This file is indexed.

/usr/share/SuperCollider/HelpSource/Classes/SimpleNumber.schelp is in supercollider-common 1:3.8.0~repack-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
CLASS:: SimpleNumber
summary:: one-dimensional value
categories:: Math
related::Classes/Polar, Classes/Complex, Classes/Float, Classes/Integer, Classes/UnaryOpUGen, Classes/BinaryOpUGen

DESCRIPTION::
Base class for numbers which can be represented by a single one dimensional value.

Most of the Unary and Binary operations are also implemented by link::Classes/UnaryOpUGen:: and link::Classes/BinaryOpUGen::, so you can get more examples by looking at the help for those.

CLASSMETHODS::

method:: new
allocates a new SimpleNumber.

INSTANCEMETHODS::

private:: prSimpleNumberSeries

subsection:: math support

method:: +
Addition


method:: -
Subtraction

method:: *
Multiplication

method:: /
Division

method:: %
Modulo

method:: mod
Modulo

method:: div
Integer Division

method:: **
Exponentiation

method:: !=
Is not

method:: >
greater than

method:: <
greater than

method:: >=
greater or equal than

method:: <=
smaller or equal than

method:: lcm
Least common multiple

method:: gcd
Greatest common divisor

method:: round
Round to multiple of aNumber
method:: roundUp
round up to a multiply of aNumber

method:: thresh

method:: min
Minimum

method:: max
Maximum

method:: wrap2

method:: trunc
Truncate to multiple of aNumber

method:: atan2
Arctangent of (this/aNumber)

method:: hypot
Square root of the sum of the squares.


method:: log
returns:: Base e logarithm.

method:: log2
returns:: Base 2 logarithm.

method:: log10
returns:: Base 10 logarithm.

method:: neg
returns:: negation

method:: abs
returns:: absolute value.

method:: sign
returns:: Answer -1 if negative, +1 if positive or 0 if zero.

method:: ceil
returns:: next larger integer.

method:: floor
returns:: next smaller integer

method:: sin
Sine

method:: cos
Cosine

method:: tan
Tangent

method:: asin
Arcsine

method:: acos
Arccosine

method:: atan
Arctangent

method:: sinh
Hyperbolic sine

method:: cosh
Hyperbolic cosine

method:: tanh
Hyperbolic tangent

method:: frac
fractional part

method:: squared
the square of the number

method:: cubed
the cube of the number

method:: sqrt
the square root of the number.

method:: exp
e to the power of the receiver.

method:: reciprocal
1 / this

method:: pow
this to the power of aNumber

method:: fold2
the folded value, a bitwise or with aNumber

method:: previousPowerOf
the number relative to this that is the previous power of aNumber

method:: nextPowerOf
the next power of aNumber

method:: nextPowerOfTwo
returns:: the number relative to this that is the next power of 2

method:: nextPowerOfThree
the next power of three

method:: hash
returns:: a hash value

method:: <!
returns:: the receiver. aNumber is ignored.

method:: &
Bitwise And

method::|
Bitwise Or

method:: bitXor
Bitwise Exclusive Or

method:: bitHammingDistance
Binary Hamming distance: the count of bits that are not the same in the two numbers

method:: bitTest
returns:: true if bit at index aNumber is set.

method:: bitNot
returns:: ones complement

method:: <<
Binary shift left.

method:: >>
Binary shift right.

method:: +>>
Unsigned binary shift right.

method:: rightShift
returns:: performs a binary right shift

method:: unsignedRightShift
returns:: performs an unsigned right shift

method:: leftShift
returns:: performs a binary left shift

method:: bitOr
returns:: performs a bitwise or with aNumber

method:: bitAnd
returns:: performs a bitwise and with aNumber

method:: ring1
(a * b) + a

method:: ring2
((a*b) + a + b)

method:: ring3
(a * a *b)

method:: ring4
((a*a *b) - (a*b*b))

method:: difsqr
(a*a) - (b*b)

method:: sumsqr
(a*a) + (b*b)

method:: sqrdif
(a - b) ** 2

method:: sqrsum
(a + b) ** 2

method:: absdif
(a - b).abs

method:: moddif
On a circle, there are two distances between two points. This operator returns the smaller value of the two.
code::
moddif(0.75, 0, 1)
::

method:: amclip
0  when  b <= 0,  a*b  when  b > 0

method:: scaleneg
a * b when a < 0, otherwise a.

