This file is indexed.

/usr/share/SuperCollider/HelpSource/Classes/Pattern.schelp is in supercollider-common 1:3.8.0~repack-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
class:: Pattern
summary:: abstract class that holds a list
related:: Classes/Stream, Classes/FilterPattern, Classes/ListPattern
categories:: Streams-Patterns-Events>Patterns

description::

subsection::Patterns versus Streams

strong::Pattern:: is an abstract class that is the base for the Patterns library. These classes form a rich and concise score language for music. The series of help files entitled link::Tutorials/Streams-Patterns-Events1:: gives a detailed introduction. This attempts a briefer characterization.

A strong::Stream:: is an object that responds to code::next::, code::reset::, and code::embedInStream::. Streams represent sequences of values that are obtained one at a time by with message code::next::. A code::reset:: message will cause the stream to restart (many but not all streams actually repeat themselves.) If a stream runs out of values it returns code::nil:: in response to code::next::. The message code::embedInStream:: allows a stream definition to allow another stream to "take over control" of the stream.
All objects respond to code::next:: and code::reset::, most by returning themselves in response to next. Thus, the number 7 defines a Stream that produces an infinite sequence of 7's. Most objects respond to code::embedInStream:: with a singleton Stream that returns the object once.

A strong::Pattern:: is an object that responds to code::asStream:: and code::embedInStream::. A Pattern defines the behavior of a Stream and creates such streams in response to the messages code::asStream::.
The difference between a Pattern and a Stream is similar to the difference between a score and a performance of that score or a class and an instance of that class. All objects respond to this interface, most by returning themselves. So most objects are patterns that define streams that are an infinite sequence of the object and embed as singleton streams of that object returned once.

Patterns are defined in terms of other Patterns rather than in terms of specific values. This allows a Pattern of arbitrary complexity to be substituted for a single value anywhere within a Pattern definition. A comparison between a Stream definition and a Pattern will help illustrate the usefulness of Patterns.

subsection::example 1 - Pseq vs. Routine

The Pattern class strong::Pseq(array, repetitions):: defines a Pattern that will create a Stream that iterates an array. The class strong::Routine(func, stackSize):: defines a single Stream, the function that runs within that stream is defined to perform the array iteration.

Below a stream is created with link::Classes/Pseq:: and an code::asStream:: message and an identical stream is created directly using Routine.

code::
// a Routine vs a Pattern
(
	a = [-100, 00, 300, 400];			// the array to iterate

	p = Pseq(a);					// make the Pattern
	q = p.asStream;					// have the Pattern make a Stream
	r = Routine({ a.do({ arg v; v.yield}) }) ;	// make the Stream directly

	5.do({ Post << Char.tab << r.next << " " << q.next << Char.nl; });
)
::

subsection::example 2 - Nesting patterns

In example 1, there is little difference between using link::Classes/Pseq:: and link::Classes/Routine::. But Pseq actually iterates its array as a collection of emphasis::patterns to be embedded::, allowing another Pseq to replace any of the values in the array. The Routine, on the other hand, needs to be completely redefined.

code::
(
	var routinesA;
	a = [3, Pseq([-100, 00, 300, 400]), Pseq([-100, 00, 300, 400].reverse) ];
	routinesA = [[3], [-100, 00, 300, 400], [-100, 00, 300, 400].reverse];
	p = Pseq(a);
	q = p.asStream;

	r = Routine({
		routinesA.do({ arg v;
			v.do({ arg i; i.yield})
		}) ;
	});
	10.do({ Post << Char.tab << r.next << " " << q.next << Char.nl; });
)
::

subsection::example 3 - Stream-embedInStream

The message code::embedInStream:: is what allows Patterns to do this kind of nesting. Most objects
(such as the number 3 below) respond to code::embedInStream:: by yielding themselves once and returning. Streams respond to embedInStream by iterating themselves to completion, effectively "taking over" the calling stream for that time.

