This file is indexed.

/usr/share/SuperCollider/HelpSource/Overviews/SymbolicNotations.schelp is in supercollider-common 1:3.8.0~repack-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
title:: Symbolic Notations
summary:: Catalog of symbolic notations in SuperCollider
categories:: Language
related:: Overviews/Operators, Reference/Syntax-Shortcuts

section:: Arithmetic operators

Math operators apply to many classes, including arrays and other collections.

Using a basic math operator on a Symbol swallows the operation (returns the symbol)
code::
\symbol * 5
symbol
::

definitionlist::
## code:: number + number :: || addition
## code:: number - number :: || subtraction
## code:: number * number :: || multiplication
## code:: number / number :: || division
## code:: number % number :: || modulo
## code:: number ** number :: || exponentiation
::

section:: Bitwise arithmetic
definitionlist::
## code:: number & number :: || bitwise and
## code:: number | number :: || bitwise or
## code:: number << number :: || bitwise left shift
## code:: number >> number :: || bitwise right shift
## code:: number +>> number :: || unsigned bitwise right shift
::

section:: Logical operators
definitionlist::
## code:: object == object :: || equivalence
## code:: object === object :: || identity
## code:: object != object :: || not equal to
## code:: object !== object :: || not identical to
::

Objects may be equivalent but not identical.
code::
[1, 2, 3] == [1, 2, 3]
true
[1, 2, 3] === [1, 2, 3]
false       // a and b are two different array instances with the same contents

a = b = [1, 2, 3];
a === b;
true        // a and b are the same array instance
::

definitionlist::
## code:: number < number :: || comparison (less than)
## code:: number <= number :: || comparison (less than or equal to)
## code:: number > number :: || comparison (greater than)
## code:: number >= number :: || comparison (greater than or equal to)
::
definitionlist::
## code:: boolean && boolean :: || logical And
## code:: boolean || boolean :: || logical Or
::
When a function is the second operand, these operators perform short-circuiting (i.e., the function is executed only when its result would influence the result of the operation). This is recommended for speed.

With code:: and: :: and code:: or: :: second-argument functions will be inlined. If you use code::&&:: or code::||::, no inlining will be done and performance will be slower.
code::
a = 1;

a == 1 and: { "second condition".postln; [true, false].choose }
second condition
true

a == 1 or: { "second condition".postln; [true, false].choose }
true

a != 1 and: { "second condition".postln; [true, false].choose }
false

a != 1 or: { "second condition".postln; [true, false].choose }
second condition
true
::
In this case, the second condition will cause an error if a is nil, because nil does not understand addition. a.notNil is a safeguard to ensure the second condition makes sense.
code::
a = nil;
a.notNil and: { "second condition".postln; (a = a+1) < 5 }
false

a = 10;
a.notNil and: { "second condition".postln; (a = a+1) < 5 }
second condition
false
::

section:: Array and Collection operators

definitionlist::
## code:: object ++ object :: || concatenation
## code:: collection +++ collection :: || lamination (see link::Guides/J-concepts-in-SC::)
## code:: collection @ index :: || collection/array indexing: .at(index) or [index]
## code:: collection @@ integer :: || collection/array indexing: .wrapAt(int)
## code:: collection @|@ integer :: || collection/array indexing: .foldAt(int)
## code:: collection |@| integer :: || collection/array indexing: .clipAt(int)
::

section:: Set operators
definitionlist::
## code:: set & set :: || intersection of two sets
## code:: set | set :: || union of two sets
## code:: setA - setB :: || difference of sets (elements of setA not found in setB)
## code:: set -- set :: || symmetric difference:
code::
(setA -- setB) == ((setA - setB) | (setB - setA))
::
::

code::
a = Set[2, 3, 4, 5, 6, 7];
b = Set[5, 6, 7, 8, 9];

a - b
Set[ 2, 4, 3 ]

b - a
Set[ 8, 9 ]

