/usr/share/sumo/tools/tlsCycleAdaptation.py is in sumo-tools 0.32.0+dfsg1-1.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 | #!/usr/bin/env python
# Eclipse SUMO, Simulation of Urban MObility; see https://eclipse.org/sumo
# Copyright (C) 2010-2017 German Aerospace Center (DLR) and others.
# This program and the accompanying materials
# are made available under the terms of the Eclipse Public License v2.0
# which accompanies this distribution, and is available at
# http://www.eclipse.org/legal/epl-v20.html
# @file tlsCycleAdaptation.py
# @author Yun-Pang Floetteroed
# @date 2017-05-10
# @version $Id: tlsCycleAdaptation.py
"""
- The Webster's equation is used to optimize the cycle length
and the green times of the traffic lights in a sumo network
with a given route file.
- Traffic lights without traffic flows will not be optimized.
- PCE is used instead of the number of vehicles.
- If a lane group has green times in more than one phase,
the respective flows will be equally divided into the corresponding
phases for calculating the green splits.
- If the critial flow or the sum of the critial flows is larger than 1,
the optimal cycle length will be set to 120 sec.
"""
from __future__ import absolute_import
from __future__ import print_function
import os
import sys
import optparse
import collections
if 'SUMO_HOME' in os.environ:
tools = os.path.join(os.environ['SUMO_HOME'], 'tools')
sys.path.append(tools)
import sumolib # noqa
else:
sys.exit("please declare environment variable 'SUMO_HOME'")
def get_options(args=None):
optParser = optparse.OptionParser()
optParser.add_option("-n", "--net-file", dest="netfile",
help="define the net file (mandatory)")
optParser.add_option("-o", "--output-file", dest="outfile",
default="tlsAdaptation.add.xml", help="define the output filename")
optParser.add_option("-r", "--route-files", dest="routefiles",
help="define the route file seperated by comma(mandatory)")
optParser.add_option("-b", "--begin", dest="begin", type="int",
default=0, help="begin time of the optmization period with unit second")
optParser.add_option("-y", "--yellow-time", dest="yellowtime", type="int",
default=4, help="yellow time")
optParser.add_option("-a", "--all-red", dest="allred", type="int",
default=0, help="all-red time")
optParser.add_option("-l", "--lost-time", dest="losttime", type="int",
default=4, help="lost time for start-up and clearance in each phase")
optParser.add_option("-g", "--min-green", dest="mingreen", type="int",
default=4, help=" minimal green time when there is no traffic volume")
optParser.add_option("-c", "--min-cycle", dest="mincycle", type="int",
default=20, help=" minimal cycle length")
optParser.add_option("-C", "--max-cycle", dest="maxcycle", type="int",
default=120, help=" maximal cycle length")
optParser.add_option("-e", "--existing-cycle", dest="existcycle", action="store_true",
default=False, help=" use the existing cycle length")
optParser.add_option("-p", "--program", dest="program",
default="a", help="save new definitions with this program id")
optParser.add_option("-H", "--saturation-headway", dest="satheadway", type="float",
default=2, help=" saturation headway in seconds for calcuating hourly saturation flows")
optParser.add_option("-R", "--restrict-cyclelength", dest="restrict", action="store_true",
default=False, help=" restrict the max. cycle length as the given one")
optParser.add_option("-v", "--verbose", dest="verbose", action="store_true",
default=False, help="tell me what you are doing")
(options, args) = optParser.parse_args(args=args)
if not options.netfile or not options.routefiles:
optParser.print_help()
sys.exit()
return options
def getFlows(net, routeFiles, tlsList, begin, verbose):
tlsFlowsMap = {}
end = begin + 3600
for tls in tlsList:
tlsFlowsMap[tls._id] = collections.defaultdict(lambda: collections.defaultdict(int))
for file in routeFiles.split(','):
if verbose:
print ("route file:%s" % file)
for veh in sumolib.output.parse(file, 'vehicle'):
if float(veh.depart) >= end:
break
if float(veh.depart) >= begin:
edgeList = veh.route[0].edges.split()
for tls in tlsList:
# c: [[inLane, outLane, linkNo],[],..]
for c in tls.getConnections():
inEdge = c[0].getEdge().getID()
outEdge = c[1].getEdge().getID()
if inEdge in edgeList:
beginIndex = edgeList.index(inEdge)
if beginIndex < len(edgeList) - 1 and edgeList[beginIndex + 1] == outEdge:
pce = 1.
