auxexitenp;
    idchart=idchart+1;
  } // EXIT WHILE
  return(solvedrings,totalringlist,solvedringsenp,totalringenp);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..2)),dp;
  ideal J=x(1)^3-x(1)*x(2)^3;
  list L=Eresol(J);         // 8 charts, rational exponents
  list B=genoutput(L[1],L[8],L[4],L[6],2,2,0); // generates the output
  presentTree(B);
  list iden0=collectDiv(B);
  ResTree(B,iden0[1]);        // generates the resolution tree

// Use presentTree(B); to see the final charts
// To see the tree type in another shell
//    dot -Tjpg ResTree.dot -o ResTree.jpg
//   /usr/bin/X11/xv ResTree.jpg

}
/////////////////////////////////////////////////////////////////////

proc computemcm(list Eolist)
"USAGE: computemcm(Eolist); Eolist list
RETURN: an integer, the least common multiple of the denominators of the E-orders
NOTE: Make the same as lcmofall but for one chart. NECESSARY BECAUSE THE E-ORDERS ARE OF TYPE NUMBER!!
EXAMPLE: example computemcm; shows an example
"
{
  int m,i,aux,mcmchart;
  intvec num;
  m=size(Eolist);
  if (m==1){mcmchart=int(denominator(Eolist[1])); return(mcmchart);}
  if (m>1)
  {
    num=int(denominator(Eolist[1]));
    for (i=2;i<=m;i++)
    {aux=int(denominator(Eolist[i])); num=num,aux; }
  }
  mcmchart=lcm(num);
  return(mcmchart);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..2)),dp;
  ideal J=x(1)^3-x(1)*x(2)^3;
  list L=Eresol(J);   // 8 charts, rational exponents
  L[8][2][2];         // maximal E-order at the first chart
  computemcm(L[8][2][2]);

}
/////////////////////////////////////////////////////////////////////

proc constructH(intvec Hhist,int n,list flag)
"USAGE: constructH(Hhist,n,flag);
        Hhist intvec, n integer, flag list
RETURN: the list of exceptional divisors accumulated at this chart
EXAMPLE: example constructH; shows an example
"
{
  int i,j,m,l;
  list exceplist;
  ideal aux;
  m=size(Hhist);
  if (Hhist[1]==0 and m>1)
  {
    Hhist=Hhist[2..m]; m=m-1;
    for (i=1;i<=m;i++)
    {
      l=Hhist[i];
      if (flag[l]==0){aux=ideal(poly(x(l))); }
      else {aux=ideal(poly(y(l))); }
      exceplist[i]=aux;
    }
// eliminate repeated variables
    for (i=1;i<=m;i++)
    {
      for (j=1;j<=m;j++)
      {
        if (Hhist[i]==Hhist[j] and i!=j)
        {
          if (i<j){exceplist[i]=ideal(1);}
          if (i>j){exceplist[j]=ideal(1);}
        }
      }
    }
  }
  else  {exceplist=list();}
// else  {exceplist=list(ideal(0));} // IF IT FAILS USE THIS
  return(exceplist);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..3)),dp;
  list flag=identifyvar();
  ideal J=x(1)^4*x(2)^2, x(1)^2+x(3)^3;
  list L=Eresol(J);   // 7 charts
  // history of the exceptional divisors at the 7-th chart
  L[1][7][7]; // blow ups at x(3)-th, x(1)-th and x(1)-th charts
  constructH(L[1][7][7],3,flag);
}
/////////////////////////////////////////////////////////////////////

proc constructblwup(list blwhist,int n,ideal chy,list flag)
"USAGE: constructblwup(blwhist,n,chy,flag);
        blwhist, flag lists, n integer, chy ideal
RETURN: the ideal defining the map K[W] --> K[Wi],
        which gives the composition map of all the blowing up leading to this chart
NOTE: NECESSARY START WITH COLUMNS
EXAMPLE: example constructblwup; shows an example
"
{
  int i,j,m,m2;
  poly aux2;

  m=size(blwhist[1]);