((a-b) | (b-a))
Set[ 2, 9, 3, 4, 8 ]

a -- b
Set[ 2, 9, 3, 4, 8 ]
::

section:: Geometry operators
definitionlist::
## code:: number @ number :: || make a link::Classes/Point:: of two numbers
code::
x @ y
// returns:
Point(x, y)
::
## code:: point @ point :: || make a link::Classes/Rect:: of two link::Classes/Point::s
code::
Point(left, top) @ Point(right, bottom)
// returns:
Rect(left, top, right-left, bottom-top)
::
## code:: ugen @ ugen :: || create a Point with two link::Classes/UGen::s
## code:: rect & rect :: || intersection of two rectangles
## code:: rect | rect :: || union of two rectangles (returns a Rect whose boundaries exactly encompass both Rects)
::

section:: IOStream operators
definitionlist::
## code:: stream << object :: || represent the object as a string and add to the stream.
A common usage is with the Post class, to write output to the post window.
code::
Post << "Here is a random number: " << 20.rand << ".\n";
Here is a random number: 13.
::

## code:: stream <<* collection :: || add each item of the collection to the stream.
code::
Post << [0, 1, 2, 3]
[ 0, 1, 2, 3 ]

Post <<* [0, 1, 2, 3]
0, 1, 2, 3
::

## code:: stream <<< object :: || add the object's compile string to the stream.
code::
Post <<< "a string"
"a string"
::
## code:: stream <<<* collection :: || add each item's compile string to the stream.
::

section:: Conditional execution operators
definitionlist::
## code:: object ? object :: || nil check (no .value)
## code:: object ?? function :: || nil check (.value, function is inlined)
If the object is nil, the second expression's value will be used; otherwise, it will be the first object.
code::
a = [nil, 5];

10.do({ (a.choose ? 20.rand).postln });
10.do({ (a.choose ?? { 20.rand }).postln });
::
code:: ?? { } :: is generally recommended. code::?:: always evaluates the second expression, even if its value will not be used.
code:: ?? :: evaluates the function conditionally (only when needed).
If the function defines no variables, the function will be inlined for speed.

Especially useful when the absence of an object requires a new object to be created. In this example, it's critical that a new Slider not be created if the object was already passed in.
code::
f = { |slider, parent|
    slider = slider ?? { Slider.new(parent, Rect(0, 0, 100, 20)) };
    slider.value_(0);
};
::
If the first line inside the function instead read code::
slider = slider ? Slider.new(parent, Rect(0, 0, 100, 20));
::
, a new slider would be created even if it is not needed, or used.

## code:: object !? function :: || execute function if object is not nil.
code::
a = [10, nil].choose;
a !? { "ran func".postln };
// equivalent of:
if (a.notNil) { "ran func".postln };
::
Used when an operation requires a variable not to be empty.
code::
f = { |a| a + 5 };
f.value
// error: nil does not understand +

f = { |a| a !? { a+5 } };
f.value
nil // no error
f.value(2)
7
::
::

section:: Miscellaneous operators
definitionlist::
## code:: object ! number :: || same as code:: object.dup(number) ::
code::
15 ! 5
[ 15, 15, 15, 15, 15 ]
::
If the object is a function, it behaves like Array.fill(number, function).
code::
{ 10.rand } ! 5
[ 8, 9, 3, 8, 0 ]
::
## code:: object -> object :: || creates an link::Classes/Association::, used in dictionaries.
## code:: expression <! expression :: || bypass value of second expression.
This operator evaluates both expressions, and returns the value of the first.
code::
a = 0;
0

// a is incremented twice, but the return value (1)
// comes from the first increment (0 + 1)
(a = a + 1) <! (a = a + 1)
1

a	// a's value reflects both increments
2
::

## code:: function <> function :: || function composition operator.
This operator returns a new function, which evaluates the second function and passes the result to the first function.
code::
f = { |a| a * 5 } <> {|a| a + 2 };
f.(10);
60                  // == (10+2) * 5
::
An array as argument is passed through the chain:
code::
f.([10, 75, 512]);
[ 60, 385, 2570 ]   // == ([10, 75, 512]+2) * 5
::
::

section:: Symbolic notations to define literals/other objects
definitionlist::
## code:: $ :: || character prefix: code:: "ABC".at(0) == $A ::
## code:: '' :: or code:: \ :: || define a literal link::Classes/Symbol:: : code:: 'abc' === \abc ::
## code:: "" :: || define a literal link::Classes/String:: : code:: "SuperCollider is the best" ::
## code:: [item, item...] :: || define an link::Classes/Array:: containing given items
## code:: Set[item, item...] :: || define a link::Classes/Set:: -- any link::Classes/Collection:: class name can be used other than Set
## code:: #[item, item...] :: || define a literal link::Classes/Array::
## code:: (a:1, b:2) :: || define an link::Classes/Event:: (same as code:: Event[\a -> 1, \b -> 2] ::)
## code:: ` :: (backtick or backquote) || define a link::Classes/Ref:: : code:: `1 == Ref(1), `(a+1) == Ref(a+1) ::
## code:: \ :: || inside a string or symbol, escapes the next character
code::
"abc\"def\"ghi"
abc"def"ghi