A Routine can perform a pattern simply by replacing calls to code::yield:: with calls to code::embedInStream::.
code::
(
	a = [3, Pseq([-100, 00, 300, 400]), Pseq([-100, 00, 300, 400].reverse) ];

	r = Routine({ a.do({ arg v; v.embedInStream}) }) ;
	p = Pseq(a);
	q = p.asStream;
	10.do({ Post << Char.tab << r.next << " " << q.next << Char.nl; });
)
::

Of course, there is no concise way to emphasis::define:: this stream without using Pseq.

note::
For reasons of efficiency, the implementation of code::embedInStream:: assumes that it is called from within a link::Classes/Routine::. Consequently, code::embedInStream:: should never be called from within the function that defines a link::Classes/FuncStream:: or a link::Classes/Pfunc:: (the pattern that creates FuncStreams).
::

subsection::Event Patterns

An link::Classes/Event:: is a link::Classes/Environment:: with a 'play' method. Typically, an Event consists of a collection of key/value pairs that determine what the play method actually does. The values may be any object including functions defined in terms of other named attributes. Changing those values can generate a succession of sounds sometimes called 'music'... The pattern link::Classes/Pbind:: connects specific patterns with specific names. Consult its help page for details.

subsection::Playing Event Patterns

The link::#-play:: method does not return the pattern itself. Instead, it returns the link::Classes/EventStreamPlayer:: object that actually runs the pattern. Control instructions -- stop, pause, resume, play, reset -- should be addressed to the EventStreamPlayer. (The same pattern can play many times simultaneously, using different EventStreamPlayers.)

code::
p = Pbind(...);
p.play;
p.stop;	// does not stop because p is not the EventStreamPlayer that is actually playing

p = Pbind(...).play;
p.stop;	// DOES stop because p is the EventStreamPlayer
::

subsection::Recording Event Patterns

Patterns may be recorded in realtime or non-realtime. See the method link::#-record:: for realtime recording.

For non-realtime recording see the link::Classes/Score:: helpfile, especially "creating Score from a pattern." It can be tricky, because NRT recording launches a new server instance. That server instance is not aware of buffers or other resources loaded into the realtime server you might have been using for tests. The pattern is responsible for (re)loading any resources (buffers, effects etc.). link::Classes/Pfset:: or link::Classes/Pproto:: may be useful.

InstanceMethods::

method::asStream
Return a link::Classes/Stream:: from this pattern. One pattern can be used to produce any number of independent streams.

code::
a = Pgeom(1, Pwhite(1.01, 1.2), inf);
b = a.asStream; c = a.asStream;

b.next;
b.next;
b.next;

c.next; // c is independent from b
c.next;


::

method::embedInStream
Given a link::Classes/Stream:: like e.g. link::Classes/Routine::, yield all values from this pattern before continuing. One pattern can be used to produce values for any number of independent streams.

argument::inval
The inval is passed into all substreams and can be used to control how they behave from the outside.

code::
a = Pgeom(1, Pwhite(1.01, 1.2), 5);
r = Routine { 2.yield; 3.yield; a.embedInStream; 7.yield; };
r.nextN(12); // the next 12 values from r
::


method::play

argument::clock
The tempo clock that will run the pattern. If omitted, TempoClock.default is used.

argument::protoEvent
The event prototype that will be fed into the pattern stream on each iteration. If omitted, event.default is used.

argument::quant
see the link::Classes/Quant:: helpfile.

method::record
Opens a disk file for recording and plays the pattern into it.

argument::path
Disk location for the recorded file. If not given, a filename is generated for you and placed in the default recording directory: code::thisProcess.platform.recordingsDir::.

argument::headerFormat
File format, default "AIFF" - see link::Classes/SoundFile:: for supported header and sample formats.

argument::sampleFormat
Sample format, default "float".

argument::numChannels
Number of channels to record, default 2.

argument::dur
How long to run the pattern before stopping. If nil (default), the pattern will run until it finishes on its own; then recording stops. Or, use cmd-period to stop the recording. If a number is given, the pattern will run for that many beats and then stop (using link::Classes/Pfindur::), ending the recording as well.

argument::fadeTime
How many beats to allow after the last event before stopping the recording. Default = 0.2.

argument::clock
Which clock to use for play. Uses TempoClock.default if not otherwise specified.

argument::protoEvent
Which event prototype to use for play. Falls back to Event.default if not otherwise specified.

argument::server
Which server to play and record. Server.default if not otherwise specified.

argument::out
Output bus to hear the pattern while recording, default = 0.