  for (j=1;j<=m;j++)
  {
    for (i=1;i<=n;i++)
    {
      m2=blwhist[i][j];
// If m2!=0 this variable changes. First decide if the variable to multiply is invertible or not
      if  (m2!=0)
      {
        if (flag[m2]==0){aux2=poly(x(m2));}
        else {aux2=poly(y(m2));}
// And then substitute this variable for the corresponding product in the whole ideal
        if (flag[i]==0){chy=subst(chy,x(i),x(i)*aux2);}
        else {chy=subst(chy,y(i),y(i)*aux2);}
      }
    }
  }
  return(chy);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..3)),dp;
  list flag=identifyvar();
  ideal chy=maxideal(1);
  ideal J=x(1)^4*x(2)^2, x(1)^2+x(3)^3;
  list L=Eresol(J);   // 7 charts
  // history of the blow ups at the 7-th chart, center {x(1)=x(3)=0} every time
  L[1][7][8]; // blow ups at x(3)-th, x(1)-th and x(1)-th charts
  constructblwup(L[1][7][8],3,chy,flag);
}
/////////////////////////////////////////////////////////////////////

proc constructlastblwup(list blwhist,int n,ideal chy,list flag)
"USAGE: constructlastblwup(blwhist,n,chy,flag);
        blwhist, flag lists, n integer, chy ideal
RETURN: the ideal defining the last blow up
NOTE: NECESSARY START WITH COLUMNS
EXAMPLE: example constructlastblwup; shows an example
"
{
  int i,j,m,m2;
  poly aux2;
  m=size(blwhist[1]);

  if (m>0)
  {
    for (i=1;i<=n;i++){ m2=blwhist[i][m];

    // If m2!=0 this variable changes. First decide if the variable to multiply is invertible or not

    if  (m2!=0)
    {
      if (flag[m2]==0){aux2=poly(x(m2));}
      else {aux2=poly(y(m2));}

// And then substitute this variable for the corresponding product in the whole ideal

      if (flag[i]==0){chy=subst(chy,x(i),x(i)*aux2);}
      else {chy=subst(chy,y(i),y(i)*aux2);}
    }
  }
}

return(chy);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..3)),dp;
  list flag=identifyvar();
  ideal chy=maxideal(1);
  ideal J=x(1)^4*x(2)^2, x(1)^2+x(3)^3;
  list L=Eresol(J);   // 7 charts
  // history of the blow ups at the 7-th chart, center {x(1)=x(3)=0} every time
  L[1][7][8]; // blow ups at x(3)-th, x(1)-th and x(1)-th charts
  constructlastblwup(L[1][7][8],3,chy,flag);
}
/////////////////////////////////////////////////////////////////////

proc tradtoideal(intvec a,ideal J2,list flag)
"USAGE: tradtoideal(a,J2,flag);
        a intvec, J2 ideal, flag list
COMPUTE: traslate to an ideal the intvec defining the center
RETURN: the ideal of the center, given by the intvec a, or J2 if a=0
EXAMPLE: example tradtoideal; shows an example
"
{
  int i,m;
  ideal acenter,aux2;

  if (a==0)
  {acenter=J2;}
  else
  {
    m=size(a);
    for (i=1;i<=m;i++)
    {
      if (flag[a[i]]==0){aux2=poly(x(a[i]));}
      else {aux2=poly(y(a[i]));}

      acenter=acenter+aux2;
    }
  }
return(acenter);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..3)),dp;
  list flag=identifyvar();
  ideal J=x(1)^4*x(2)^2, x(1)^2+x(3)^3;
  intvec a=1,3; // first center of blowing up
  tradtoideal(a,J,flag);
}
//////////////////////////////////////////////////////////////////////////////////////
//              OPERATIONS WITH LISTS
//////////////////////////////////////////////////////////////////////////////////////

proc iniD(int n)
"USAGE: iniD(n);   n integer
RETURN: list of lists of zeros of size n
EXAMPLE: example iniD; shows an example
"
 {int i,j;
  list D,auxD;
 for (j=1;j<=n; j++) {auxD[j]=0;}
 for (i=1;i<=n; i++) {D[i]=auxD;}
 return(D);
 }
example
{"EXAMPLE:"; echo = 2;
  iniD(3);
}
/////////////////////////////////////////////////////////