method:: clip2
clips receiver to +/- aNumber

method:: excess
Returns the difference of the receiver and its clipped form.
discussion::
code::
(a - clip2(a,b))
::

method:: madd
code::
this * a + b
::

subsection:: testing
method:: isPositive
Answer if the number is >= 0.

method:: isNegative
Answer if the number is < 0.

method:: isStrictlyPositive
Answer if the number is > 0.

method:: booleanValue
returns:: true, if strictly positive ( > 0), otherwise false (see link::Classes/Boolean::)

method:: isNaN
method:: ==

subsection:: conversion

method:: asFraction
argument::denominator
argument::fasterBetter
if true, asFraction may find a much closer approximation and do it faster.
returns:: an array of denominator and divisor of the nearest and smallest fraction

method:: asAudioRateInput
Converts this into an audiorate input.

method:: asTimeString
Compile a time string.
argument:: precision
how accurate
argument::maxDays
the maximum number of days
argument::dropDaysIfPossible
a link::Classes/Boolean::
returns:: a string corresponding to the hours:minutes:seconds based on the receiver as number of seconds
discussion::
code::
(
var start;
start = Main.elapsedTime;
{ loop({(Main.elapsedTime - start).asTimeString.postln; 0.05.wait}) }.fork;
)
::

method:: asPoint
returns:: this as link::Classes/Point::. x = y = this.

method:: asComplex
returns:: this as link::Classes/Point::. x = y = this.

method:: asWarp
argument::spec
a link::Classes/ControlSpec::
returns:: this as link::Classes/CurveWarp:: according to spec.

method:: asFloat
returns:: this as link::Classes/Float::

method:: asRect
returns:: a link::Classes/Rect:: with x = y = w = h = this.

method:: asBoolean
returns:: this as a link::Classes/Boolean::.  this > 0

method:: asQuant
returns:: the values as link::Classes/Quant::

method:: asInteger
returns:: this as link::Classes/Integer::

subsection:: timing

method::wait
within a routine, yield the number so that the clock can wait for this many beats. Outside a Routine, this trows an error (see also Routine for details).

discussion::
Create a routine by a function fork
code::
(
fork {
	1.wait;
	"I did wait".postln;
	1.0.rand.wait;
	"No you didn't".postln;
	2.wait;
	(1..).do { |i|
		"yes I did".postln;
		i.asFloat.rand.wait;
		"no you didn't".postln;
		i.wait
	}
}
)
::

method:: waitUntil
like wait, only specify a time (measured in beats of the current thread's clock). Outside a Routine, this trows an error (see also Routine for details).

method:: sleep
make the current thread sleep, until woken up by re-scheduling. Outside a Routine, this trows an error (see also Routine for details).

method:: nextTimeOnGrid
argument::clock
returns:: the next possible multiple of the clock's beats.

method:: schedBundleArrayOnClock



subsection:: series and arrays

method:: nearestInList
returns:: the value in the list closest to this

discussion::
code::
(
l = [0, 0.5, 0.9, 1];
(0, 0.05..1).collect { |i| i.nearestInList(l) }
)
::

method:: nearestInScale
argument:: scale
an array of SimpleNumbers each treated as a step in the octave.
argument:: stepsPerOctave
12 by default
returns:: the value in the collection closest to this, assuming an octave repeating table of note values.

discussion::
code::
(
l = [0, 1, 5, 9, 11]; // pentatonic scale
(60, 61..76).collect { |i| i.nearestInScale(l, 12) }
)
::

method:: series
return an arithmetic series from this over second to last.
discussion::
This is used in the shortcuts:
code::
(0..100);
(1, 3 .. 17)
::
If second is nil, it is one magnitude step towards last (1 or -1).
Examples:
code::
series(5, 7, 10);
series(5, nil, 10);
(5, 7 .. 10)
::

method:: seriesIter
returns:: a Routine that iterates over the numbers from this to last.

discussion::
Since this is a lazy operation, last may be inf, generating an endless series
(see also link::Guides/ListComprehensions::)
code::
r = seriesIter(0, 5);
r.nextN(8);
r.nextN(8);
::


subsection:: windowing

method:: rectWindow
returns:: a value for a rectangular window function between 0 and 1.

method:: hanWindow
returns:: a value for a hanning window function between 0 and 1.