'abc\'def\'ghi'
abc'def'ghi
::
definitionlist::
## code:: \t :: || tab character
## code:: \n :: || newline character
## code:: \l :: || linefeed character
## code:: \r :: || carriage return character
## code:: \\ :: || \ character
::

## code:: { } :: || define an open function
## code:: #{ } :: || define a closed function
## code:: (_ * 2) :: || define a function code:: { |a| a * 2 } :: (see link::Reference/Partial-Application::)
::

section:: Argument definition
definitionlist::
## code:: |a, b, c| :: || define function/method arguments
## code:: |a, b ... c| :: || define function/method arguments; arguments after a and b will be placed into c as an array
## code:: #a, b, c = myArray ::|| assign consecutive elements of myArray to multiple variables
## code:: #a, b ... c = myArray :: || assign first two elements to a and b; the rest as an array into c
::

section:: Where f is a function
definitionlist::
## code:: f.( ) :: || evaluate the function with the arguments in parentheses
## code:: f.(*argList) :: || evaluate the function with the arguments in an array
## code:: f.(anArgName: value) :: || keyword addressing of function or method arguments
code::
f = { |a, b| a * b };
f.(2, 4);
f.(*[2, 4]);
f.(a: 2, b: 4);
::
## code:: SomeClass.[index] :: || Equivalent to SomeClass.at(index) -- Instr.at is a good example
## code:: myObject.method(*array) :: || call the method with the arguments in an array
## code:: obj1 method: obj2 :: || same as code::obj1.method(obj2):: or code::method(obj1, obj2)::.
This works only with single-argument methods like binary operators.
::

section:: Class and instance variable access

Inside a class definition (see link::Guides/WritingClasses:: ):
code::
{
    classvar <a,    // Define a class variable with a getter method (for outside access)
             >b,    // Define a class variable with a setter method
             <>c;   // Define a class variable with both a getter and setter method

    var      <a,    // Define an instance variable with a getter method (for outside access)
             >b,    // Define an instance variable with a setter method
             <>c;   // Define an instance variable with both a getter and setter method

    // methods go here ...
}
::
These notations do not apply to variables defined within methods.

definitionlist::
## code:: ^someExpression :: || Inside a method definition: return the expression's value to the caller
## code:: instVar_ { } :: || define a setter for an instance variable
## code:: myObject.instVar = x; :: || invoke the setter: code:: (myObject.instVar_(x); x) ::
::

section:: Array series and indexing
definitionlist::
## code:: (a..b) :: || produces an array consisting of consecutive integers from a to b
## code:: (a, b..c) :: || e.g.: (1, 3..9) produces [1, 3, 5, 7, 9]
## code:: (..b) :: || produces an array 0 through b
## code:: (a..) :: || not legal (no endpoint given)

## code:: a[i..j] :: || same as code:: a.copyRange(i, j) ::
## code:: a[i, j..k] :: || e.g.: code:: a[1, 3..9] :: retrieves array elements 1, 3, 5, 7, 9
## code:: a[..j] :: || same as code:: a.copyRange(0, j) ::
## code:: a[j..] :: || same as code:: a.copyRange(i, a.size-1) :: (this is OK--Array is finite)

## code:: ~ :: || access an environment variable
## code:: ~abc :: || compiles to code:: \abc.envirGet ::
## code:: ~abc = value :: || compiles to code:: \abc.envirPut(value) ::
::

section:: Adverbs to math operators
(see link::Reference/Adverbs:: )

e.g.:
code::
[1, 2, 3] * [2, 3, 4]
[ 2, 6, 12 ]

[1, 2, 3] *.t [2, 3, 4]
[ [ 2, 3, 4 ], [ 4, 6, 8 ], [ 6, 9, 12 ] ]
::
definitionlist::
## code:: .s :: || output length is the shorter of the two arrays
## code:: .f :: || use folded indexing instead of wrapped indexing
## code:: .t :: || table-style
## code:: .x :: || cross (like table, except that the results of each operation are concatenated, not added as another dimension)
## code:: .0 :: || operator depth (see link::Guides/J-concepts-in-SC:: )
## code:: .1 :: || etc.
::