Examples::

Below are brief examples for most of the classes derived from Pattern. These examples all rely on the patterns assigned to the Interpreter variable p, q, and r in the first block of code.

code::
s.boot;

(
SynthDef(\cfstring1, { arg i_out, freq = 360, gate = 1, pan, amp=0.1;
	var out, eg, fc, osc, a, b, w;
	fc = LinExp.kr(LFNoise1.kr(Rand(0.25, 0.4)), -1, 1, 500, 2000);
	osc = Mix.fill(8, {LFSaw.ar(freq * [Rand(0.99, 1.01), Rand(0.99, 1.01)], 0, amp) }).distort * 0.2;
	eg = EnvGen.kr(Env.asr(1, 1, 1), gate, doneAction:2);
	out = eg * RLPF.ar(osc, fc, 0.1);
	#a, b = out;
	Out.ar(i_out, Mix.ar(PanAz.ar(4, [a, b], [pan, pan+0.3])));
}).add;

SynthDef("sinegrain2",
	{ arg out=0, freq=440, sustain=0.05, pan;
		var env;
		env = EnvGen.kr(Env.perc(0.01, sustain, 0.3), doneAction:2);
		Out.ar(out, Pan2.ar(SinOsc.ar(freq, 0, env), pan))
	}).add;

p = Pbind(
	[\degree, \dur], Pseq([[0, 0.1], [2, 0.1], [3, 0.1], [4, 0.1], [5, 0.8]], 1),
	\amp, 0.05, \octave, 6, \instrument, \cfstring1, \mtranspose, 0);

q = Pbindf(p, \instrument, \default );

r = Pset(\freq, Pseq([500, 600, 700], 2), q);

)
::

subsection::EVENT PATTERNS - patterns that generate or require event streams

code::
// Pbind( ArrayOfPatternPairs )

p = Pbind(
	[\degree, \dur], Pseq([[0, 0.1], [2, 0.1], [3, 0.1], [4, 0.1], [5, 0.8]], 1),
	\amp, 0.05, \octave, 6, \instrument, \cfstring1, \mtranspose, 0);

p.play;

//Ppar(arrayOfPatterns, repeats) - play in parallel

Ppar([Pseq([p], 4), Pseq([Pbindf(q, \ctranspose, -24)], 5)]).play

//Ptpar(arrayOfTimePatternPairs, repeats) - play in parallel at different times

Ptpar([1, Pseq([p], 4), 0, Pseq([Pbindf(q, \ctranspose, -24)], 5)]).play

// Pbindf( pattern, ArrayOfNamePatternPairs )

q = Pbindf(p, \instrument, \default );
q.play;

//Pfset(function, pattern)
// function constructs an event that is passed to the pattern.asStream

Pfset({ ~freq = Pseq([500, 600, 700], 2).asStream }, q).play;

//Pset(name, valPattern, pattern)
// set one field of the event on an event by event basis (Pmul, Padd are similar)

Pset(\freq, Pseq([500, 600, 700], 2), q).play;

//Psetp(name, valPattern, pattern)
// set once for each iteration of the pattern (Pmulp, Paddp are similar)

r = Pset(\freq, Pseq([500, 600, 700], 2), q);

Psetp(\legato, Pseq([0.01, 1.1], inf), r).play;

//Psetpre(name, valPattern, pattern)
// set before passing the event to the pattern (Pmulpre, Paddpre are similar)

r = Psetpre(\freq, Pseq([500, 600, 700], 2), q);

Psetp(\legato, Pseq([0.01, 1.1], inf), r).play;

//Pstretch(valPattern, pattern)
// stretches durations after

r = Psetpre(\freq, Pseq([500, 600, 700], 2), q);

Pstretch(Pn(Env([0.5, 2, 0.5], [10, 10])), Pn(r)).play;

Pset(\stretch, Pn(Env([0.5, 2, 0.5], [10, 10]) ), Pn(r)).play

//Pstretchp(valPattern, pattern)
// stretches durations after

r = Psetpre(\freq, Pseq([500, 600, 700], 2), q);

