/usr/share/SuperCollider/HelpSource/Classes/Pproto.schelp is in supercollider-common 1:3.8.0~repack-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 | class:: Pproto
summary:: provide a proto event for an event stream
related:: Classes/Pattern
categories:: Streams-Patterns-Events>Patterns>Server Control
description::
Pproto uses the strong::makeFunction:: to allocate resources (buffers, buses, groups) and create a protoEvent that makes those resources available to a pattern. It is fully compatible with non-realtime synthesis using strong::render::.
The strong::makeFunction:: "makes" the protoEvent (i.e. protoEvent is code::currentEnvironment::). Typically, it defines and yields a sequence of events that create the needed resources using the following link::Overviews/Event_types:::
definitionList::
## \allocRead || load a file from ~path, starting at ~firstFileFrame, reading ~numFrames sample frames
## \cue || cue a file for DiskIn, with ~bufferSize frames
## \table || load ~amps directly into a buffer
## \sine1 || generate a buffer from ~amps
## \sine2 || generate a buffer from ~freqs, ~amps
## \sine3 || generate a buffer from ~freqs, ~amps, ~phases
## \cheby || generate a waveshape buffer from ~amps
## \audioBus || allocate ~channels consecutive audio buses
## \controlBus || allocate ~channels consecutive control buses
## \on || create a synth
::
note::
These eventTypes will allocate their own buffers and buses unless they are specified. To support this, the key code::\bufNum:: is used rather than code::\bufnum:: which has a default value assigned.
::
When Pproto ends, these eventTypes will respond to the strong::cleanup:: call by strong::deallocating any resources they have allocated::. Do not assume your buffers, buses etc. will exist after Pproto stops!
The function yields each event. That event is then performed with possible modifications by enclosing patterns and the player (either an link::Classes/EventStreamPlayer:: or a link::Classes/ScoreStreamPlayer::). The resultant event is returned to the function where it can be assigned to a key within the protoEvent.
The patternarray is played using Pfpar, a variant of Ppar that ends when any of its subpatterns end. In this way,
you can use Pproto to create effects that can be controlled by a pattern that runs in parallel with the note generating pattern and ends together with that note generating pattern (see example 0 below).
A strong::cleanupFunction:: that deallocates resources when the pattern ends or is stopped is automatically created. It can be replaced with a user defined cleanup if needed. This function receives two arguments: strong::proto::, the prototype event, and strong::flag::, which is set false if all nodes have been freed already by link::Classes/CmdPeriod::.
Examples::
note::The syntax used for patterns like Pbind and Pmono is a little bit different for making the code more readable. The difference has nothing to do with Pproto. This is the same: code::Pbind(\freq, 700, \amp, 0.1):: and code::Pbind(*[freq: 700, amp: 0.1])::
::
subsection::Example 1, loading and granulating a sound file.
code::
(
SynthDef(\help_playbuf, { | out=0, bufnum = 0, rate = 1, startPos = 0, amp = 0.1, sustain = 1, pan = 0, loop = 1|
var audio;
rate = rate * BufRateScale.kr(bufnum);
startPos = startPos * BufFrames.kr(bufnum);
audio = BufRd.ar(1, bufnum, Phasor.ar(0, rate, startPos, BufFrames.ir(bufnum)), 1, 1);
audio = EnvGen.ar(Env.sine, 1, timeScale: sustain, doneAction: 2) * audio;
audio = Pan2.ar(audio, pan, amp);
OffsetOut.ar(out, audio);
}).add;
a = Pproto({
~newgroup = (type: \group).yield;
~sf1 = (type: \allocRead, path: Platform.resourceDir +/+ "sounds/a11wlk01-44_1.aiff").yield;
},
Pbind(*[
instrument: \help_playbuf,
dur: Pseg([0,0,0.25,0.5, 0.75, 1],10).linexp(0,1,0.01,2),
legato: 4,
startPos: Pn(Pseg([0,1], 20), inf),
rate: Pwhite(1, 1).midiratio,
loop: 0,
group: Pkey(\newgroup),
bufnum: Pkey(\sf1)
])
);
a.play;
)
//a.render("sounds/test.aif", 40)
//SoundFile.openRead("sounds/test.aif").play
::
subsection::Example 2, loading a waveform buffer and modifying it in performance.