if veh.type == "bicycle":
pce = 0.2
elif veh.type in ["moped", "motorcycle"]:
pce = 0.5
elif veh.type in ["truck", "trailer", "bus", "coach"]:
pce = 3.5
tlsFlowsMap[tls._id][inEdge + " " + outEdge][c[2]] += pce
# remove the doubled counts
connFlowsMap = {}
for t in tlsList:
connFlowsMap[t.getID()] = {}
for subRoute in tlsFlowsMap[t.getID()]:
totalConns = len(tlsFlowsMap[t.getID()][subRoute])
for conn in tlsFlowsMap[t.getID()][subRoute]:
tlsFlowsMap[t.getID()][subRoute][conn] /= totalConns
connFlowsMap[t.getID()][conn] = tlsFlowsMap[t.getID()][subRoute][conn]
# remove the redundant connection flows
connFlowsMap = removeRedundantFlows(t, connFlowsMap)
return connFlowsMap
def getEffectiveTlsList(tlsList, connFlowsMap, verbose):
effectiveTlsList = []
for tl in tlsList:
valid = True
for program in tl.getPrograms().values():
for phase in program.getPhases():
if len(phase) > len(tl.getConnections()):
print("Skipping TLS '%s' due to unused states" % tl.getID())
valid = False
break
if valid:
for conn in connFlowsMap[tl.getID()]:
if connFlowsMap[tl.getID()][conn] > 0:
effectiveTlsList.append(tl)
break
return effectiveTlsList
def removeRedundantFlows(t, connFlowsMap):
# if two or more intersections share the lane-lane connection indices together,
# the redundant connection flows will set to zero.
connsList = t.getConnections()
connsList = sorted(connsList, key=lambda connsList: connsList[2])
redundantConnsList = []
identical = True
for c1 in connsList:
for c2 in connsList:
if c1[2] != c2[2]:
if c1[1]._edge == c2[0]._edge:
indentical = identityCheck(c1[0]._edge, c2[0]._edge._incoming, identical)
if identical:
for toEdge in c2[0]._edge._outgoing:
for c in c2[0]._edge._outgoing[toEdge]:
if c._tlLink not in redundantConnsList:
redundantConnsList.append(c._tlLink)
else:
for conn_1 in c1[0]._edge._outgoing[c2[0]._edge]:
if conn_1._direction == 's':
for toEdge in c2[0]._edge._outgoing:
for conn_2 in c2[0]._edge._outgoing[toEdge]:
if conn_2._tlLink not in redundantConnsList:
redundantConnsList.append(conn_2._tlLink)
for conn in redundantConnsList:
if conn in connFlowsMap[t._id]:
connFlowsMap[t._id][conn] = 0.
return connFlowsMap
def identityCheck(e1, incomingLinks, identical):
for i in incomingLinks:
if i != e1:
identical = False
break
return identical
def getLaneGroupFlows(tl, connFlowsMap, phases):
connsList = tl.getConnections()
groupFlowsMap = {} # i(phase): duration, laneGroup1, laneGroup2, ...
connsList = sorted(connsList, key=lambda connsList: connsList[2])
# check if there are shared lane groups, i.e. some lane groups have only "g" (no "G")
ownGreenConnsList = []
for i, p in enumerate(phases):
totalConns = len(p[0])
for j, control in enumerate(p[0]):
if control == "G" and j not in ownGreenConnsList:
ownGreenConnsList.append(j)
yellowRedTime = 0
greenTime = 0
currentLength = 0
phaseLaneIndexMap = collections.defaultdict(list)
for i, p in enumerate(phases):
currentLength += p[1]
if 'G' in p[0]:
greenTime += p[1]
groupFlowsMap[i] = [p[1]]
groupFlows = 0
laneIndexList = []
for j, control in enumerate(p[0]):
inEdge = connsList[j][0]._edge._id
if j == 0:
exEdge = inEdge
if (inEdge == exEdge and control == 'G') or (inEdge == exEdge and control == 'g' and j not in ownGreenConnsList):
if j in connFlowsMap[tl._id]:
groupFlows += connFlowsMap[tl._id][j]
if connsList[j][0].getIndex() not in laneIndexList:
laneIndexList.append(connsList[j][0].getIndex())
if exEdge != inEdge or j == len(p[0]) - 1:
if laneIndexList:
phaseLaneIndexMap[i].append(laneIndexList)
groupFlowsMap[i].append(groupFlows)
laneIndexList = []
groupFlows = 0
if control == "G":
if j in connFlowsMap[tl._id]:
groupFlows = connFlowsMap[tl._id][j]
if connsList[j][0].getIndex() not in laneIndexList:
laneIndexList.append(connsList[j][0].getIndex())
exEdge = inEdge
elif 'G' not in p[0] and 'g' in p[0] and 'y' not in p[0] and 'r' not in p[0]:
print ("Check: only g for all connections:%s in phase %s" % (tl._id, i))
elif ('G' not in p[0] and 'g' not in p[0]) or ('G' not in p[0] and 'y' in p[0] and 'r' in p[0]):
yellowRedTime += int(p[1])
if options.verbose and i in groupFlowsMap:
print ("phase: %s" % i)
print ("group flows: %s" % groupFlowsMap[i])
print ("The used lanes: %s" % phaseLaneIndexMap[i])
if options.verbose:
print ("the current cycle length:%s sec" % currentLength)
return groupFlowsMap, phaseLaneIndexMap, currentLength
def optimizeGreenTime(groupFlowsMap, phaseLaneIndexMap, currentLength, options):
lostTime = len(groupFlowsMap) * options.losttime + options.allred
satFlows = 3600. / options.satheadway
# calculate the critial flow ratios and the respective sum
critialFlowRateMap = {}
for i in groupFlowsMap: # [duration. groupFlow1, groupFlow2...]