Pstretchp(Pn(Env([0.5, 2, 0.5], [10, 10])), r).play;

// Pfindur( duration, pattern ) - play pattern for duration

Pfindur(2, Pn(q, inf)).play;

// PfadeIn( pattern, fadeTime, holdTime, tolerance )
PfadeIn(Pn(q), 3, 0).play(quant: 0);

// PfadeOut( pattern, fadeTime, holdTime, tolerance )
PfadeOut(Pn(q), 3, 0).play(quant: 0);

// Psync( pattern, quantization, dur, tolerance )
// pattern is played for dur seconds (within tolerance), then a rest is played so the next pattern

Pn(Psync(
	Pbind(\dur, Pwhite(0.2, 0.5).round(0.2),
		\db, Pseq([-10, -15, -15, -15, -15, -15, -30])
	), 2, 3
)).play

//Plag(duration, pattern)

Ppar([Plag(1.2, Pn(p, 4)), Pn(Pbindf(q, \ctranspose, -24), 5)]).play
::

subsection::GENERAL PATTERNS that work with both event and value streams

code::
//Ptrace(pattern, key, printStream) - print the contents of a pattern

r = Psetpre(\freq, Pseq([500, 600, 700], 2), q);

Ptrace(r).play;
Ptrace(r, \freq).play;

(
{ var printStream;
	printStream = CollStream.new;
	Pseq([Ptrace(r, \freq, printStream), Pfunc({printStream.collection.dump; nil }) ]).play;
}.value;
)

//Pseed(seed, pattern) - set the seed of the random number generator
// to force repetion of pseudo-random patterns

Pn(Pseed(44, Pbindf(q, \ctranspose, Pbrown(-3.0, 3.0, 10) ) ) ).play;

//Prout(function) - on exit, the function must return the last value returned by yield
// (otherwise, the pattern cannot be reliably manipulated by other patterns)

Prout({ arg inval;
	inval = p.embedInStream(inval);
	inval = Event.silent(4).yield;
	inval = q.embedInStream(inval);
	inval = r.embedInStream(inval);
	inval;
}).play

//Pfunc(function) - the function should not have calls to embedInStream, use Prout instead.

Pn(Pbindf(q, \legato, Pfunc({ arg inval; if (inval.at(\degree)== 5) {4} {0.2}; })) ).play



// the following patterns control the sequencing and repetition of other patterns

//Pseq(arrayOfPatterns, repeats) - play as a sequence

Pseq([Pseq([p], 4), Pseq([Pbindf(q, \ctranspose, -24)], 5)]).play

//Pser(arrayOfPatterns, num) - play num patterns from the arrayOfPatterns

Pser([p, q, r], 5).play

//Place(arrayOfPatterns, repeats) - similar to Pseq
// but array elements that are themselves arrays are iterated
// embedding the first element on the first repetition, second on the second, etc

Place([[p, q, r], q, r], 5).play

// Pn( pattern, patternRepetitions ) - repeat the pattern n times

Pn(p, 2).play;

// Pfin( eventcount, pattern ) - play n events from the pattern

Pfin(12, Pn(p, inf)).play;

// Pstutter( eventRepetitions, pattern ) - repeat each event from the pattern n times

Pstutter(4, q).play

//Pwhile(function, pattern)

Pwhile({coin(0.5).postln;}, q).play

// Pswitch( patternList, selectPattern ) - when a pattern ends, switch according to select

Pswitch([p, q, r], Pwhite(0, 100)).play

// Pswitch1( patternList, selectPattern ) - on each event switch according to select

Pn(Pswitch1([p, q, r], Pwhite(0, 2))).play

// Prand( patternList, repeats ) - random selection from list
Prand([p, q, r], inf).play

// Pxrand( patternList, repeats ) - random selection from list without repeats
Pxrand([p, q, r], inf).play

// Pwrand( patternList, weights, repeats ) - weighted random selection from list
Pwrand([p, q, r], #[1, 3, 5].normalizeSum, inf).play

// Pwalk( patternList, stepPattern, directionPattern ) - walk through a list of patterns