method:: welWindow
returns:: a value for a welsh window function between 0 and 1.

method:: triWindow
returns:: a value for a triangle window function between 0 and 1.

subsection:: mapping

method:: distort
a nonlinear distortion function.

method:: softclip
Distortion with a perfectly linear region from -0.5 to +0.5

method:: scurve
Map receiver in the onto an S-curve.
discussion::
code::
((0..100) / 100 ).collect(_.scurve).plot
::

method:: ramp
Map receiver onto a ramp starting at 0.
discussion::
code::
((-100..100) / 100 ).collect(_.ramp).plot
::

method::magnitude
returns:: absolute value (see link::Classes/Polar::, link::Classes/Complex::)

method::angle
returns:: angle of receiver conceived as link::Classes/Polar:: or link::Classes/Complex:: number.


method:: degreeToKey
argument:: scale
an array of SimpleNumbers each treated as a step in the octave.
argument:: stepsPerOctave
12 is the standard chromatic scale.
discussion::
the value is truncated to an integer and used as an index into an octave repeating table of note values. Indices wrap around the table and shift octaves as they do.

code::
(
l = [0, 1, 5, 9, 11]; // pentatonic scale
(1, 2..15).collect{|i|
	i.degreeToKey(l, 12)
};
)
::

method:: keyToDegree
inverse of degreeToKey.
argument:: scale
an array of SimpleNumbers each treated as a step in the octave.
argument:: stepsPerOctave
12 is the standard chromatic scale.
discussion::
code::
(
l = [0, 1, 5, 9, 11]; // pentatonic scale
(60, 61..75).collect { |i| i.keyToDegree(l, 12) }
)
::
code::
(
l = [0, 1, 5, 9, 11]; // pentatonic scale
(60, 61..75).postln.collect { |i| i.keyToDegree(l, 12).degreeToKey(l) }
)
::



method::gaussCurve
map the receiver onto a gauss function.

discussion::
Uses the formula:
code::
a * (exp(squared(this - b) / (-2.0 * squared(c)))) Default values: a = 1; b = 0; c = 1
::
Example code
code::
(0..1000).normalize(-10, 10).collect { |num| num.gaussCurve }.plot;
::


method:: equalWithPrecision

argument::precision
The absolute precision, independent of the value compared

argument::relativePrecision
The precision relative to the larger absolute of the values compared.


returns:: true if receiver is closer to that than precision.

discussion::
code::
3.1.equalWithPrecision(3.0, 0.05); // false
3.1.equalWithPrecision(3.0, 0.1); // false
3.1.equalWithPrecision(3.0, 0.11); // true
3000.1.equalWithPrecision(3000.0, 0, 0.01); // true
3.1.equalWithPrecision(3.0, 0, 0.01); // false

::



method:: quantize
round the receiver to the quantum.
argument::quantum
amount.
argument::tolerance
allowed tolerance.
argument::strength
Determines how much the value is allowed to differ in the tolerance range.
discussion::
code::
((0..10) / 10).collect { |num| num.quantize(1, 0.3, 0.5) }.postcs.plot;
((0..10) / 10).collect { |num| num.quantize(1, 0.6, 0.5) }.postcs.plot;
((0..10) / 10).collect { |num| num.quantize(1, 1.0, 0.5) }.postcs.plot;
::

method:: linlin
map the receiver from an assumed linear input range to a linear output range. If the input exceeds the assumed input range, the behaviour is specified by the clip argument.
argument::inMin
assumed input minimum
argument::inMax
assumed input maximum
argument::outMin
output minimum
argument::outMax
output maximum
argument::clip
nil (don't clip)
\max (clip ceiling)
\min (clip floor)
\minmax (clip both - this is default).

discussion::
code::
(0..10).collect { |num| num.linlin(0, 10, -4.3, 100) };
(0..10).linlin(0, 10, -4.3, 100); // equivalent.
::

method::linexp
map the receiver from an assumed linear input range (inMin..inMax) to an exponential output range (outMin..outMax). The output range must not include zero. If the input exceeds the input range, the following behaviours are specified by the clip argument.
argument::inMin
assumed input minimum
argument::inMax
assumed input maximum
argument::outMin
output minimum
argument::outMax
output maximum
argument::clip
nil (don't clip)
\max (clip ceiling)
\min (clip floor)
\minmax (clip both - this is default).
discussion::
code::
(0..10).collect { |num| num.linexp(0, 10, 4.3, 100) };
(0..10).linexp(0, 10, 4.3, 100); // equivalent.
::