proc sumlist(list L1,list L2)
"USAGE: sumlist(L1,L2);   L1,L2 lists, (size(L1)==size(L2))
RETURN: a list, sum of L1 and L2
EXAMPLE: example sumlist; shows an example
"
{
 int i,k;
 list sumL;
k=size(L1);
if (size(L2)!=k) {return("ERROR en sumlist, lists must have the same size");}
for (i=1;i<=k;i++) {sumL[i]=L1[i]+L2[i];}
return(sumL);
}
example
{"EXAMPLE:"; echo = 2;
  list L1=1,2,3;
  list L2=5,9,7;
  sumlist(L1,L2);
}
///////////////////////////////////////////////////////

proc reslist(list L1,list L2)
"USAGE: reslist(L1,L2);  L1,L2 lists, (size(L1)==size(L2))
RETURN: a list, subtraction of L1 and L2
EXAMPLE: example reslist; shows an example
"
{
 int i,k;
 list resL;
k=size(L1);
if (size(L2)!=k) {return("ERROR en reslist, lists must have the same size");}
for (i=1;i<=k;i++) {resL[i]=L1[i]-L2[i];}
return(resL);
}
example
{"EXAMPLE:"; echo = 2;
  list L1=1,2,3;
  list L2=5,9,7;
  reslist(L1,L2);
}
//////////////////////////////////////////////////////

proc multiplylist(list L,number a)
"USAGE: multiplylist(L,a); L list, a number
RETURN: list of elements of type number, multiplication of L times a
EXAMPLE: example multiplylist; shows an example
"
{int i,k;
 list newL,bb;
 number b;
 k=size(L);
 for (i=1;i<=k;i++) {b=L[i]*a; bb=b; newL=newL+bb;}
return(newL);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..3)),dp;
  list L=1,2,3;
  multiplylist(L,1/5);
}
///////////////////////////////////////////////////////

proc dividelist(list L1,list L2)
"USAGE: dividelist(L1,L2);  L1,L2 lists
RETURN: list of elements of type number, division of L1 by L2
EXAMPLE: example dividelist; shows an example
"
{int i,k,k1,k2;
list LL,bb;
number a1,a2,b;
k1=size(L1);
k2=size(L2);
if (k2!=k1) {print("ERROR en dividelist, lists must have the same size");}
if (k1<=k2) {k=k1;}
else {k=k2;}
 for (i=1;i<=k;i++)
  {a1=L1[i]; a2=L2[i]; b=a1/a2; bb=b; LL=LL+bb;}
return(LL);
}
example
{"EXAMPLE:"; echo = 2;
  ring r = 0,(x(1..3)),dp;
  list L1=1,2,3;
  list L2=5,9,7;
  dividelist(L1,L2);
}
///////////////////////////////////////////////////////

proc createlist(list L1,list L2)
"USAGE: createlist(L1,L2);  L1,L2 lists, (size(L1)==size(L2))
RETURN: list of lists of two elements, the first one of L1 and the second of L2
EXAMPLE: example createlist; shows an example
"
{int i,k;
list L,aux;
k=size(L1);
if (size(L2)!=k) {return("ERROR en createlist, lists must have the same size");}
L=list0(k);
for (i=1;i<=k;i++) {if (L1[i]!=0) {aux=L1[i],L2[i]; L[i]=aux;}
                    else {L=delete(L,i);}}
return(L);
}
example
{"EXAMPLE:"; echo = 2;
  list L1=1,2,3;
  list L2=5,9,7;
  createlist(L1,L2);
}
///////////////////////////////////////////////////////
static proc list0(int n)
"USAGE: list0(n); n integer
RETURN: list of n zeros
EXAMPLE: example list0; shows an example
"
{int i;
list L0;
for (i=1;i<=n;i++) {L0[i]=0;}
return(L0);
}
example
{"EXAMPLE:"; echo = 2;
  list0(4);
}
////////////////////////////////////////////////////////////