This file is indexed.

/usr/share/SuperCollider/HelpSource/Classes/Complex.schelp is in supercollider-common 1:3.8.0~repack-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
CLASS:: Complex
summary:: complex number
categories:: Math
related::Classes/Polar, Classes/SimpleNumber, Classes/Float, Classes/Integer

DESCRIPTION::
A class representing complex numbers.
Note that this is a simplified representation of a complex number, which does not implement the full mathematical notion of a complex number.

CLASSMETHODS::
method:: new
Create a new complex number with the given real and imaginary parts.
argument:: real
the real part
argument:: imag
the imaginary part

returns:: a new instance of Complex.
discussion::
code::
a = Complex(2, 5);
a.real;
a.imag;
::

INSTANCEMETHODS::

subsection:: math support
method:: real
The real part of the number.

method:: imag
The imaginary part of the number.

method:: conjugate
the complex conjugate.
discussion::
code::
Complex(2, 9).conjugate
::

method:: +
Complex addition.
discussion::
code::
Complex(2, 9) + Complex(-6, 2)
::

method:: -
Complex subtraction
discussion::
code::
Complex(2, 9) - Complex(-6, 2)
::

method:: *
Complex multiplication
discussion::
code::
Complex(2, 9) * Complex(-6, 2)
::

method:: /
Complex division.
discussion::
code::
Complex(2, 9) / Complex(-6, 2)
::

method:: exp
Complex exponentiation with base e.
discussion::
code::
exp(Complex(2, 9))
::
code::
exp(Complex(0, pi)) == -1 // Euler's formula: true
::

method:: squared
Complex self multiplication.
discussion::
code::
squared(Complex(2, 1))
::

method:: cubed
complex triple self multiplication.
discussion::
code::
cubed(Complex(2, 1))
::

method:: **, pow
Complex exponentiation
discussion::
not implemented for all combinations - some are mathematically ambiguous.
code::
Complex(0, 2) ** 6
::
code::
2.3 ** Complex(0, 2)
::
code::
Complex(2, 9) ** 1.2 // not defined
::


method:: <
the comparison of just the real parts.
discussion::
code::
Complex(2, 9) < Complex(5, 1);
::

method:: ==
the comparison assuming that the reals (floats) are fully embedded in the complex numbers
discussion::
code::
Complex(1, 0) == 1;
Complex(1, 5) == Complex(1, 5);
::

method:: neg
negation of both parts
discussion::
code::
Complex(2, 9).neg
::

method:: abs
the absolute value of a complex number is its magnitude.
discussion::
code::
Complex(3, 4).abs
::

method:: magnitude
distance to the origin.

method:: magnitudeApx

method:: rho
the distance to the origin.

method:: angle, phase, theta
the angle in radians.


subsection:: conversion
method:: asPoint
Convert to a link::Classes/Point::.

method:: asPolar
Convert to a Polar

method:: asInteger
real part as link::Classes/Integer::.

method:: asFloat
real part as link::Classes/Float::.

method:: asComplex
returns this


subsection:: misc
method:: coerce
method:: hash
a hash value
method:: printOn
print this on given stream
method:: performBinaryOpOnSignal
method:: performBinaryOpOnComplex
method:: performBinaryOpOnSimpleNumber
method:: performBinaryOpOnUGen




EXAMPLES::

Basic example:
code::
a = Complex(0, 1);
a * a; // returns Complex(-1, 0);
::

Julia set approximation:
code::
f = { |z| z * z + Complex(0.70176, 0.3842) };

(
var n = 80, xs = 400, ys = 400, dx = xs / n, dy = ys / n, zoom = 3, offset = -0.5;
var field = { |x| { |y| Complex(x / n + offset * zoom, y / n + offset * zoom) } ! n } ! n;

w = Window("Julia set", bounds:Rect(200, 200, xs, ys)).front;
w.view.background_(Color.black);
w.drawFunc = {
	n.do { |x|
		n.do { |y|
			var z = field[x][y];
			z = f.(z);
			field[x][y] = z;
			Pen.color = Color.gray(z.rho.linlin(-100, 100, 1, 0));
 			Pen.addRect(
				Rect(x * dx, y * dy, dx, dy)
			);
			Pen.fill
		}
	}
};

fork({ 6.do { w.refresh; 2.wait } }, AppClock)
)
::