This file is indexed.

/usr/share/SuperCollider/HelpSource/Classes/MFCC.schelp is in supercollider-common 1:3.8.0~repack-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
class:: MFCC
summary:: Mel frequency cepstral coefficients
categories:: UGens>Analysis
related:: Classes/BeatTrack, Classes/Loudness, Classes/Onsets, Classes/Pitch, Classes/KeyTrack

description::
Generates a set of MFCCs; these are obtained from a band-based frequency representation (using the Mel scale by default), and then a discrete cosine transform (DCT). The DCT is an efficient approximation for principal components analysis, so that it allows a compression, or reduction of dimensionality, of the data, in this case reducing 42 band readings to a smaller set of MFCCs. A small number of features (the coefficients) end up describing the spectrum. The MFCCs are commonly used as timbral descriptors.

Output values are somewhat normalised for the range 0.0 to 1.0, but there are no guarantees on exact conformance to this. Commonly, the first coefficient will be the highest value.

classmethods::
method:: kr

argument:: chain
[fft] Audio input to track, which has been pre-analysed by the FFT UGen; see examples below for the expected FFT size.
argument:: numcoeff
[s] Number of coefficients, defaults to 13, maximum of 42; more efficient to use less of course!

returns:: code::#coeff1, coeff2, ...::

examples::
code::
// Technical note: The 0th coefficient is not generated as it consists of multiplying all bands by 1 and summing


// assumes hop of half fftsize, fine
b = Buffer.alloc(s, 1024, 1); // for sampling rates 44100 and 48000
//b = Buffer.alloc(s, 2048, 1); // for sampling rates 88200 and 96000

d = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav");


(
x = {
var in, fft, array;

//in = PlayBuf.ar(1, d, BufRateScale.kr(d), 1, 0, 1);

in = SoundIn.ar(0);

fft = FFT(b, in);

array = MFCC.kr(fft);

array.size.postln;

Out.kr(0, array);

Out.ar(0,Pan2.ar(in));
}.play
)


c = Bus.new('control', 0, 13);

// poll coefficients
c.getn(13, { arg val; { val.plot; }.defer });


// Continuous graphical display of MFCC values; free routine before closing window

(
var ms;

w = Window.new("Thirteen MFCC coefficients", Rect(200, 400, 300, 300));

ms = MultiSliderView.new(w, Rect(10, 10, 260, 280));

ms.value_(Array.fill(13, 0.0));
ms.valueThumbSize_(20.0);
ms.indexThumbSize_(20.0);
ms.gap_(0);

w.front;

r = {

inf.do{

c.getn(13, { arg val; { ms.value_(val * 0.9) }.defer });

0.04.wait; // 25 frames per second
};

}.fork;

)


// tidy up
(
r.stop;
b.free;
c.free;
x.free;
w.close;
)
::

Research notes: Drafts of an MFCC UGen were prepared by both Dan Stowell and Nick Collins; their various ideas are combined here in a cross platform compatible UGen. Mel scale spacing with triangular crossfade overlap is used by default for the bands, approximately tracking the human critical band spacing and bandwidth. Variants such as BFCC (Bark) and EFCC (ERB) given similar results in practice; the Mel scale as used here is the standard as adapted from the speech recognition literature and now applied in music information retrieval.

code::
// Calculating Mel Scale Bands; allow up to 42 coefficients, so up to 42 bands
// first part of this code adapted from Dan Stowell and Jamie Bullock Mel scale implementation
// could later add Bark and ERB options, and possibility of buffer of data to be passed to the UGen for alternative freq warpings
(
var mel_freq_max, mel_freq_min, freq_bw_mel, freq_bands, freq_max, freq_min;
var mel_peak, lin_peak, fft_peak;
var freqperbin;
var fftbinstart, fftbinend, fftbinmult, fftbincumul;
var pos, tmp;
var sr, fftsize, halffftsize;
var whichbandscale, lintoscale, scaletolin;

freq_max = 18000;
freq_min = 80;
sr = 48000; //44100;
fftsize = 1024;
halffftsize = fftsize.div(2);
freq_bands = 42;