method::explin
map the receiver from an assumed exponential input range (inMin..inMax) to a linear output range (outMin..outMax). If the input exceeds the assumed input range. The input range must not include zero.
If the input exceeds the input range, the following behaviours are specified by the clip argument.
argument::inMin
assumed input minimum
argument::inMax
assumed input maximum
argument::outMin
output minimum
argument::outMax
output maximum
argument::clip
nil (don't clip)
\max (clip ceiling)
\min (clip floor)
\minmax (clip both - this is default).
discussion::
code::
(1..10).collect { |num| num.explin(0.1, 10, -4.3, 100) };
(1..10).explin(0.1, 10, -4.3, 100); // equivalent.
::

method::expexp
map the receiver from an assumed exponential input range (inMin..inMax) to an exponential output range (outMin..outMax). If the input exceeds the assumed input range. Both input range and output range must not include zero.
If the input exceeds the input range, the following behaviours are specified by the clip argument.
argument::inMin
assumed input minimum
argument::inMax
assumed input maximum
argument::outMin
output minimum
argument::outMax
output maximum
argument::clip
nil (don't clip)
\max (clip ceiling)
\min (clip floor)
\minmax (clip both - this is default).
discussion::
code::
(1..10).collect { |num| num.expexp(0.1, 10, 4.3, 100) };
(1..10).expexp(0.1, 10, 4.3, 100); // equivalent.
::

method::lincurve
map the receiver from an assumed linear input range (inMin..inMax) to an exponential curve output range (outMin..outMax). A curve is like the curve parameter in Env. Unlike with linexp, the output range may include zero.
If the input exceeds the input range, the following behaviours are specified by the clip argument.
argument::inMin
assumed input minimum
argument::inMax
assumed input maximum
argument::outMin
output minimum
argument::outMax
output maximum
argument::curve
0 (linear) <0 (concave, negatively curved) >0 (convex, positively curved)
argument::clip
nil (don't clip)
\max (clip ceiling)
\min (clip floor)
\minmax (clip both - this is default).
discussion::
code::
(0..10).collect { |num| num.lincurve(0, 10, -4.3, 100, -3) };
(0..10).lincurve(0, 10, -4.3, 100, -3); // equivalent.
::
code::
// different curves:
(-4..4).do { |val|
	(0..100).collect(_.lincurve(0, 100, 0, 1, val)).plot
}
::

method::curvelin
map the receiver from an assumed curve-exponential input range (inMin..inMax) to a linear output range (outMin..outMax). If the input exceeds the assumed input range. A curve is like the curve parameter in Env. Unlike with explin, the input range may include zero. If the input exceeds the input range, the following behaviours are specified by the clip argument.
argument::inMin
assumed input minimum
argument::inMax
assumed input maximum
argument::outMin
output minimum
argument::outMax
output maximum
argument::curve
0 (linear) <0 (concave, negatively curved) >0 (convex, positively curved)
argument::clip
nil (don't clip)
\max (clip ceiling)
\min (clip floor)
\minmax (clip both - this is default).

discussion::
code::
(1..10).collect { |num| num.curvelin(0, 10, -4.3, 100, -3) };
(1..10).curvelin(0, 10, -4.3, 100, -3); // equivalent.
::
code::
// different curves:
(-4..4).do { |val|
	(0..100).collect(_.curvelin(0, 100, 0, 1, val)).plot
}
::

method::bilin
map the receiver from two assumed linear input ranges (inMin..inCenter) and (inCenter..inMax) to two linear output ranges (outMin..outCenter) and (outCenter..outMax). If the input exceeds the input range, the following behaviours are specified by the clip argument.
argument::inCenter
argument::inMin
assumed input minimum
argument::inMax
assumed input maximum
argument::outCenter
argument::outMin
output minimum
argument::outMax
output maximum
argument::clip
nil (don't clip)
\max (clip ceiling)
\min (clip floor)
\minmax (clip both - this is default).
discussion::
code::
var center = 0.5, ctlCenter;
w = Window("bilin", Rect(100, 100, 200, 100)).front;
a = Slider(w, Rect(20, 20, 150, 20)).value_(0.5);
b = Slider(w, Rect(20, 45, 150, 20)).value_(0.5);
b.action = { center = b.value };
a.mouseDownAction = { ctlCenter = a.value };
a.action = {
	b.value = a.value.bilin(ctlCenter, 0, 1, center, 0, 1);
};
::