code::
(
SynthDef(\osc,{ arg out=0, bufnum=0, numbufs = 8, sustain = 1, freq = 500, amp = 0.1, pan = 0;
var audio;
audio = Osc.ar(bufnum, freq);
audio = EnvGen.ar(Env.linen(0.01, 0.90,0.9), 1, timeScale: sustain, doneAction: 2) * audio;
audio = Pan2.ar(audio, pan, amp);
OffsetOut.ar(out, audio);
}).add;
b = Pproto({
~bufnum = (type: \sine1, amps: 1.0/[1,2,3,4,5,6] ).yield;
},
Ppar([
Pbind(*[
instrument: \osc,
freq: Pwhite(1, 16) * 100,
detune: Pfunc { Array.fill(3.rand + 1, {3.0.rand}) },
dur: Prand([2,2,2.5,1],10),
db: Pn(Pstep([-10, -20, -20, -15, -20, -20, -20], 0.5) ),
legato: Pwhite(0.0,1).linexp(0,1,0.1, 3)
]),
Pbind(*[
type: \sine1,
amps: Pseg(Pfunc{ | ev | Array.fill(10, {1.0.rand}) }, 1),
numOvertones: Pseg(Pwhite(0, 9), 10).asInteger,
amps: Pfunc{ | ev | ev[\amps].copyRange(0, ev[\numOvertones]) },
dur: 0.05,
bufNum: Pkey(\bufnum)
])
])
);
b.play
)
//b.render("sounds/test.aif", 40)
//SoundFile.openRead("sounds/test.aif").play
::
subsection::Example 3, loading a waveshaper buffer and modifying it in performance.
code::
(
SynthDef(\shaper,{ arg out=0, bufnum=0, numbufs = 8, sustain = 1, freq = 500, amp = 0.1, pan = 0;
var audio;
audio = SinOsc.ar(freq);
audio = EnvGen.ar(Env.linen(0.4, 0.50,0.9), 1, timeScale: sustain, doneAction: 2) * audio;
audio = Shaper.ar(bufnum, audio);
audio = Pan2.ar(audio, pan, amp);
OffsetOut.ar(out, LeakDC.ar(audio));
}).add;
c = Pproto({
~bufnum = (type: \cheby, amps: 1.0/[1,2,3,4,5,6] ).yield;
},
Ppar([
Pbind(*[
instrument: \shaper,
freq: Pwhite(1, 16) * 100,
detune: Pfunc { Array.fill(3.rand + 1, {3.0.rand}) },
dur: Prand([2,2,2.5,1],inf),
db: Pn(Pstep([-10, -20, -20, -15, -20, -20, -20], 0.5) ),
legato: Pwhite(0.0,1).linexp(0,1,1.1, 5)
]),
Pbind(*[
type: \cheby,
amps: Pseg(Pfunc{ | ev | Array.fill(10, {1.0.rand}) }, 4),
dur: 0.05
])
])
);
c.play
)
//c.render("sounds/test.aif", 40)
//SoundFile("sounds/test.aif").play
//
::
subsection::Example 4, using an effect with parallel control.
code::
(
SynthDef(\echo, { arg out=0, maxdtime=0.2, dtime=0.2, decay=2, gate=1;
var env, in;
env = Linen.kr(gate, 0.05, 1, 5, 2);
in = In.ar(out, 2);
XOut.ar(out, env, CombL.ar(in * env, maxdtime, Lag.kr(dtime, 4), decay, 1, in));
}, [\ir, \ir, 0.1, 0.1, 0]).add;
SynthDef(\fm, { arg out=0, freq, index, decay=2, gate=1;
var env, in;
env = Linen.kr(gate, 0.05, 1, 5, 2);
in = In.ar(out, 2);
XOut.ar(out, env, SinOsc.ar(freq, in * index));
}).add;
Pproto({
// start two effect synths (just switching them on) and store the parameters in the environment
~fsynth = (type: \on, instrument: \fm, freq: 4, index: 1, addAction: 1, db: -30).yield;
~fControl = [\set, ~fsynth[\id], ~fsynth[\msgFunc] ];
~synth = (type: \on, instrument: \echo, addAction: 1).yield;
~sControl = [\set, ~synth[\id], ~synth[\msgFunc] ];
}, [
Pbind(*[
#[type, id, msgFunc], Pkey(\fControl), // fetch the parameters from the environment
freq: Pseg([0,1], 10).linexp(0,1, 0.1, 1000),
index: Pseg([0,1], 10).linexp(0,1, 0.1, 100),
dur: 0.1
]),
Pbind(*[
#[type, id, msgFunc], Pkey(\sControl), // fetch the parameters from the environment
dtime: Pwhite(0,0.2),
decay: Pwhite(0.1,2),
dur: 1
]),
Pbind(*[
instrument: \default,
freq: Pwhite(1,16) * 100,
dur: 0.2,
db: 0
])
]
).play
)
::
|