//whichbandscale = 0; // 0 = mel; 1 = bark (CB) 2 = ERB
//
//lintoscale = {arg freq;
//switch(whichbandscale,0,{1127 * log(1 + (freq / 700))}, 1, {}, 2, {}).value
//};
//scaletolin = {arg scalepos;
//switch(whichbandscale, 0, {700 * (exp(scalepos / 1127.0) -1);}, 1, {}, 2, {}).value
//};

lintoscale = {arg freq;
1127 * log(1 + (freq / 700))
};
scaletolin = {arg scalepos;
700 * (exp(scalepos / 1127.0) -1);
};

mel_freq_max = lintoscale.value(freq_max); // 1127 * log(1 + (freq_max / 700));
mel_freq_min = lintoscale.value(freq_min); //1127 * log(1 + (freq_min / 700));
freq_bw_mel = (mel_freq_max - mel_freq_min) / freq_bands;

[mel_freq_max, mel_freq_min, freq_bw_mel].postln;

mel_peak = Array.fill(freq_bands + 2, {0.0});
lin_peak = Array.fill(freq_bands + 2, {0.0});
fft_peak = Array.fill(freq_bands + 2, {0.0});

freqperbin = sr / fftsize; // SR/N

mel_peak[0] = mel_freq_min;
lin_peak[0] = freq_min; // === 700 * (exp(mel_peak[0] / 1127) - 1);
fft_peak[0] = (lin_peak[0] / freqperbin).asInteger;

for(1, freq_bands + 1,{|n|

 mel_peak[n] = mel_peak[n - 1] + freq_bw_mel;
 lin_peak[n] = scaletolin.value(mel_peak[n]); // 700 * (exp(mel_peak[n] / 1127.0) -1);
 fft_peak[n] = ((lin_peak[n] / freqperbin).asInteger).min(halffftsize); // fft size //rounds down here

});

//Post << mel_peak << nl;
//Post << lin_peak << nl;
//Post << fft_peak << nl;

//  [2 / (lin_peak[freq_bands + 1] - lin_peak[freq_bands-1]), 1.0 / (2 / (lin_peak[2] - lin_peak[0]))].postln;

fftbinstart = Array.fill(freq_bands, {0});
fftbinend = Array.fill(freq_bands, {0});
fftbincumul = Array.fill(freq_bands+1, {0});
fftbinmult = [];

pos = 0;

freq_bands.do {|i|

	//var normmult=1.0; // preserve power, don't modify band power by area
	var startbin, endbin, numbins, averager;

	if(i == 0,{
	startbin = 0;
	endbin = fft_peak[i + 1] - 1;
	},{
	startbin = fft_peak[i - 1] + 1;
	endbin = fft_peak[i + 1] - 1;
	});

	numbins = endbin - startbin + 1;
	averager = 1.0 / numbins;

	// linear crossfade (intended in power) between consecutive band centres

	tmp = fft_peak[i] - startbin;

	// could divide by averager but I'm not convinced by the perceptual necessity for this?
	// ie fftbinmult = fftbinmult ++ (Array.series(tmp + 1, 1.0 / (tmp + 1), 1.0 / (tmp + 1)) * averager);

	fftbinmult = fftbinmult ++ (Array.series(tmp + 1, 1.0 / (tmp + 1), 1.0 / (tmp + 1)));

	tmp= endbin- (fft_peak[i]);

	fftbinmult = fftbinmult ++ (Array.series(tmp, 1.0 + ((-1.0) / (tmp + 1)), (-1.0) / (tmp + 1)));

	fftbinstart[i] = startbin;
	fftbinend[i] = endbin;
	fftbincumul[i] = pos;

	pos = pos + (endbin - startbin + 1);
};

fftbincumul[freq_bands] = pos - 1;

Post << fftbinstart << nl;
Post << fftbinend << nl;
Post << fftbincumul << nl;
Post << fftbinmult << nl;

)


// future work: see http://www.ling.su.se/STAFF/hartmut/bark.htm

// Barks
a = (26.81 / (1 + (1960 / ((100, 200..22000))))) - 0.53;
a.plot;

// ERBs (rough calculation, only really valid under 6000Hz, real scale goes up to 42 rather than 37 in 22000 Hz)
a = Array.fill(220,{|i| var f; f = i * 100; 11.17 * log((f + 312) / (f + 14675)) + 43.0});
a.plot

// generating DCT coefficients
// don't generate i=0 coefficient since it
a = Array.fill(42, {|i| cos(pi / 42.0 * ((0..41) + 0.5) * (i + 1))});
Post << a.flatten << nl;
::