method::biexp
map the receiver from two assumed exponential input ranges (inMin..inCenter) and (inCenter..inMax) to two linear output ranges (outMin..outCenter) and (outCenter..outMax). The input range must not include zero. If the input exceeds the input range, the following behaviours are specified by the clip argument.
argument::inCenter
argument::inMin
assumed input minimum
argument::inMax
assumed input maximum
argument::outCenter
argument::outMin
output minimum
argument::outMax
output maximum
argument::clip
nil (don't clip)
\max (clip ceiling)
\min (clip floor)
\minmax (clip both - this is default).

discussion::
code::
// doesn't properly work yet.
(
var center = 0.5, ctlCenter;
w = Window("biexp", Rect(100, 100, 200, 100)).front;
a = Slider(w, Rect(20, 20, 150, 20)).value_(0.5);
b = Slider(w, Rect(20, 45, 150, 20)).value_(0.5);
b.action = { center = b.value };
a.mouseDownAction = { ctlCenter = a.value + 0.05 };
a.action = {
	b.value = (a.value + 0.1).biexp(ctlCenter, 0.1, 1.1, center, 0, 1);
};
)
::

method::lcurve
map the receiver onto an L-curve.

discussion::
Uses the formula
code::
a * (m * exp(x) * rTau + 1) / (n * exp(x) * rTau + 1)
::
This is used for smoothing values and limiting them to a range.
code::
(0..1000).normalize(-10, 10).collect { |num| num.lcurve }.plot;
::


method:: degrad
returns:: converts degree to radian

method:: raddeg
returns:: converts radian to degree

method:: midicps
Convert MIDI note to cycles per second
returns:: cycles per second

method:: cpsmidi
Convert cycles per second to MIDI note.
returns:: midi note


method:: midiratio
Convert an interval in semitones to a ratio.
returns:: a ratio

method:: ratiomidi
Convert a ratio to an interval in semitones.
returns:: an interval in semitones

method:: ampdb
Convert a linear amplitude to decibels.


method:: dbamp
Convert a decibels to a linear amplitude.

method:: octcps
Convert decimal octaves to cycles per second.

method:: cpsoct
Convert cycles per second to decimal octaves.


subsection:: streams

method:: storeOn
stores this on the given stream
method:: printOn
prints this on the given stream

subsection:: random

method:: coin
Answers a Boolean which is the result of a random test whose probability of success in a range from zero to one is this.

method:: rand
returns:: Random number from zero up to the receiver, exclusive.

method:: rand2
returns:: a random number from -this to +this.

method:: rrand
argument::aNumber
the upper limit
argument::adverb
returns:: a random number in the interval ]a, b[.
discussion::
If both a and b are link::Classes/Integer:: then the result will be an link::Classes/Integer::.

method:: linrand
returns:: a linearly distributed random number from zero to this.

method:: bilinrand
returns:: Bilateral linearly distributed random number from -this to +this.

method:: sum3rand
This was suggested by Larry Polansky as a poor man's gaussian.
returns:: A random number from -this to +this that is the result of summing three uniform random generators to yield a bell-like distribution.

method:: exprand
an exponentially distributed random number in the interval ]a, b[. This is always a link::Classes/Float::.
(Note that the distribution of numbers is not exactly an EMPHASIS::exponential distribution::, since that would be unbounded: we might call it a EMPHASIS::logarithmic uniform distribution::.)
argument::aNumber
the upper limit
argument::adverb

method:: gauss
a gaussian distributed random number.
argument::standardDeviation
the upper limit
discussion::
Always returns a link::Classes/Float::.
code::
(0..1000).collect { |num| gauss(0.0, num) }.plot;
::

method:: partition
randomly partition a number into parts of at least min size.
argument:: parts
number of parts
argument:: min
the minimum size

discussion::
code::
75.partition(8, 3);
75.partition(75, 1);
::


subsection:: UGen Compatibility Methods

Some methods to ease the development of generic ugen code.

method:: lag, lag2, lag3, lagud, lag2ud, lag3ud, slew, varlag

returns:: code::this::


subsection:: misc

method:: isValidUGenInput
returns:: false if receiver cannot be used in UGen.