Pwalk([p, q, r], 1, Pseq([-1, 1], inf)).play

// Pslide(list, repeats, length, step, start)

Pbind(\degree, Pslide(#[1, 2, 3, 4, 5], inf, 3, 1, 0), \dur, 0.2).play

// Pshuf( patternList, repeats ) - random selection from list
Pn(Pshuf([p, q, r, r, p])).play

// Ptuple(list, repeats)

Pbind(\degree, Ptuple([Pwhite(1, -6), Pbrown(8, 15, 2)]),
	\dur, Pfunc({ arg ev; ev.at(\degree).last/80 round: 0.1}),
	\db, Pfunc({ if (coin(0.8)) {-25} {-20} })
).play



// the following patterns can alter the values returned by other patterns

//Pcollect(function, pattern)

Pcollect({ arg inval; inval.use({ ~freq = 1000.rand }); inval}, q).play

//Pselect(function, pattern)

Pselect({ arg inval; inval.at(\degree) != 0 }, q).play(quant: 0)

//Preject(function, pattern)

Preject({ arg inval; inval.at(\degree) != 0 }, q).play(quant: 0)

//Ppatmod(pattern, function, repeats) -
// function receives the current pattern as an argument and returns the next pattern to be played

Ppatmod(p, { arg oldPat; [p, q, r].choose }, inf).play
::

subsection::VALUE PATTERNS: these patterns define or act on streams of numbers

code::
// Env as a pattern

Pbindf(Pn(q, inf), \ctranspose, Pn(Env.linen(3, 0, 0.3, 20), inf) ).play;

// Pwhite(lo, hi, length)

Pbindf(Pn(q, inf), \ctranspose, Pwhite(-3.0, 3.0) ).play;

// Pbrown(lo, hi, step, length)

Pbindf(Pn(q, inf), \ctranspose, Pbrown(-3.0, 3.0, 2) ).play;

// Pseries(start, step, length)

Pbindf(Pn(q, inf), \ctranspose, Pseries(0, 0.1, 10) ).play;

// Pgeom(start, step, length)

Pbindf(Pn(q, inf), \ctranspose, Pgeom(1, 1.2, 20) ).play;

// Pwrap(pattern, lo, hi)

Pbind(\note, Pwrap(Pwhite(0, 128), 10, 20).round(2), \dur, 0.05).play;

// PdegreeToKey(pattern, scale, stepsPerOctave)
// this reimplements part of pitchEvent (see Event)

Pbindf(Pn(q, inf), \note, PdegreeToKey(Pbrown(-8, 8, 2), [0, 2, 4, 5, 7, 9, 11]) ).play;

// Prewrite(pattern, dict, levels) - see help page for details.
// (notice use of Env to define a chord progression of sorts...

Pbind(\degree,
	Prewrite(0, ( 0: #[2, 0],
			1: #[0, 0, 1],
			2: #[1, 0, 1]
		), 4
	) + Pn(Env([4, 0, 1, 4, 3, 4], [6.4, 6.4, 6.4, 6.4, 6.4], 'step')),
	\dur, 0.2).play

// PdurStutter( repetitionPattern, patternOfDurations ) -
Pbindf(Pn(q), \dur, PdurStutter(
	Pseq(#[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 5, 7, 15], inf),
	Pseq(#[0.5], inf)
	)
).play;


// Pstep2add( pat1, pat2 )
// Pstep3add( pat1, pat2, pat3 )
// PstepNadd(pat1, pat2, ...)
// PstepNfunc(function, patternArray )
// combine multiple patterns with depth first traversal

Pbind(
	\octave, 4,
	\degree, PstepNadd(
		Pseq([1, 2, 3]),
		Pseq([0, -2, [1, 3], -5]),
		Pshuf([1, 0, 3, 0], 2)
	),
	\dur, PstepNadd(
		Pseq([1, 0, 0, 1], 2),
		Pshuf([1, 1, 2, 1], 2)
	).loop * (1/8),
	\legato, Pn(Pshuf([0.2, 0.2, 0.2, 0.5, 0.5, 1.6, 1.4], 4), inf),
	\scale, #[0, 1, 3, 4, 5, 7, 8]
).play;
::