critialFlowRateMap[i] = 0.
maxFlow = 0
index = None
if len(groupFlowsMap[i][1:]) > 0:
for j, f in enumerate(groupFlowsMap[i][1:]):
if f >= maxFlow:
maxFlow = f
index = j
critialFlowRateMap[i] = (maxFlow / float((len(phaseLaneIndexMap[i][index])))) / satFlows
else:
critialFlowRateMap[i] = 0.
sumCritialFlows = sum(critialFlowRateMap.values())
if options.existcycle:
optCycle = currentLength
elif sumCritialFlows >= 1.:
optCycle = options.maxcycle
if options.verbose:
print ("Warning: the sum of the critial flows >= 1:%s" % sumCritialFlows)
else:
optCycle = int(round((1.5 * lostTime + 5.) / (1. - sumCritialFlows)))
if not options.existcycle and optCycle < options.mincycle:
optCycle = options.mincycle
elif not options.existcycle and optCycle > options.maxcycle:
optCycle = options.maxcycle
effGreenTime = optCycle - lostTime
totalLength = lostTime
minGreenPhasesList = []
adjustGreenTimes = 0
totalGreenTimes = 0
subtotalGreenTimes = 0
for i in critialFlowRateMap:
groupFlowsMap[i][0] = effGreenTime * \
(critialFlowRateMap[i] / sum(critialFlowRateMap.values())) - options.yellowtime + options.losttime
groupFlowsMap[i][0] = int(round(groupFlowsMap[i][0]))
totalGreenTimes += groupFlowsMap[i][0]
if groupFlowsMap[i][0] < options.mingreen:
groupFlowsMap[i][0] = options.mingreen
minGreenPhasesList.append(i)
else:
subtotalGreenTimes += groupFlowsMap[i][0]
totalLength += groupFlowsMap[i][0]
# adjust the green times if minmal green times are applied for keeping the defined maximal cycle length.
if minGreenPhasesList and totalLength > options.maxcycle and options.restrict:
if options.verbose:
print ("Re-allocate the green splits!")
adjustGreenTimes = totalGreenTimes - len(minGreenPhasesList) * options.mingreen
for i in groupFlowsMap:
if i not in minGreenPhasesList:
groupFlowsMap[i][0] = int((groupFlowsMap[i][0] / float(subtotalGreenTimes)) * adjustGreenTimes)
if options.verbose:
totalLength = lostTime
for i in groupFlowsMap:
totalLength += groupFlowsMap[i][0]
print ("Green time for phase %s: %s" % (i, groupFlowsMap[i][0]))
print ("the optimal cycle lenth:%s" % totalLength)
return groupFlowsMap
def main(options):
net = sumolib.net.readNet(options.netfile, withPrograms=True)
tlsList = net.getTrafficLights()
nodesList = net.getNodes()
if options.verbose:
print("the total number of tls: %s" % len(tlsList))
print ("Begin time:%s" % options.begin)
# get traffic flows for each connection at each TL
connFlowsMap = getFlows(net, options.routefiles, tlsList, options.begin, options.verbose)
# remove the tls where no traffic volumes exist
effectiveTlsList = getEffectiveTlsList(tlsList, connFlowsMap, options.verbose)
with open(options.outfile, 'w') as outf:
outf.write('<?xml version="1.0" encoding="UTF-8"?>\n')
outf.write('<additional>\n')
if len(effectiveTlsList) > 0:
for tl in effectiveTlsList:
if options.verbose:
print ("tl-logic ID: %s" % tl._id)
programs = tl.getPrograms()
for pro in programs:
phases = programs[pro].getPhases()
# get the connection flows and group flows
groupFlowsMap, phaseLaneIndexMap, currentLength = getLaneGroupFlows(tl, connFlowsMap, phases)
# optimize the cycle length and green times
groupFlowsMap = optimizeGreenTime(groupFlowsMap, phaseLaneIndexMap, currentLength, options)
# write output
outf.write(' <tlLogic id="%s" type="%s" programID="%s" offset="%i">\n' %
(tl._id, programs[pro]._type, options.program, programs[pro]._offset))
phases = programs[pro].getPhases()
for i, p in enumerate(phases):
duration = p[1]
if i in groupFlowsMap:
duration = groupFlowsMap[i][0]
outf.write(' <phase duration="%s" state="%s"/>\n' % (duration, p[0]))
outf.write(' </tlLogic>\n')
else:
print("There are no flows at the given intersections. No green time optimization is done.")
outf.write('</additional>\n')
if __name__ == "__main__":
options = get_options(sys.argv)
main(options)
|